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a b s t r a c t 

HTTP adaptive streaming (HAS) has become the dominant technology for streaming video over the Inter- 

net. It gained popularity because of its ability to adapt the video quality to the current network condi- 

tions and other appealing properties such as usage of off-the-shelf HTTP servers and easy firewall traver- 

sal. However, when multiple HAS players share a bottleneck link for streaming, the individual adaptation 

techniques in the players have difficulties to maintain a stable bitrate and fairly share the network re- 

sources. HAS-assisting network elements can solve these performance problems and allow execution of 

advanced policies for sharing the available bandwidth. Nonetheless, testing and evaluating new sharing 

policies is costly and time consuming. This motivated us to formulate a model that allows to differentiate 

between groups of users depending on the type of user or device, and that can describe the mean bi- 

trate of the video streams and how often this bitrate is expected to change during playout. To show how 

our model can be used, we demonstrate two applications of our model. Furthermore, we validate the 

model based results against results obtained using our streaming testbed and proxy server based HAS- 

assistant. The results show that our model is highly accurate for both the mean bitrate and the number 

of changes in video bitrate. As such, our model is a useful tool for network administrators and internet 

service providers for evaluating the performance of sharing policies and for managing and provisioning 

video delivery networks. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

HTTP adaptive streaming (HAS) has become the major technol-

gy for streaming over the Internet. In HAS, a video file is split

p into segments typically with a duration between two and ten

econds. Each segment is encoded at multiple bitrates and resolu-

ions. All video segments are placed on an HTTP server together

ith a manifest file. This manifest file describes the index, URL, bi-

rate and resolution of each segment. When a video player starts a

tream, it first downloads the manifest file and then downloads the

ideo segments in a bitrate or resolution that it sees fit. The ma-

or advantage of this technology is that it allows video players to

dapt the video quality to the current network condition. Further-

ore, because HTTP adaptive streaming is based on known Web

echnology, namely HTTP, content providers can leverage existing

ethods in distribution such as content delivery networks (CDNs)
∗ Corresponding author. Tel.: +31205924213. 

E-mail address: j.w.m.kleinrouweler@cwi.nl (J.W. Kleinrouweler). 

w  

r  

a  

q  

e

ttp://dx.doi.org/10.1016/j.comnet.2016.03.023 

389-1286/© 2016 Elsevier B.V. All rights reserved. 

Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati

Computer Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.03.0
nd caching. Moreover, the usage of HTTP tackles the issues with

rewall and NAT traversal. 

The reasoning behind HAS is that the video quality can be

atched to both the available bandwidth and the type of device.

n the one hand, this means that in situations where the avail-

ble bandwidth becomes lower, buffer under-runs can largely be

voided by (temporarily) lowering the video quality. When more

andwidth becomes available the player can adapt the stream to

 higher video quality to optimize the streaming experience for

he user. On the other hand, since the intelligence is located at

he player (i.e., the player selects the bitrate and resolution of

he stream) it can take into account device capabilities, battery

evel, and data usage. This approach has its advantages over non-

daptive streaming as it is more robust in networks with unsta-

le performance. However, it was found by several studies that the

daptation mechanism in the players suffer performance problems

hen multiple players share a bottleneck link [1–3] . The two most

elevant problems are unfair sharing of the available bandwidth

nd instability. Instability refers to too often changing the video

uality and it is identified to negatively impact the video watching

xperience [4–6] . 
ng sharing policies for network-assisted HTTP adaptive streaming, 
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HTTP adaptive streaming players adapt the video quality based

on estimations of the available bandwidth. Most players use the

download speeds of the previous segments as a measure for the bi-

trate of future video segments. However, partially due to the bursty

nature of HAS traffic, it is difficult for the players to make accurate

bandwidth estimations [3,7] . More sophisticated adaptation algo-

rithms with better heuristics and conservative switching between

video profiles can lower the number unnecessary quality switches

and improve fairness [8–12] . However, fixing the problems only in

the player remains difficult because players have a limited view on

what occurs in the network. In the case where several video play-

ers share a bottleneck link, for example at home or on a hotel Wi-

Fi network, the players are unaware of each other and thus cannot

use this information while selecting a video bitrate. This eventually

leads to a suboptimal distribution of the available bandwidth. 

As an alternative to improving adaptation algorithms, several

implementations have been proposed that use knowledge from de-

vices in the network to assist video players in selecting the video

quality. These implementations range from traffic shaping at the

residential gateway [13] , signaling players from a measurement

proxy [14] , using OpenFlow [15] , and our implementation in the

form of an HTTP proxy server [16] . Typically, these implementa-

tions target networks where the bottleneck link is in the local– or

access network, and thus relatively close to the users. Network de-

vices close to the players, such as home gateways or switches in

the access network, have a good view of the traffic on the bottle-

neck link. They can share this view with the video players. 

