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a b s t r a c t 

Resources such as Web pages or videos that are published in the Internet are referred to by their Uniform 

Resource Locator (URL). If a user accesses a resource via its URL, the host name part of the URL needs 

to be translated into a routable IP address. This translation is performed by the Domain Name System 

service (DNS). DNS also plays an important role when Content Distribution Networks (CDNs) are used to 

host replicas of popular objects on multiple servers that are located in geographically different areas. A 

CDN makes use of the DNS service to infer client location and direct the client request to the optimal 

server. While most Internet Service Providers (ISPs) offer a DNS service to their customers, clients may 

instead use a public DNS service. The choice of the DNS service can impact the performance of clients 

when retrieving a resource from a given CDN. In this paper we study the impact on download perfor- 

mance for clients using either the DNS service of their ISP or the public DNS service provided by Google 

DNS. We adopt a causal approach that exposes the structural dependencies of the different parameters 

impacted by the DNS service used and we show how to model these dependencies with a Bayesian net- 

work. The Bayesian network allows us to explain and quantify the performance benefits seen by clients 

when using the DNS service of their ISP. We also discuss how the further improve client performance. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Each time an Internet user wants to access a resource, he uses a

human readable name called Uniform Resource Locator (URL), con-

taining the domain name of the administrative entity hosting this

resource. However, a domain name is not routable and needs to

be translated into the IP address of a server hosting the resource

the client wants to access. This is taken care of by the DNS ser-

vice. At the same time, many popular services such as YouTube,

iTunes, Facebook or Twitter, rely on CDNs, where objects are repli-

cated on different servers, and in different geographical locations

to optimize the performance experienced by their users. When a

client accesses an object hosted by a CDN, its default DNS server

contacts the DNS server of the CDN that hosts the resource the
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lient is requesting. Based on the origin of the request, the author-

tative CDN DNS redirects the client to the optimal server. Most

f the ISPs provide a DNS service, but it is now common to see

ustomers using a public DNS service instead [10] . Clients using

he DNS service of their ISP are served by a local DNS server that

ften provides a more accurate location information to the CDN

ompared to the information communicated by a public DNS ser-

ice such as the Google DNS service. Indeed, public DNS servers

re usually further away from the clients of a given ISP than the

efault ISP DNS server. There have been several studies suggest-

ng that public DNS services do not perform as well as local DNS

ervices provided by ISPs, mainly because of the impossibility of

ublic DNS to correctly communicate the location of the clients

riginating the request [1,7] . This problem is addressed with ECS

edns-client-subnet) [16] but Akamai does not support it currently.

Studying the performance of the users accessing resources in

he Internet is a complex task. Many parameters influence the end

ser experience and the relationships between these parameters

s not always observable or intuitive. It is therefore necessary to
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1 http://dx.doi.org/10.1016/j.comnet.2016.06.023 
se a simple, yet formal model that allows us to understand the

ole of a given parameter and its dependencies with other param-

ters. Bayesian networks offer a simple and concise way to repre-

ent complex systems [2] . In this paper, we use a Bayesian network

o represent the causal model that captures the impact of the DNS

ervice on the throughput performance experienced by clients ac-

essing resources hosted by the Akamai CDN. Bayesian networks

apture the dependencies between the different parameters im-

acting the throughput of the clients. One very interesting prop-

rty of causal models is their stability under intervention . Causal

odels can be used to predict how the throughput of CDN users

ould evolve if we would intervene on the different parameters in-

uencing the performance of CDN users. Here an intervention con-

ists in isolating a given parameter of the system being studied,

emoving all its direct and remote causes and fixing its variations

o a pre defined value or distribution. Being able to predict the ef-

ect of interventions, we can use causal models to understand the

bserved performance of a given system and to design strategies to

mprove its performance. In this work, we infer and use the causal

odel of CDN performance to understand the impact of choosing

ne DNS service instead of another. From such a model we are able

o explain why clients using the DNS service of their ISP experi-

nce better download performance than clients using the Google

NS service. We are also able to indicate how to further improve

he performance of the clients using the DNS service of their ISP. 

Our work differs from previous studies of DNS services in sev-

ral important points: 

• We use a causal approach that formally models the struc-

tural dependencies of the different parameters influencing the

throughput obtained. 

• Observing that the clients using the DNS service of their ISP

(referred to as local DNS) experience higher throughput than

the clients using the public DNS service (referred to as Google

DNS), we can show that this performance difference is due to

the fact that clients using the DNS service of their ISP are redi-

rected to closer servers. We are also able to precisely quantify

this performance improvement. 

• The causal model of our system also reveals that the parame-

terization of TCP (initial congestion window) of the servers ac-

cessed by the users of the Google DNS plays a key role in their

throughput performance. Besides fully explaining the observed

performance, this result also indicates how to further improve

the performance of the clients using the local DNS. 

Overall, the main contribution of our work resides in the

ethodology adopted and in its use of counterfactuals to under-

tand the causal dependencies of a complex system. 

In Section 2 , we introduce causal models and their use to

redict interventions, summarizing some of the main concepts

rom [11,15] . We then present, in Section 3 , the environment of

ur study and the description of the parameters constituting our

ystem. Section 4 presents our study of the DNS impact on the

hroughput. In particular we present the causal model of our sys-

em where we can observe the impact of the choice of the DNS

ervice on the throughput. Our approach also allows us to predict

he improvement that could be achieved by modifying the param-

terization of the servers accessed by the users of the local DNS

ervice. Section 5 compares our approach to the related work and

ection 6 summarizes our work and proposes directions to further

xtend our work. 