The solutions that solicit in-network devices for making adap-

tation decisions show promising results. For example, in previous

work we showed that the number of changes in video quality can

be reduced while improving the fairness between video streams

[16] . However, the sharing policy did not take into account the

types of streams or devices, and thus only represented fairness on

a bitrate level instead of targeting an equal quality of experience

while considering device specific factors. Fortunately, this can be

resolved by improving the sharing policy. If an in-network device

has an overview of both the streams and the device specific factors,

then it becomes the most convenient point to make the adaptation

decisions. 

Changing the capacity sharing policy affects the streams’ bi-

trates, and how often this bitrate will change during the playback

of the video. In order to gain insights on the performance of a

policy under different circumstances, it has to be evaluated. How-

ever, building testbeds to determine the performance of a policy

is costly and time consuming. In previous work, we proposed a

model that allows to accurately estimate the bitrate of the video

streams and the bitrate stability [16] , 1 and as such give an estima-

tion of the quality of experience (QoE) of the viewer. The QoE of

the viewer improves when the bitrate of the video increases, while

the number of switches in bitrate should be kept low [17,18] . 

The contribution of this paper is three-fold. First, we extend our

model to include player prefetching to become more accurate. Sec-

ond, we show how our model can be used by demonstration our

model in the form of two example applications. Third, we show

that our model-based results are highly accurate when comparing

them to the actual performance in a testbed with our proxy server.

Although the number of deployments of network-assisted HAS

in currently low, we expect it to become more common as a result

of the standardization of the Server and Network-Assisted DASH

(SAND) architecture [19] . However, SAND only specifies the com-

munication between the HAS assistant and the players. This means

that it is still up to the HAS assistant to decide how the avail-
1 Reference [16] presents an early version and evaluation of the model. In this 

paper we extend this model and use it to evaluate different sharing policies. 
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ble bandwidth must be shared among the players. Our model can

e used to quickly evaluate a sharing policies for network-assisted

AS. As such, it is possible to evaluate a large number of sharing

olicies prior to deployment of the HAS assistant, and select the

ptimal policy for each network. We present our model as a use-

ul tool for network administrators and internet service providers

ISPs), and encourage them to use it when developing new sharing

olicies, as well as using the model for managing and provisioning

 HAS based video delivery network. 

The remaining of this paper is organized as follows. In

ection 2 our HAS-assisting network element in the form of an

TTP proxy server is introduced, as well as our streaming testbed.

ection 3 presents the performance model that describes the mean

itrate and number of bitrate changes. In Section 4 two types

f sharing policies are evaluated and the model-based results are

alidated against results achieved using our streaming testbed.

ection 5 concludes this paper. 

. Network-assisted HAS 

The adaptation algorithms in HTTP adaptive streaming players

re designed in such a way that they will provide the user with

he highest possible video quality. This approach relies on best

ffort and adaptation decisions are made from the viewpoint of

he player. This means that HAS players can be considered to be

elfish, because players only try to maximize the bitrate for their

tream and do not consider other traffic or other players. Instead of

imply sharing the available bandwidth, HAS players have to com-

ete with each other for their own share. As a result, the share

f the bandwidth that is available to a player can vary. Variations

n bandwidth available to a player cause changes in video bitrate,

ven though theoretically these changes should not have to occur

hen the available bandwidth is fairly divided among the players.

 higher number of changes in video quality lowers the quality of

xperience of the viewer. Furthermore, since HAS players by de-

ault are not aware of each other, they cannot take into account

ther players and their characteristics when deciding on a bitrate.

hen competing for bandwidth each player is equal, where for in-

tance it would have been better for devices with smaller screens

o make room for devices with larger screens. 

.1. HAS proxy server 

In network-assisted HAS, the problem described above is coun-

ered by including network devices that have a broader view of

he use of the bottleneck network link. These so called HAS-

ssisting network elements are aware of the active streaming play-

rs through monitoring the network traffic. When players signal

he network element with their requirements (these can both be

inimum and maximum requirements) and characteristics, the

AS-assisting network element can take these factors into account

hen dividing the available bandwidth. The major difference from

egular HAS is that adaptation decisions are not made individually

y the players, but by an overseeing network element while re-

eiving support from the players. 

We implemented a HAS-assisting network element in the form

f an HTTP proxy server. The proxy server can be installed on

outers and gateways that are relatively close to the players and

he bottleneck link that has to be guarded. In practice this means

hat the proxy server approach can be applied to networks where

he bottleneck is the local network, the household’s or company’s

nternet connection, or a link in the access network of the ISP.

ig. 1 illustrates these three scenarios and indicates placement of

he proxy server. For scalability reasons the proxy server should

e placed as close to the players as possible, but such that it pro-

esses the video traffic from all players on the shared bottleneck
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 1. Use cases for HAS-assisting network elements and indication of proxy placement. Bottlenecks (marked in gray) are: (A) the Wi-Fi network, (B) the DSL line, and (C) 

the ISP access network. 

Fig. 2. Period of download activity followed by a period of inactivity. 
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2

ink. For both scenarios (A) and (B) the proxy server would prefer-

bly be located at the (Wi-Fi) router, even though the bottleneck is

ituated at opposite sides of the proxy server. In scenario (C) the

roxy server has to be placed further upstream in a neighborhood

tation or switch. 

All HTTP traffic, i.e., TCP traffic with destination port 80, is

ransparently forwarded to the proxy server. 2 HTTP traffic is moni-

ored in order to detect starting and stopping video players. When

tarting a stream, a HAS video player first downloads the mani-

est file that contains the details of the stream, such as the avail-

ble bitrates, resolutions and the URLs of the video segments. The

roxy server will listen for manifest downloads that indicate start-

ng players. Like the player, the proxy server will also process the

anifest file. The proxy server uses the manifest to obtain char-

cteristics of the stream that it uses when dividing the available

andwidth among the players. Furthermore, the proxy server can

rack the video players’ activities based on the HTTP request for

ideo segments. In general, a video player has stopped a stream

hen the last segment in the stream has been downloaded. How-

ver, since users oftentimes stop a stream before it is finished, the

roxy server marks a player as stopped after a certain period of

nactivity. To set a value for this timeout we make use of the pe-

iodic behavior of HAS players. In steady-state mode, segments are

equested with intervals equal to the duration of the segment. If

he download of a segment takes shorter than the duration of a

egment, there will be a period of inactivity. 

As depicted in Fig. 2 the start of the download of a segment is

arked τ 1 , and the segment download is finished at τ 2 . If T segment 

s the segment duration, then the maximum period that a player

an be inactive before requesting the next segment is: 

 max = max (T segment − (τ2 − τ1 ) , 0) + 1 . (1)
2 In theory it is also possible to proxy encrypted traffic that uses HTTPS, however 

or this to work the the user must trust the proxy server and the player should 

ccept the proxy’s certificate. This requires user interaction and/or configuration. 
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c  
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he inactivity period is unlikely to be higher than the duration of

he segment minus the download time. In case the download takes

onger than the segment duration there will no period of inactivity.

o be certain a player is finished and to cope with small variations

n periodicity a margin of one second is added. 

Detection of starting and stopping players happens through

onitoring the traffic. By inspecting the User-Agent field in the

TTP header, the proxy server can obtain a rough estimate of the

ype of device. However, the HAS players have to communicate

ore accurate and detailed information to the proxy when more

dvanced sharing policies are considered. Players that are modified

o work with the HAS assistant can do this through in-band signal-

ng via additional fields in the HTTP header. This allows players to

ignal the proxy server before the start of the stream as part of

he request for the manifest file, and during the stream in requests

or the video segments. The proxy server can provide players with

dditional information via the HTTP response. 

The proxy server uses the information on how many players are

ctive, the characteristics of the streams and the types of devices

nd their capabilities to divide the bandwidth among the players.

ow the proxy server divides the available bandwidth depends on

he active policy. Currently we have implemented three policies

n the proxy server. The first policy equally divides the available

andwidth among the players and for each player selects the high-

st bitrate that is lower or equal to the fair share. The second pol-

cy classifies devices based on screen size and resolution, and tar-

ets each device type accordingly. The third policy makes a dis-

inction between regular and premium users and ensures higher

uality video for premium users. 

If the proxy server detects a player requesting a segment in a

itrate that is different from the bitrate that it selected for this

layer, it corrects the request by rewriting it into a request for the

ame segment but in the correct bitrate. When the proxy server

erforms a rewrite, it will add an additional field to the HTTP

esponse informing the player about the rewrite. This allows the

layer to act accordingly in the decoding and rendering pipeline.

n some occasions the forced rewriting of requests by the proxy

erver is unwanted. For instance, when a player is not able to

tream at the selected bitrate due to other limitations in band-

idth on the path between server and client, or when buffer lev-

ls are critically low. In these cases a player can request the proxy

erver not to rewrite the request. 

.2. Streaming testbed 

To evaluate the performance of the proxy server under a certain

olicy, we installed the proxy server in our streaming testbed. All

evices in the testbed are implemented as lightweight virtual ma-

hines with their own process– and network stack. The capacity
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 3. Streaming testbed using lightweight virtual machines and emulated network connections. 
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and delay of the connections between the devices is set by means

of network emulation. The CORE network emulator [20] is used to

configure the setup as depicted in Fig. 3 . The VMs run on a GNU

Debian Linux 6 host that has a 2.83 Ghz Intel Core 2 Quad CPU

and 8 GB ram. 

The testbed consists of 20 virtual PCs, two routers and three

servers. The bottleneck link is the network connection between

the two routers. The capacity of this link is limited to 8 mbit/s

to represent a network connection that is not sufficient for mul-

tiple players streaming at the high bitrates. The round-trip delay

between the clients and each of the servers is set to 10, 20, and

40 ms respectively. 

The router closest to the client machines (router-1) is made into

a HAS-assisting network element by installing our proxy server. Al-

though the bottleneck link has a capacity of 8 mbit/s, the proxy

server is configured with a maximum channel capacity of 6.8

mbit/s, thus having a 15% safety margin. The safety margin is in-

cluded to allow for lightweight background traffic and provide the

video players extra capacity to maintain sufficient buffer levels. In

the experimental runs in this paper there is no background traffic

present. 