Several methods mentioned in this paper were designed and

alidated with parallel studies that are presented in an Appendix.
he Appendix is available with the online version of this paper. 1 

e give references to these studies in the paper. 

. Causal model: Definitions and usage 

To model a complex system such as a communication network

nd to organize the knowledge obtained from its passive observa-

ion is very challenging. Existing work typically looks for the pres-

nce of correlation between different events observed simultane-

usly (see [9] and references therein). However, correlation is not

ausation and the detection of correlation between two parameters

 and B does not inform us on how they are related. A can impact

 , or the other way around, or an unobserved parameter can im-

act both A and B simultaneously. The difference between corre-

ation and causation plays an important role if we want to find

ut how to improve our system by partly modifying its behavior. A

ausal approach uncovers the structural dependencies between the

arameters of the system under study. The ability to predict the

ffects of a manipulation of the parameters of a system is a major

trength of causal models as they are stable under intervention . Sta-

ility under intervention means that a causal model, inferred from

he observations of a system in a given situation, is still valid if we

anually change the system mechanisms, redefining the systems

aws. The manual modification of the system parameters is called

n intervention . Interventions consist in modifying the behavior of

 component of the system, removing the influence of its direct

nd remote causes and manually setting its variations. The infer-

nce of a causal model and of a causal effect [11,15] is made using

assive observations only. The causal theory allows us to predict

he behavior of the various parameters of the inferred model after

n intervention without the need of additional observations . 

In this section we present the PC algorithm [14] that is used to

nfer the causal model of our system. We also describe the differ-

nt properties of a causal model as described in [11,15] . 

.1. Causal model: Inference 

For our work, we use the PC algorithm [14] to build the

ayesian graph representing the causal model of our system. This

lgorithm takes as input the observations of the different param-

ters that characterize our system and infers the corresponding

ausal model. In our representation of a causal model as a Bayesian

etwork, each node represents one parameter of our system and

he presence of an edge from a node X to a node Y ( X → Y ) rep-

esents the existence of a causal dependence of parameter Y on

arameter X . 

The PC algorithm starts with a fully connected and unoriented

raph, called skeleton , where each parameter is represented by a

ode and connected to every other parameter. The PC algorithm

hen trims the skeleton by checking for independencies between

djacent nodes: 

• First, the unconditional independencies ( X � Y ) are tested for all

pairs of parameters and the edges between two nodes whose

corresponding parameters are found to be independent are re-

moved. 

• For the parameters whose nodes are still adjacent, the PC algo-

rithm then checks if there exists a conditioning set of size one

that makes two adjacent nodes independent. If this is the case,

it removes the edge connecting the corresponding two nodes,

otherwise the edge is kept. 

• The previous step is repeated, increasing the conditioning set

size by one at each step, until the size of the conditioning

set reaches the maximum degree of the current skeleton (the

http://dx.doi.org/10.1016/j.comnet.2016.06.023


202 H. Hours et al. / Computer Networks 109 (2016) 200–210 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P  

P  

w  

i

2

 

s  

i  

o  

u  

b  

v  

w  

[

 

2

 

b  

n  

n  

t  

c  

c  

n  

p  

m  

s  

o  

i  

f  

t

2

 

b  

a

 

l  

e

F  

 

T  

t  

b  

p  

h  

p  

a  

n  

m  

p  

s  

b  

C  

c  

e

maximum number of adjacent nodes for any node in the cur-

rent graph), which means that no more independencies can be

found. 

The final step of the PC algorithm consists in orienting the

edges. First, the PC algorithm orients all the V-structures, i.e. sub-

graphs X − Z − Y where X and Y are not adjacent, and then orients

as many edges as possible without creating new colliders or cy-

cles [11] . A node Z is a collider if it is part of an oriented subgraph

X → Z ← Y where X and Y are not adjacent. An illustration of the

different steps of the PC algorithm is presented in the Appendix

A.1. 

2.2. Causal model: Properties and theorems 

In this section we assume that we have the causal model of

our system that is represented by a Bayesian network. We focus

on two parameters X and Y , where Y represents the performance

of our system and we are interested in the global effect on Y when

intervening on X , including the effects mediated by external pa-

rameters also impacted by this intervention. We call this causal

effect the total causal effect . Details of the implementation of the

methods presented in this section can be found in the Appendix B.

2.2.1. Atomic interventions 

We denote by do(X = x ) (or do ( x )) the intervention that con-

sists in intervening on the parameter X by fixing its value to be

x . An intervention that simply assigns to X a fixed value is called

an atomic intervention . The difficulty of predicting the effect of an

intervention comes from the possible presence of spurious associa-

tions between the intervention variable and the response variable.

A spurious association between X and Y is an association between

X and Y due to external parameters ( �∈ { X, Y } ). To obtain an unbi-

ased estimation of the effect of an intervention, we need to remove

the effect of spurious associations. As an intervention is equivalent

to isolating a given parameter from its direct and remote causes

and to assigning it a fixed value, we need to remove the effects

of direct and remote causes in our estimations. Such estimation

is complex if one needs to consider all the possible inter depen-

dencies between the different parameters influencing the perfor-

mance of the system being studied. However, the use of a graphical

causal model , where the different dependencies are present, makes

it easy to estimate the outcome of interventions. Different criteria

(c.f. [11] ) can be used to identify the minimum set of parameters

that block the effects of direct and remote causes when estimating

the effect of a given intervention. 

If G denotes the Bayesian graph that represents the causal re-

lationships between the parameters of our system, we use G 

X 
to

denote the sub-graph of G where all the edges entering X are re-

moved and G X the sub-graph of G where all the edges exiting X are

removed. We can use the rules of do-calculus [11] to estimate the

distributions of the parameters of our system after an intervention

based on their distributions prior to this intervention. Note that

these rules do not make any assumption regarding the distribu-

tions or functional dependencies of the parameters. 

We briefly recall the Rules of do calculus that will be used in

Section 4.2 to predict the interventions we are interested in this

work. Let P denote a (possibly multivariate) probability distribution

specified by the probability mass function or probability density

function, depending on the nature of the parameters. 

Theorem 1 (3.4.1 from [11] ) . (Rules of do calculus) Let G be the di-

rected acyclic graph associated with a causal model [... ] and let P ( ·)
stand for the probability distribution induced by that model. For any

disjoint subsets of variables X, Y and Z we have the following rules. 

Rule 1 (Insertion/deletion of observation): 

P (y | do(x ) , z, w ) = P (y | do(x ) , w ) if (Y � Z | X, W ) G X (1)
Rule 2 (Action/observation exchange): 

 (y | do(x ) , do(z) , w ) = P (y | do(x ) , z, w ) if (Y � Z | X, W ) G X Z (2)

Rule 3 (Insertion/deletion of intervention): 

 (y | do(x ) , do(z) , w ) = P (y | do(x ) , w ) if (Y � Z | X, W ) G 
X Z(W ) 

, (3)

here Z(W) is the set of Z-nodes that are not ancestor of any W-nodes

n G 

X 
. 

.2.2. Enforcing intervention with a given probability 

To study the impact of the DNS service on the performance

een by the clients (c.f. Section 4 ) we must estimate the effect of

nterventions on the parameters influenced by the DNS service and

n the parameters influencing the throughput. To do so, we cannot

se atomic interventions since we intervene on a given parameter

y changing its distribution . If we want to predict how an inter-

ention on X affects Y , where the intervention on X is enforced

ith the conditional probability distribution f ∗( X | Z ), we obtain

 11 , Section 4.2 ]: 

f (y ) | f ∗(x | z) = 

∫ 
D X 

∫ 
D Z 

f Y | do(X ) ,Z (y, x, z) f ∗(x | z) f (z)d x d z. (4)

.3. D-separation 

The d-separation criterion is a graphical criterion to decide,

y looking at the graph, if two parameters, represented by their

odes, are independent. D-separation associates the notion of con-

ectedness with dependence. If there exists a directed path be-

ween two nodes, the nodes are said to be d-connected and their

orresponding parameters are dependent. On the other hand, if we

ondition on one of the nodes in the path from X to Y , then this

ode is said to block the path and X and Y are conditionally inde-

endent relative to this path. For X and Y to be independent, one

ust block all the paths d-connecting X and Y . When studying d-

eparation, an important notion is the one of collider. The presence

f a collider on a undirected path blocks this path. While condition-

ng on a collider unblocks the path which can be explained by the

act that two independent causes become dependent if one condi-

ions on their common consequence. 

.4. Density estimation 

The theory of causality [11] makes no assumption on the distri-

ution of the parameters. We estimate the multidimensional prob-

bility density functions via Copulae [8] , using the Sklar theorem. 

The Sklar theorem stipulates that, if F a is multivariate cumu-

ative distribution function with marginals ( F 1 , . . . , F i , . . . , F n ) , ther e

xists a copula C such that 

 (x 1 , . . . , x i , . . . , x n ) = C(F 1 (x 1 ) , . . . , F i (x i ) , . . . , F n (x n )) . (5)

There are different types of copulae, in our work we focus on

-copulae [3] and G-copulae [13] . T-copulae present the advantage

hat, by tuning the different parameters of the T-copula, one can

etter capture the tail dependencies between the different com-

onents of the multi-variate distribution that is modeled. This is

ighly useful in our case where the performance (e.g. the through-

ut of a Web user) can be strongly affected by changes to the char-

cteristics of the network such as packet loss or delay. Unfortu-

ately, T-copulae are complex to parameterize, which implies that

ore data is needed to fit such model to our problem. In this pa-

er, we are interested in counterfactuals such as “How would the

ystem behave under the condition C1 if one of its parameter was to

ehave as it has done under the condition C2 , knowing that C1 and

2 are exclusive ? ”. Counterfactuals correspond to the predictions of

omplex interventions, each of which requires conditioning on sev-

ral variables in order to block the different spurious associations. 
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Table 1 

Summary of the different parameters. 

Parameter μ min max σ CoV 

dstip N.A. 1300 340 0 0 N.A. N.A 

dns N.A 1 3 N.A. N.A. 

dow N.A. 4 7 N.A. N.A. 

tod (s) 7100 52,0 0 0 78,0 0 0 4400 0.1 

isprttavg (ms) 76 0 19,0 0 0 460 6.1 

isprttstd (ms) 100 0 37,0 0 0 960 9.2 

ispnbhops 1.8 1 3 0.51 0.3 

inetrttavg(ms) 26 0.48 660 27 1.0 

inetrttstd (ms) 8.2 0 4700 61 7.5 

inetnbhops 9.4 2 21 2.8 0.3 

rwin0 0.83 0 360 11 13 

rwinmin (kB) 31.3 0.004 65 22.5 0.9 

rwinmax (kB) 213 17.5 2625 150 0.7 

cwinmax (kB) 150 7.3 1625 103 0.7 

cwinmin (kB) 0.9 0.001 1.5 0.6 0.7 

retrscore 0.005 0 0.19 0.009 1.9 

rto (bool) 0.11 0 1 0.32 2.8 

nbbytes (MB) 23.8 2.1 3875 138 5.7 

tput (Mbps) 3.2 0.006 35 2.6 0.8 
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t

We decided to use Gaussian copulae [13] , which are known to

e less sensitive if the amount of data available is limited (see Ap-

endix C). 