Video players are started at free clients according to a Poisson

process. Each client can hold a single instance of a video player,

however the maximum number of active video players at the same

time is limited to 17. In all tested scenarios the lowest available

video bitrate is 400 kbit/s. To ensure sufficient bandwidth for un-

interrupted streaming, an 18th player that would cause a too high

demand on the network is denied service by the proxy server. 
Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati

Computer Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.03.0
At the client machines a stripped-down version of our custom

AS player is used. The supports signaling information about the

evice to the proxy server. Decoding and rendering of the video is

isabled to reduce the CPU load and memory usage of the virtual

achines. The players use an 8 s buffer, unless otherwise stated.

he videos that are used in the evaluations are segmented with a

uration of 4.0 seconds and described in a manifest file according

o the HTTP Live Streaming (HLS) 3 format. The manifest files and

he video segments are placed on the three off-the-shelf Apache

.2.22 HTTP servers. 

The URLs of the video segments are formatted such that they

ontain an identifier of the player, an identifier of the video, the

ndex of the segment, and the requested video bitrate. For each

valuated setting, twelve hours of HTTP traces are collected using

cpdump. Through analysis of the HTTP traces we can obtain the

ean bitrate of the streams and the number of times the bitrate is

hanged during playback. 

. Performance model 

The key difference between adaptation algorithms in the player

nd the bandwidth division algorithm in the proxy server is that

he proxy server bases it decisions on a flow level view instead of

n the individual downloaded segments. Without the proxy server,

layers enter the bandwidth competition for every segment, and

he outcome of the competition can be different any time. For the
3 https://developer.apple.com/streaming/ . 

ng sharing policies for network-assisted HTTP adaptive streaming, 
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Table 1 

Model notation. 

Notation Description 

Input 

C Capacity of the network connection 

λk Rate of the Poisson process at which group- k users 

start the video streams 

βk Mean duration of the video streams for group k 

B k Available bitrates for video streams for group k 

T segment k Segment size used in the video streams for group k 

Intermediate 

S State space of the Markov process 

π ( x ) The probability that the Markov process is in state x 

n k ( x ) The number of group- k players in state x 

q k ( x ) The bitrate of group- k players in state x 

γ ( x → y ) The number of group- k players that change video 

bitrate when transitioning from state x to state y 

Output 

E [ N k ] The expected number of players of group k 

E [ Q k ] The expected number of bitrate switches for players of group k 

E [ B k ] The expected bitrate for players of group k 

T  

t  
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n
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roxy server we expect that the total capacity of the bottleneck

etwork link is constant and that the available bandwidth is only

e-divided among the players when a new stream starts or a cur-

ent stream stops. An advantage of this is that the network usage

ecomes more predicable as it is predefined what happens when

 player of a certain type starts or stops. This behavior can also be

everaged in model based performance analyses. At the core, it has

o be described how many players of each type are active and what

he streaming bitrate is for each of the players. Based on that, the

ean bitrate of the streams can be retrieved. By observing how of-

en new players arrive or current players stop, and thus observing

ow often the division of the available bandwidth changes, we can

btain the number of quality changes in a stream. 

.1. Starting and stopping players 

One of the characteristics of a policy is that a policy can distin-

uish between different types of players. To keep the policies con-

ise and easy to execute in the proxy server, devices are grouped

ased on their type. The idea behind grouping players is that play-

rs in the same group are treated equally by the policy, where

layers in different groups can be treated differently. This implies

hat all players in a group will get the same video bitrate assigned

y the policy. 

The process of starting and stopping players is captured in a

arkov process. Let K be the number of different groups consid-

red by the policy and n k denote the number of active players

s group k , then each state in the process is described by a vec-

or (n 1 , n 2 , . . . , n K ) . We assume that HAS-assisting network ele-

ents do not allow more video players than the network allows

or. Although our proxy server was not initially intended for ac-

ess control, it can take this role and prevent streaming interrup-

ions caused by a too heavy demand on the network. This implies

hat the state space of the Markov process is finite. The state space

is defined as all states with non-negative integer valued entries

(n 1 , n 2 , . . . , n K ) that satisfy the following condition: 

K 
 

k =1 

n k 
˜ B k ≤ C, (2) 

here ˜ B k is the lowest available bitrate for players in group k , and

 is the capacity of the bottleneck link. 

Transitions between states are linked to the arrivals of new

layers and the termination of active players. We assume that

layers of group k arrive according to a Poisson process with inten-

ity λk . In HAS video streaming, the download of video segments

as to keep up with the playback. Therefore, the video segments

re typically chosen such that the time to download a segment is

qual to (or slightly shorter) than the duration of that video seg-

ent. Adapting the video bitrate means that the job size (the num-

er of bytes in the video stream) changes accordingly to the load

n the network, and that the time that video players are active in

he network is tightly linked to the duration of the video. There-

ore, the rate for transitions n k → (n k − 1) is n k / βk , where βk is

he mean duration of videos in group k . The Markov process at the

ase of our model is equal to the Erlang multi-rate loss model, for

hich it is well-known that a stationary distribution exists with

he following product form solution: 

(n 1 , n 2 , . . . , n k ) = 

1 

G 

K ∏ 

k =1 

(λk βk ) 
n k 

n k ! 
, (3)

here G is the normalization factor: 

 = 

∑ 

x ∈S 

K ∏ 

k =1 

(λk βk ) 
n k ( x ) 

n k ( x )! 
. (4) 
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he Erlang multi-rate model has the advantage of being insensitive

o the distribution of service times. In our model the service time

efers to the durations of the video streams βk . A summary of the

otation for our model can be found in Table 1 . 

.2. Streaming bitrate and bitrate switches 

The bitrate of a video stream, and how often this bitrate

hanges, depends on how the policy divides the bitrates among the

layers. From an abstract level, a policy is a function that takes the

apacity of the network, the number of players in each group, and

he available bitrates for each player as input, and outputs for each

roup k a video bitrate q k while taking into account the streams,

evices and users. Because in each state x ∈ S the number of play-

rs of each group is different, the policy has to be computed for

ll states in S . We use the notation n k ( x ) to denote the number of

layers of group k in state x , and q k ( x ) to denote the bitrate for

layers of group k in state x . 

Given the number of players and the bitrates selected by the

olicy the mean bitrate can be straightforwardly obtained. If the

ean number of players in group k is defined as: 

 [ N k ] = 

∑ 

x ∈S 
π( x ) n k ( x ) , (5)

hen the mean bitrate for the streams in group k becomes: 

 [ B k ] = 

1 

E [ N k ] 

∑ 

x ∈S 
π( x ) n k ( x ) q k ( x ) . (6)

The number of quality switches relates to how often the

arkov process transitions between states. If the selected bitrate

or a group of players is different between two states, then a bi-

rate switch is potentially made when the process transitions be-

ween those states. The intuition behind determining the number

f bitrate switches is that by observing the number of transitions

etween states with different selected bitrates, we can obtain the

umber of switches in video quality. However, HAS players can

echnically only switch in between segments, and not during the

ownload of a segment. The reason for this is that requested video

uality is part of the HTTP request, and only when making a new

equest a new bitrate can be selected. Therefore, to include this

ehavior of the HAS player in the model, we observe the Markov

rocess with intervals equal to the segment duration. The probabil-

ties that the process transitions from state x to state y in T segment 

econds can be retrieved via uniformization of the continuous time
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 4. The effect of the players’ buffer sizes on the mean bitrate of HAS streams. Larger buffers result in a higher mean bitrate. 
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Player prefetching

Fig. 5. Prefetching causes the player to be active in the network for a shorter period 

of time. No prefetching (top) versus prefetching (bottom). 
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Markov chain, by conditioning on m . If P m 

x , y is the probability that

the Markov process transitions from state x tot state y in m steps,

and if b is the uniform rate parameter, then the probability that a

transition x → y occurs in T segment seconds becomes: 

P x , y = e −bT segment 

∞ ∑ 

m =0 

(bT segment ) m 

m ! 
P m 

x , y for x , y ∈ S. (7)

The duration of the videos is variable, therefore we express the

number of switches in video quality not as an absolute number

but as a rate: number of bitrate switches per second. The expected

bitrate instability rate is defined as: 

E [ Q k ] = 

1 

T segment E [ N k ] 

∑ 

x , y ∈S 
π( x ) P x , y γk ( x → y ) , (8)

where γ k ( x → y ) is the number of players in group k that make a

bitrate switch on the transition x → y . Note that the bitrate insta-

bility rate is defined from the viewpoint of single player. Players

in group k only make a bitrate switch when the bitrate in state

x is different from the assigned bitrate in state y . Furthermore,

the number of players that make a switch is limited to the play-

ers that are both active in x and y . A player that is started will

already stream at the selected bitrate and does not have to make

a switch. Similarly, a player that terminated a stream cannot make

bitrate switches anymore. The number of players that make a bi-

trate switch on the transition x → y then becomes: 

γk ( x → y ) = 

{
0 if q k ( x ) = q k ( y ) , 

min (n k ( x ) , n k ( y )) if q k ( x ) � = q k ( y ) 
(9)

Eqs. 5 , 6 and 8 are defined per group k to allow for a more

detailed evaluations. The overall mean number of players, mean

bitrate, and expected bitrate instability rates can be found via a

weighted average, weighted by the mean number of players for

each group: 

E [ N/B/Q] = 

K ∑ 

k =1 

E [ N k ] · E [ N k /B k /Q k ] 

K ∑ 

k =1 

E [ N k ] 

. (10)

3.3. Inclusion of player prefetching 

The model presented above describes the steady-state behav-

ior of HTTP adaptive streaming players. In practice, HAS players

first enter the prefetching phase before going into the steady-state

phase. This behavior does effect the streaming bitrate, but is not
Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati
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et included in the model described above. In this section we de-

cribe how we can improve the accuracy of our model by taking

layer prefetching into account. 