In the bivariate case, the Gaussian copula is defined as: 

 ρ (u, v ) = �ρ(�−1 (u ) , �−1 (v )) , (6)

here ρ represents the correlation matrix and � the CDF of the

tandard normal distribution. The marginals, F i ( x i ), are estimated

sing normal kernels. 

The choice of Gaussian copulae as well as the methods and

heir implementation to compute the conditional PDFs have been

esigned and validated based on studies made on artificial data

ets that are presented in the Appendix C. 

. Experimental set up 

In this section, we present how we do the data collection and

ow we extract the parameters of interest. We define our system

s the set of parameters (see Section 2.1 ) and observe these pa-

ameters in different situations to capture their dependencies and

nfer the corresponding graphical causal model. 

.1. Experiment design 

We collect IP packet traces at a Point of Presence (PoP) of a

arge European ISP and extract all the traffic directed to or com-

ng from the Akamai CDN. To model the impact of the choice of

NS service on the client throughput, we make three choices: i)

e only focus on the traffic carried by the TCP protocol. ii) To

liminate the impact of TCP slowstart, we only consider large TCP

onnections that carry at least 2MBytes of data. iii) As more than

0% of the observed connections use either Google DNS ( GDNS ) or

he DNS of the local ISP ( LDNS ) we consider only these two DNS

ervices. 

The probe capturing the traffic is placed between the client and

he server. We call internal network, denoted as isp network , the

art of the network between the client and the probe. We call ex-

ernal network the part of the network between the probe and the

erver, assimilated to the Internet network and denoted as inet net-

ork . The traffic was captured on two different days, a Thursday

nd a Sunday, from 5.30 pm to 9.30 pm. 

.2. Parameters of our model 

We use the Tstat software [4] to extract from the packet traces

elevant information on a per connection basis. We have about

0 0 0 connections. We use domain knowledge to select a subset

f the information obtained from Tstat that represents the param-

ters known to impact the throughput. In addition to the infor-

ation obtained from Tstat we collect for each connection addi-

ional information such as the DNS service used, the number of

ops between the client and the server and the server address. 2 

he packet traces used for this study are confidential and cannot

e shared publicly. 

.3. Summary of our data 

Each connection is described by 19 parameters. In Table 1 , we

resent the average ( μ), minimum ( min ), maximum ( max ), stan-

ard deviation ( σ ) and coefficient of variation ( CoV = 

σ
μ ) of each

f the 19 parameters. 

Since we are interested in comparing the performance of LDNS

sers and GDNS users, Table 2 presents the statistics for the con-
2 Since the addresses were anonymized we represented the server address by the 

utonomous System (AS) number of the AS the server is located in. 

4

 

d  
ections where the LDNS is being used and for the connections

here the GDNS is being used. 

We use the following notations: 

• Parameters with the prefix isp represent the isp network statis-

tics, while the ones with the prefix inet represent the inet net-

work statistics. 

• The suffix avg represents the average value of a given parame-

ter for a single connection (for example the average Round Trip

Time between the client and the probe is denoted isprttavg ). 

• The suffix std represents the standard deviation of a given pa-

rameter for a single connection (for example the standard de-

viation of the Round Trip Time between the probe and a server

is denoted inetrttstd ). 

• The rto parameter is set to true if there was at least one packet

retransmission due to a time out and to false otherwise 

• The retrscore parameter represents the fraction of retransmitted

packets for a single connection ( = 

retransmissions 
total transmissions 

). 

• The parameters rwin ∗ and cwin ∗ represent receiver window and

congestion window metrics respectively. 

• The day of the week and time of the day are captured by the

variables dow and tod respectively. 

Destination IP ( dstip ), DNS ( dns ) and days ( dow ) are categorical

ata for which the average value, standard deviation or coefficient

f variation do not exist. 

Without discussing in detail the values of the different param-

ters in Table 1 , we would like to draw the attention to the dif-

erence in the RTT values observed inside the ISP network and the

TT values observed in the Internet: the average RTT value isprt-

avg is almost three times as high as the average RTT value inetrt-

avg . The use of an ADSL on the access link and the large buffers

sed in ADSL networks not only increase the RTT but also result

n high variations of the RTT values observed that correspond to a

tandard deviation of the isprttstd being more than ten times big-

er than the inetrttstd . 

. Causal study of the impact of the DNS service used on 

hroughput 

.1. Modeling causal relationships 

We use the PC algorithm [14] and the kernel based indepen-

ence test from [19] to obtain the Bayesian network showing the
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Table 2 

Summary of the different metrics for the two DNS: Local DNS (LD) and Google DNS (GD) ( dow and tod are 

similar and provide no insight, so they were removed). 