During the prefetching phase, video segments are requested im-

ediately after the finishing downloading the previous segment,

.e., without the period of inactivity after the segment download.

 buffer is maintained during streaming to prevent interruptions

n playback caused by small variations in the available network ca-

acity. Depending on the type of stream this buffer size can vary.

or live streams the buffer size is kept small because it is impor-

ant that the play-out point is close to the actual broadcast. For

ideo-on-demand (VoD) this timing requirement can be relaxed

nd larger buffers with better resilience agains video interruptions

re more common. 

The size of the buffer in the player has an effect on the mean

itrate of the videos when our HAS proxy is used. This effect is

llustrated in Fig. 4 , where three players with different buffer sizes

re compared. PlayerA uses a buffer of two video segments or 8 s.

layerB and PlayerC have buffer sizes of 16 s and 24 s respectively.

ll players are evaluated in our streaming testbed and stream the

ame video with a duration of 144.0 s encoded at 400, 720, 1020,

30 0 and 420 0 kbit/s. Fig. 4 also includes the model based results

or comparability. 

The results show that the mean bitrate increases when players

ith a larger video buffer are used. The reason for this is that play-

rs with larger buffers are shorter active in the network. During

refetching, the time that players are active in the network is less

han the duration of video that is downloaded during that time. In

he steady-state phase, the network activity equals the duration of

ownloaded video. The difference between not including and in-

luding player prefetching is illustrated in Fig. 5 . 

This also explains why our model is accurate for players with

mall buffers, but shows an underestimation of the mean video bi-

rate for players with larger buffers. To account for the prefetching

ehavior in the model, it has to be determined how much time is

pent in the buffering phase, and how much time is spent in the

teady-state phase. An estimation of the mean time that it takes to
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 6. Comparison of the model-based mean bitrate, corrected model-based mean 

bitrate, and the mean bitrate achieved in experiments. The model including 

prefetching shows higher accuracy for the player with a large buffer. 
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Table 2 

Device-aware video quality mapping (in kbit/s). 

Quality level 360p 720p 1080p 

1 10 0 0 20 0 0 40 0 0 

2 600 1500 20 0 0 

3 400 10 0 0 1500 

4 400 600 10 0 0 

5 400 400 600 

6 400 400 400 
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ownload a single video segment can be found as: 

 download = 

E [ B ] · T segment 

C/ E [ N] 
= 

∑ 

x ∈S 
π( x ) n ( x ) q ( x ) · T segment 

C 
. (11) 

ased on the time that it takes to download a single segment, it

an be estimated how many segments need to be downloaded to

each a certain buffer level. 

A common buffer strategy in HAS players is as follows. The

layer starts by downloading one segment of video. Then, it starts

layback while prefetching (i.e., requesting video segments without

nactivity period in between segment downloads) until the player

eaches a certain buffer level. During prefetching, the inflow into

he buffer is T segment seconds, and the outflow from the buffer is

 download seconds. To reach a certain buffer level Buff so that the

layer can go into steady-state mode, � α + 1 	 segments have to be

ownloaded: 

u f f − T segment = (T segment − T download ) α

α = 

Bu f f − T segment 

T segment − T download 

(12) 

he download of the first video segment – while there is no out-

ow from the buffer – is accounted for by subtracting T segment 

rom the total buffer level in Eq. 12 , and increasing α by one to

ome to the total number of video segments that is required to be

ownloaded to reach Buff. The number of segments is rounded up,

 α + 1 	 , because moving from prefetching to steady-state phase

an only occur in between segments, but not during segment

ownloads. 

The effective service time βeff that video players are active in

he network, given a certain video length βvideo and β = βv ideo ,

hen becomes: 

e f f = � α + 1 	 (T download − T segment ) + βv ideo . (13)

he effective service time βeff is lower than the actual service time

that is used in the model. Therefore, to obtain a more accu-

ate mean bitrate, β has to be lowered to match βeff. However,

 download and α are dependent on β and lowering β will thus af-

ect βeff. The intersection β = βe f f is found by iteratively lower-

ng β while keeping βvideo constant. A comparison of the model

ased mean bitrate, the corrected model based mean bitrate, and

he actual mean bitrate of players with a 24 s buffer (PlayerC) is

isplayed in Fig. 6 . The results show that including prefetching

nfo the model results in better accuracy when players with larger

uffers are used, making it more broadly applicable. 
Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati
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. Capacity sharing policies 

At the proxy server the bandwidth that is available for video

treaming is divided among the players, according to a policy. In

his section we perform a model-based evaluation of two exam-

le sharing policies. These examples are to show sensitivity of our

odel to changes in the sharing policy, as well as to demonstrate

ow the model can be applied. The first example compares a pol-

cy that takes all devices as equal, to a policy that takes into ac-

ount the screen size and resolution of the devices. The second

xample compares two policies that include priority or premium

sers. In addition to demonstrating how our model can be used for

olicy evaluations, the model-based results are validated by com-

aring them against results that are obtained using our streaming

estbed. 