Par μ min max σ CoV 

LD GD LD GD LD GD LD GD LD GD 

isprttavg (ms) 80 61 0 0 19,0 0 0 15,0 0 0 470 440 5 .9 7 .2 

isprttstd (ms) 1100 76 0 0 32,0 0 0 37,0 0 0 920 1100 8 .3 14 .0 

ispnbhops 1.8 1.9 1 1 3 3 0.53 0.4 0 .3 0 .2 

inetrttavg (ms) 20 48 0.48 11 510 660 20 38 1 .0 0 .8 

inetrttstd (ms) 8.6 6.5 0 0 4700 1400 65 44 7 .6 6 .8 

inetnbhops 8.7 12 2 5 17 21 2.4 2.7 0 .3 0 .22 

rwin0 0.97 0.29 0 0 330 360 12 9.2 12 .0 32 .0 

rwinmin (kB) 35 12 0.004 0.03 65 65 28 14 0 .8 1 .1 

rwinmax (kB) 213 213 18 18 2625 20 0 0 150 138 0 .3 0 .7 

cwinmax (kB) 163 118 7.3 7.8 1625 738 108 72 0 .7 0 .6 

cwinmin (kB) 0.9 1.2 0.001 0.001 1.5 1.5 0.6 0.5 0 .7 0 .4 

retrscore 0.005 0.004 0 0 0.19 0.06 0.01 0.01 1 .9 1 .8 

rto (bool) 0.11 0.11 0 0 1 1 0.32 0.31 2 .8 2 .9 

nbbytes (MB) 29 7 2.1 2.1 3875 1375 150 44 5 .3 6 .5 

tput (Mbps) 3.2 3 0.006 0.007 35 29 2.7 2 0 .9 0 .7 

Fig. 1. Bayesian network representing the causal model of Web performance using 

two different DNS: the public Google DNS and the DNS of the local ISP with the 

following parameters: Day of the Week ( dow ), Number of bytes exchanged during 

the connection ( Nbbytes ), first advertised receiver window ( rwin0 ), minimum adver- 

tised receiver window ( rwinmin ), maximum advertised receiver window ( rwinmax ), 

minimum server congestion window ( cwinmin ), maximum server congestion win- 

dow ( cwinmax ), time of the day ( tod ), retransmission score ( retrscore ), presence of 

time outs ( rto ), server IP address ( dstip ), number of hops between client and probe 

( ispnbhops ), number of hops between probe and server ( inetnbhops ), average exter- 

nal delay ( inetrttavg ), standard deviation external delay ( inetrttstd ), average internal 

delay ( isprttavg ) and standard deviation internal delay ( isprttstd ). 
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causal model of our system (c.f. Fig. 1 ). We briefly discuss some of

the most interesting dependencies exhibited by this model. 

The day of the week ( dow ) and the time of the day ( tod ) are

two nodes that have no parents, which is not surprising. The time

of the day ( tod ) influences the RTT between the probe and the

server ( inetrttavg ), which captures the peak hour effect in the In-

ternet. 

In Table 1 we saw that that the variance of the internal RTT ( is-

prttstd ) was much higher than the one of the Inet RTT ( inetrttstd )

. This may lead one to expect that isprttstd has a stronger impact

on the throughput than the inetrttstd . However, the causal model

shows something different: we have a direct dependence between

( inetrttstd ) and the throughput ( tput ) but not between the stan-

dard deviation of the internal RTT ( isprttstd ) and the throughput.

This example illustrates the ability of causal model to exhibit non

intuitive dependencies. 

We observe that the day of the week ( dow ) influences the DNS

service used by the clients ( dns ). As our observations are made on

two days (a Thursday and a Sunday), our conclusions are a bit lim-

ited. However, it appears that on Thursday 72% of the connections
se the LDNS service against 28% using the GDNS service, while on

unday 93% of the connections use the LDNS service against 7% us-

ng the GDNS service. It would be interesting to identify the clients

sing one DNS service and compare their locations with the ones

f the clients using the other DNS service to better understand this

ependence. The day of the week may capture the difference in the

nternet usage and the devices used at home and at work. How-

ver, for privacy reasons, the IP addresses of the clients are obfus-

ated, which prevents us from investigating this hypothesis. 

One of the most interesting dependencies, which motivated this

ork, is the one between the DNS service ( dns ) and the external

TT ( inetrttavg ). Our data show that most of the time, clients using

he DNS of their ISP are redirected to an Akamai server located in

he same AS. On the other hand, the clients using the Google DNS

ervice are often redirected to servers located outside the client AS

nd even, in some cases, to a server outside of Europe. 

It has been previously shown [7] that clients using the lo-

al DNS service benefit from a redirection to servers closer than

he ones of the clients using a public DNS service. Our data (see

able 2 ) corroborate this observation since the average external

TT for the LDNS service users is of 20 ms, while the users of the

DNS service experience an average external RTT of 48 ms. 

We can also see that congestion window metrics ( cwinmin,

winmax ) have a direct impact on the throughput ( tput ). Addition-

lly, the minimum congestion window ( cwinmin ) has the DNS ( dns )

s direct parent. Its average value for clients using GDNS is 1.2kB

gainst 0.9kB for users served by the LDNS, see Table 2 . 

A parameter present in a causal model represents also the

echanisms captured by such parameter. This is the case of the

winmin that also captures the tuning of the TCP parameters at

he server side. Clients using the LDNS often access their objects

rom servers that are located inside the ISP network. These servers

ould have a configuration different from the servers accessed by

he users of the GDNS. This hypothesis could also explain the fact

hat both DNS services result in a similar throughput performance

espite the difference in the RTTs observed. Other reasons could be

he impact of losses on the congestion window or the load of the

ervers being accessed by the clients. To capture the server load,

e estimate the server processing time defined from the time at

hich a server sends the acknowledgment of the client HTTP/GET

essage and the time at which it sends the first data packet. How-

ver, the server processing time shows an expected value of 43 ms

or the LDNS users against 64 ms for the GDNS users. A higher

rocessing time for the servers accessed by the GDNS users sug-

ests that they are more loaded. On the other hand, the congestion
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Fig. 2. Comparison of the throughput with the quantity of data a client can handle (rwin ∗). 
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3 
∫ 
indow is impacted by the loss. However in our data set, very few

osses actually happen and no dependence is found between the

oss ( retrscore ) and the DNS service ( dns ). 

It is to be expected that the internal RTT ( isprttavg ) is a parent

f the throughput. Also, the absence of a dependence between the

ime of the day ( tod ) and the internal RTT can be explained by the

act that all the observed users are using the same “internal” path

the path from the users to the probe). 

We see that the maximum receiver window advertised by the

lient ( rwinmax ) has the time of the day as one of its parents

 tod ). This could be due to the TCP buffer auto tuning mecha-

ism [5] that adjusts the receiver window according to the quan-

ity and frequency of data received by the client, which is influ-

nced by the time of the day. 

There is no edge between the DNS ( dns ) and the destination IP

ddress ( dstip ) and the object size ( nbbbytes ) is not connected at

ll. This may be explained by the fact that the number of users of

he LDNS service (80%) is much higher than the number of users of

he GDNS service (20%). The same percentages are observed for the

umber of servers accessed by the users of the LDNS service (80%)

nd the number of servers accessed by the users of the GDNS ser-

ice. The difference between these percentages weakens the de-

endence between dns and dstip . A solution to detect weaker de-

endencies is to increase the acceptance rate in the independence

ests. However, increasing the acceptance rate implies a higher risk

f failing to reject weak independencies and should be used with

aution. The independence of the object size from other parame-

ers influencing the throughput is not necessarily surprising as we

onsider long connections. 

The two loss parameters ( retrscore and rto ) and the two RTT pa-

ameters ( inetrttstd and isprttavg ) are four of the six direct parents

f the throughput, which is in line with our domain knowledge of

CP. The additional parents are the congestion window parameters

f the server ( cwinmin and cwinmax ). 

The fact that none of the receiver window metrics ( rwin ∗) is a

irect parent of the throughput ( tput ) is not surprising. By compar-

ng the throughput of a given connection with the minimum and

he maximum quantity of information that the client can handle

see Fig. 2 ), it appears that the receiver window advertised by the

lient is never limiting the throughput. 
.2. Asking what-if questions 

We have seen that the Bayesian network reveals a rich set of

ausal relationships that indicate how the different parameters im-

act the throughput. We will now use this model to answer what-

f questions using only the already collected data, i.e. without the

eed to collect more data or perform additional experiments. 

This reasoning used to answer what-if questions is referred to

s counterfactual thinking . By asking “What would be the perfor-

ance of a user of the LDNS service if one of her parameter was to

ehave as it does when the GDNS is used, knowing that the use of

he LDNS and the GDNS are exclusive ? ”, we can estimate the impact of

he choice of a DNS service on user performance. Such an approach

llows to estimate the impact of choosing one DNS service instead

f another and, even more interesting, allows us to estimate the

mpact of this choice on a given parameter that, in turn, impacts

he user performance. In our work, we focus on the impact of the

hoice of a DNS service on the user throughput via the impact of

he DNS service on the CDN server location (c.f. Section 4.2.1 ), and

ia the impact of the DNS service on the CDN server configuration

c.f. Section 4.2.2 ). 

Since we deal with probabilities, we will compare the expected

alues of the throughput 3 instead of its average values 4 as we did

n the previous section. 

.2.1. Distance and delay 

To investigate the impact of the RTT on download performance

e investigate the question: “What would have been the perfor-

ance of a user served by the local DNS if it would have been redi-

ected to a server whose inetrtt corresponds to the one the Google

NS service would have redirected him to ? ”. 

To answer this question is equivalent to predicting the effect

f an intervention where the external delay (RTT) experienced by

lients served by the LDNS is modeled by the distribution of the

elay experienced by clients served by the GDNS; the distribution

f the rest of the parameters being kept identical for the LDNS ser-

ice users. 
E [ T PUT ] = D TPUT 
f TPUT (t put ) · t put · dt put , with D TPUT the throughput domain. 

4 μTPUT = 

1 
N 

N ∑ 

i =1 

throughput i , with N the total number of observations. 
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Fig. 3. Evolution of the throughput distribution before and after intervening on the external delay experienced by Local DNS (LDNS) clients. 
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More formally, if RTT denotes the inetrttavg parameter, LD the

local DNS and GD the Google DNS, we need to estimate the fol-

lowing distribution: 

f 
(
T P UT = t put | DNS = LD, do(RT T ∼ f RT T | do(DNS) ( ·, GD )) 

)
(7)

The causal graph in Fig. 1 (cf the explanation of d-separation in

Section 2.3 ) tells us that (RT T � DNS) G DNS 
, which implies (Rule 2

from Theorem 1 ): 

f RT T | do(DNS) (rt t , GD ) = f RT T | DNS (rt t , GD ) . (8)

To predict how an intervention on X affects Y , where the in-

tervention on X is enforced with the conditional probability distri-

bution f ∗( X | Z ) we use Eq. (4) . The causal graph in Fig. 1 (cf the

explanation of d-separation in Section 2.3 ) tells us that (RT T �

T P UT | DNS, T OD ) G RTT 
. It follows, from Rule 2 of Theorem 1 that 

f T PUT | do(RT T ) ,T OD,DNS (t put , rt t , tod , d ns ) = 

f T PUT | RT T,T OD,DNS (t put , rt t , tod , d ns ) . (9)

As a consequence, we can rewrite Eq. (7) as: 

f (t put | LD ) f (rt t | do(GD )) 

= 

∫ 
D RTT 

∫ 
D TOD 

f (t put | do(rt t ) , LD, t od) f (t od) f (rt t | do(GD )) P (GD )

= 

∫ 
D RTT 

∫ 
D TOD 

f (t put | rt t , LD, t od) f (t od) f (rt t | GD ) P (GD ) (10)

using Eqs. (8) and (9) . 