.1. Example: Device heterogeneity 

Mobile devices have become more powerful and are fully en-

bled for streaming videos using their Internet connection. It is not

ncommon that smartphone and tablet devices are used for video

treaming. Traditional devices, like television sets, nowadays also

ome with a network connection and they offer the same stream-

ng services that are available on the PC. Together these devices

reate an interesting mix of different screen sizes and potentially

ifferent usage patterns. Because of the different screen sizes it is

ot fair to equally divide the available bandwidth among the play-

rs, since this would not yield an equal quality of experience. 

Georgopoulos et al., describe how different bitrates and reso-

utions can be compared among devices with different form fac-

ors [15] . In our examples we will use the same groups of devices,

ideo profiles and video quality mapping. The first group is smart-

hone sized devices that stream a 360p video of 60 s, encoded

t 40 0, 60 0 and 10 0 0 kbit/s. The second group represents tablet

iewers that stream a 720p video of 120 s, encoded at 40 0, 60 0,

0 0 0, 150 0, and 20 0 0 kbit/s. The third group is large screen de-

ices that stream a 1080p video of 180 s, encoded at 40 0, 60 0,

0 0 0, 150 0, 20 0 0, 40 0 0 kbit/s. 

Each player will report its screen size to the proxy server, via

he signaling mechanism. This way, the proxy server can take dif-

erent device types into account. Based on the screen resolution

nd the available bitrates, a device-aware quality mapping is cre-

ted and listed in Table 2 . Depending on the number of players

ith each resolution, the proxy server selects a quality level from

able 2 that fits the capacity of the channel. For example, the test

f the current active players would fit the capacity of the network

iven quality level 2 would be: 

360 p ∗ 600 + #720 p ∗ 1500 + #1080 p ∗ 20 0 0 ≤ C (14)

For quality levels 1–3 the perceived video quality is similar

or the different device resolutions. From level four and up it is

ot possible to maintain the same perceived video quality. How-

ver, when the network capacity allows it, the bitrate of the 1080p

treams is higher than those of the 720p streams, and the bitrate

f the 720p streams is higher than those of the 360p streams. 
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 7. Model-based comparison of mean bitrates of a non device-aware and a device-aware sharing policy. 

Fig. 8. Model-based comparison of quality switches for a non device-aware and a device-aware sharing policy. 

Fig. 9. Model-based mean bitrate versus mean bitrate achieved in experiments for a device-aware sharing policy. 
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Fig. 7 shows the model-based comparison between the policy

that equally divides the available bandwidth among the players

(Policy1) and the policy that takes the devices’ resolutions into ac-

count as defined in Table 2 (Policy2). Players are started according

to three independent Poisson processes with arrival intensities be-

tween λ = 0 . 0025 and λ = 0 . 0030 for 360p and 720p devices, and

between λ = 0 . 00125 and λ = 0 . 0150 for 1080p devices. The arrival

rate λ in Fig. 7 is the combined arrival rate for the three indepen-

dent Poisson processes. 

For tablet devices the two policies do not show a difference in

mean bitrate. However, it can be observed that the small screen

devices are set to lower bitrates to make room for the big screen

devices. This is a result of the quality level mapping from Table 2 .

Differences between different type of devices also shows in the

number of bitrate switches in Fig. 8 . The biggest difference in the

number of switches between the two policies is for 360p devices.

This class shows opposite behavior for the two policies. Under Pol-

icy1 the small screen devices can stream at the highest available

bitrate of 10 0 0 kbit/s under low arrival rates. The fair share of

bandwidth is likely to be above the highest bitrate. Therefore, 360p

devices do not have to make a switch. When the load on the net-

work becomes higher, the equal share of the available bandwidth

is lower than 10 0 0 kbit/s and requires the small screen devices

to make a switch. This results in a higher number of switches for

higher arrival rates. 
Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati
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Under Policy2, this effect is reversed. At the lower arrival rates,

he 360p type devices have to make room for the large screen

evices and thus switch to a lower bitrate. This is again a result

rom the quality mapping in Table 2 . At high arrival rates the small

creen players are likely to already stream at the lowest available

itrate and cannot make a switch anymore, resulting in a lower

itrate instability rate. 

Figs. 9 and 10 show the comparison of the model-based results

ith the results that we obtained through experimentation using

ur streaming testbed with the device aware policy (Policy2) in-

talled on the proxy server. The results show that our model is

ighly accurate for both the mean bitrate of the video players as

ell as the bitrate instability rate. 

.2. Example: Premium users 

The second example of sharing policies that we demon-

trate in this paper are policies that differentiate between reg-

lar and premium users. The existence of premium users in

 video delivery network can come from different reasons. For

xample, some devices are considered more important because

hey are being watched by multiple persons, or some users pay

ore for Internet access and therefore assume a higher video

uality. 
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 10. Model-based instability rate versus instability rate achieved in experiments for a device-aware sharing policy. 

Fig. 11. Model-based comparison for mean bitrates of two sharing policies for premium users. 

Fig. 12. Model-based comparison for bitrate instability rates of two sharing policies for premium users. 
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In our policies we consider two groups of users: regular users

nd premium users. Premium users can expect that the video

uality of their stream will be higher than those of the regular

sers when the network allows for it. The first policy, PolicyA,

ives the group of premium players the highest possible bitrate re-

ardless of the bitrate for the regular players. The second policy,

olicyB, takes the same approach of selecting the highest possible

itrate for premium players, but will never select more than two

itrate-steps lower for regular users. 