The result of the intervention is presented in Fig. 3 . The CDF

of the throughput for the LDNS before intervention is plotted as

blue solid line and the CDF of the throughput for the LDNS service

users after an intervention setting their external delays distribu-

tion to the delay distribution seen by the GDNS users is plotted as

red dotted line. The throughput after invention is degraded due to

the higher RTTs experienced by the clients’: The expected through-

put for clients using the local DNS service prior to intervention is

3.5 Mbps and 3.0 Mbps after intervention (14% decrease). This

result quantifies the gain in performance that the redirection to

closer CDN servers, provided by the use of the local DNS service,

represents. 

This result also illustrates the use of counterfactual thinking . We

can deduce the gain in performance for a user who chose the

LDNS service by estimating the change in performance if the GDNS

would have been chosen instead. 

The results obtained cannot be validated in practice as this

would require the modification of the behavior of the local DNS

servers. In fact, this difficulty nicely illustrates the benefit of the

causal approach: it offers the possibility to predict the effect of in-

terventions that are impossible to perform experimentally. Our ap-

proach allows us to estimate what would have been the effect on
 user performance if she would have chosen the GDNS service,

nowing that in reality the LDNS was used. 

Fig. 4 shows the distribution of the external RTT for GDNS users

nd LDNS users. Both conditional probability distributions present

 long tail and very few values are actually observed for a RTT >

00 ms. It is important to mention that RTT values are observed

or the LDNS users for the range [0.5ms,200ms] and for GDNS

sers for the range [10ms,200ms]. This condition is necessary to

erform the prediction preformed in this section, which is a limi-

ation of the method used: The prediction formulated in Eq. (7) is

nly possible since the range of the external RTT values observed

or GDNS users represents a subset of the range of values observed

or the LDNS users. 

If one wants to study the opposite intervention, where the

sers of the GDNS service would be given access to servers placed

t the locations of the servers the LDNS service users are redi-

ected to, the prediction would be more complex. We do not have

amples to estimate f ( tput | rtt, GD, tod ) for some of the smallest RTT

alues (RTT < 10 ms) for which we have f ( RTT | LDNS ) > 0. However,

his limitation should not surprise us, since it is common to many

achine learning problems where the amount of available infor-

ation determines the predictions we can make. The reason why

e cannot predict the opposite intervention is due to the use of

ernels to estimate distributions, which requires the presence of

amples in a given region to estimate the value of the distribution

n this region. One possible way to overcome this problem would

e to develop a parametric model that allows to extrapolate the

ifferent PDFs beyond the value range where the variables of our

ystem are observed. 

It is important to note that our model considers the impact of

he change in the delay distribution but also the impact of the

ervers themselves, captured by the minimum congestion window

nd parameters such as the loss ( retrscore ) that are different be-

ween the two DNS services. In fact, the influence of these param-

ters may explain that the throughput experienced, in the original

ataset, by the users of the GDNS service is only 7% smaller than

or the users of the local DNS service. To evaluate the impact of

he servers on download performance we focus on the impact of

he minimum congestion window since cwinmin is a direct par-

nt of the throughput ( tput ) and is influenced by the DNS service

hoice ( dns ). Also, other parameters such as the loss parameters

 retrscore and rto ), the delay parameters ( isprttavg and isprttstd ) or

he maximum congestion window ( cwinmax ) are not influenced by

he choice of the DNS service ( dns ) (c.f. Fig. 1 ). 

.2.2. Minimum congestion window 

The minimum congestion window ( cwinmin ) is a direct parent

f the throughput ( tput ), see Fig. 1 . Its average value is higher for

he clients using the GDNS service than for the clients using the
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Fig. 4. Histogram of the external RTT for the local DNS (LDNS) and Google DNS (GDNS). 
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DNS service (1.2kB and 0.9kB respectively). The difference in the

xpected value of the throughput of LDNS users (3.5 Mbps) and

DNS users (3.3 Mbps) is 6%, smaller than the gain for the LDNS

sers being redirected to closer server, that is estimated to be 14%.

ur hypothesis is that the minimum congestion window repre-

ents a difference in the configuration of the servers accessed by

he LDNS users and the configuration of the servers accessed by

he GDNS users. To evaluate this hypothesis we estimate the causal

ffect of the minimum congestion window on the throughput, me-

iated by the choice of the DNS service. This is equivalent to asking

he question: “What would be the throughput for the clients using

he local DNS if the servers they are redirected to would present the

ame minimum congestion window as the ones Google DNS users are

edirected to ? ”. 

We observe from the causal graph of Fig. 1 (cf the explanation

f d-separation in Section 2.3 ): 

• (CW I NMI N � DNS) G DNS 

• (CW I NMI N � T P UT | DNS, INET RT T ST D ) G CWI NMI N 

For space reasons, and because the approach is the same as in

ection 4.2.1 for the external delay ( inetrttavg ), we only present the

nal equation. 