A video with a duration of 140 s encoded at 400, 720, 1020,

60 0, 230 0, and 420 0 kbit/s is used in the evaluation. Both pri-

ary and regular players stream the same video. Regular players

re started following a Poisson process with arrival rates between

= 0 . 0025 and λ = 0 . 0300 , primary players are started with ar-

ival rates between λ = 0 . 00125 and λ = 0 . 0150 . This results in an

nvironment where there are on average twice as many regular

layers as there are primary players. Fig. 11 shows the compari-

on of the two policies for primary users in terms of mean bitrate.

ig. 12 shows the difference between the two policies in terms of
umber of bitrate switches. m  

Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati

Computer Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.03.0
The results show that PolicyB if more friendly towards regu-

ar players and the difference between primary and regular players

nder PolicyB is smaller. This can be observed by the two lines

epresenting Policy A to be closer to each other, compared to the

wo lines representing Policy B. However, the impact of switching

rom PolicyA to PolicyB is bigger for premium users compared to

he gain for regular when looking at absolute bitrates. The differ-

nces between the two policies also shown in the comparison of

he number of switches in video bitrate. Under PolicyA, premium

sers are kept longer on the high bitrates and thus require less

witches at lower arrival rates. Regular users are the first to switch

o lower bitrates when the network becomes loaded. At higher ar-

ival rates it is more likely that regular players are already at the

owest bitrate, resulting in less quality switches. 

For our proxy server we decided to implement PolicyA because

t yields the highest bitrate for premium users. In the experimental

uns a video stream with the same characteristics as in the com-

arison above is used. Fig. 13 shows that the mean bitrates of the

treams during the experimental runs are close to the model-based

ean bitrate. Similarly, the model-based bitrate instability shows
ng sharing policies for network-assisted HTTP adaptive streaming, 
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Fig. 13. Model-based mean bitrate versus mean bitrate achieved in experiments for a premium device policy. 

Fig. 14. Model-based instability rate versus instability rate achieved in experiments for a premium device policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a  

b

 

v  

s  

o  

u

 

t  

v  

p  

p  

o  

p  

n

 

o  

a  

i  

o  

p  

c  

a  

n

R

 

 

 

 

 

 

 

to be highly accurate when comparing them to the number of bi-

trate switches achieved using the streaming tested, as displayed in

Fig. 14 . 

From both examples in this section we can conclude that our

model is sensitive to changing the sharing policy while and re-

mains highly accurate. 

5. Conclusion 

Video streaming over the Internet is getting extremely popular.

With the rise of handheld devices such as smartphones and tablets

it is no longer an exception that multiple users share a network

connection for video streaming. However, when this network con-

nection contains a bottleneck that prohibits HTTP adaptive stream-

ing players to stream at the highest bitrates, it is important to

think about how the capacity of the shared link should be shared

among the players in order to provide an optimal viewing expe-

rience. Traditionally, HAS players are “selfish” in trying to achieve

the highest possible video bitrate without taking into account the

existence of other players in the network. With the introduction

of HAS-assisting network elements, network connections can be

shared more stable and fair, and policies that take into account

various user and device specific factors can be executed. 

Developing new sharing policies for network-assisted HAS re-

quires the policies to be thoroughly tested and evaluated. However,

simulation and experimental runs are time consuming and error

prone. This motivated us to formulate a Markov model that can

describe the performance of network-assisted HAS under a certain

policy. The model presented in this paper allows to classify differ-

ent types of players or streams, and to estimate the mean bitrate

and number of changes in video bitrate for each class of players.

The usage of our model is demonstrated by means of a model-

based evaluation of two types of sharing policies: device hetero-

geneity and premium users. The model-based results are validated
Please cite this article as: J.W. Kleinrouweler et al., A model for evaluati
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gains experimental runs using our streaming testbed and HAS-

ssisting proxy server. The results show to be highly accurate for

oth the mean bitrate and the bitrate instability. 

As such, our model is a useful tool that can be used in the de-

elopment of sharing policies, as well as for managing and provi-

ioning video delivery networks. Given our model, a large number

f configurations can be evaluated to come to the optimal config-

ration given a network setting. 

Depending on where the bottleneck is located in the network,

he model is aimed at network administrators and internet ser-

ice providers. Network administrators can use the model as sup-

ort while configuring HAS-assisting network elements such as our

roxy server. ISPs can gain insights on HAS traffic requirements

n a larger scale. Furthermore, they can use it for planning and

rovisioning a dedicated video-on-demand service over their IP

etwork. 

Future research efforts will focus on applicability and accuracy

f our model in larger architectures with multiple bottleneck links,

nd how to express requirements and dependencies in the pol-

cy formulation. Furthermore, we will investigate the possibilities

f online usage of our model in the proxy server, such that our

roxy server, or multiple instances of the proxy server together,

an dynamically update their internal sharing policies to provide

n optimized viewing experience based on the current usage of the

etwork. 
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