Let denote cmin the minimum congestion window (called cwin-

in in our model) and σ rtt the standard deviation of the external

tt (called inetrttstd in our model). As before LD refers to the local

NS and GD to the Google DNS. We obtain the following equa-

ion: 

f (t put | LD ) f (cmin | do(GD )) 

= 

∫ 
D CMIN 

∫ 
D σRTT 

f (t put | do(cmin ) , LD, ts ) f (σrtt ) f (cmin | do(GD )) 

×P (GD ) 

= 

∫ 
D CMIN 

∫ 
D σRTT 

f (t put | cmin, LD, σrtt ) f (σrtt ) f (cmin | GD ) P (GD ) 

(11) 

Eq. (11) allows the prediction of the distribution of the through-

ut for the LDNS users after an intervention when we use for

he minimum congestion window the distribution seen by GDNS

sers. The CDFs of the pre-intervention throughput (solid line) and

ost-intervention throughput (dotted line) are presented in Fig. 5 .

e can see the gain in throughput due to the intervention on

he minimum congestion windows of the LDNS servers. The ex-

ected throughput for LDNS service users after the intervention is

.6 Mbps (compared to 3.5 Mbps prior to intervention), which

epresents an increase of more than 30%. This increase is due to
he fact that the servers GDNS service users are redirected to use

igher values for their minimum congestion window. 

The study of the opposite intervention, where GDNS service

sers are redirected to servers with a minimum congestion win-

ow following the distribution of the minimum congestion win-

ow seen by the LDNS service users, in the original dataset, is

ot possible. The reason is the same as the one mentioned in

ection 4.2.1 . If we compare the distribution of the minimum con-

estion windows for LDNS service users and GDNS service users,

ig. 6 , we can notice the absence of cmin values for GDNS users to

stimate f ( tput | cmin, GD, σ rtt ) for values of cmin where f ( cmin | LD )

 0. 

If we summarize the findings of the last two sections, we can

ay that by using a causal model and its graphical representation

e were able to quantify that it is not only the proximity of the

erver that has an important impact on the throughput but also

he configuration of the server hosting the content a client wants

o access. 

In a causal model such as the one presented in Fig. 1 , a given

ode X also represents the influence that external factors im-

acting only this parameter have on the rest of the system. This

eans that the difference in behavior of Akamai servers that the

oogle DNS redirects the clients to compared to the behavior of

he servers the LDNS redirects the clients to may not be solely the

ffect of the minimum congestion window but may also be the

ffect of other un-observed parameters of TCP such as the addi-

ive increase value for each acknowledged packet. Unfortunately, we

ave no means to validate this hypothesis. 

. Related work 

The two works closest to ours are WISE [18] and Nano [17] . 

WISE uses, as does our work, the PC algorithm [14] to infer

 graphical causal model from which interventions are then pre-

icted. However, WISE requires a lot of domain knowledge in its

eature selection and in the definition of external causes that guide

he inference of the causal model. Also, WISE uses the Z -Fisher in-

ependence, which assumes linear dependencies. We have tested

he Z -Fisher independence criterion in our work and obtained very

oor results as the test fails to detect parameter independencies

esulting in incorrect models [6] . In addition, WISE considers much

impler scenarios of intervention and requires a much larger data

et. Our approach takes full advantage of the causal theory devel-

ped by Pearl [11,15] to predict interventions and counterfactuals.

ounterfactuals are very useful to understand the role of the differ-

nt parameters of a system and, to our knowledge, scenarios such

s the ones presented in Section 4.2 have not been treated so far. 
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Fig. 5. Evolution of the throughput distribution before and after intervening on the minimum congestion window of servers of the users of the local DNS. 

Fig. 6. Histogram of the minimum congestion window for the local DNS (LDNS) and Google DNS (GDNS). 
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Nano tries to detect network neutrality violation by assessing

the direct causal effect between the quality of experience of a user

from a given ISP and the type of content being accessed. A perfor-

mance baseline is defined based on observations made for differ-

ent ISPs sharing similar configurations and then compared to the

one observed for a particular scenario. Again, this approach uses

domain knowledge to define the possible confounders and to con-

dition on these variables to remove spurious associations. Since

Nano has not derived a formal causal model, its approach has se-

rious limitations since one of the confounders could be a collider

in the corresponding causal graphical model. Also, conditioning on

a common effect induces a dependence between two independent

causes whose influence tries to be canceled, questioning the ob-

tained results. 

Several papers study how the choice of the DNS service impacts

client performance [1,7,10] . These works rely on active measure-

ments and differ greatly in their approach and objectives from our

work. 

In our previous work [6] we presented solutions to the prob-

lem of causal model inference and to the prediction of atomic in-

terventions for cases where the assumptions of normality and lin-

earity do not hold. We also validated our approach and showed for

simple systems and scenarios that it was possible to use a causal

approach to study communication network performance. 

The work presented in this paper goes much further. First, we

study a more complex system with more parameters and diverse

categories of data (including categorical data). We use the causal

model obtained to explain non intuitive observations (namely a

u  
imilar throughput for connections experiencing a different RTT).

econd, the major contribution of the work presented in this pa-

er is due to the use of counterfactuals and counterfactual thinking ,

ection 4.2 . The use of counterfactuals gives us access to a deeper

nderstanding of the causal mechanisms ruling the performance of

he system and it allows us to quantify the impact of each of these

echanisms on the performance of this system. 

. Concluding remarks 

The main contribution of our paper resides in the methodol-

gy based on the inference and in the usage of a causal model

hat allows us to estimate the causal effect of the DNS service on

ser performance. Using a causal approach and inferring the causal

odel, which is then represented as a Bayesian graph, we are able

o study the causal effect of a DNS service on the TCP throughput.

e compare the performance of clients using their ISP local DNS

ervice to the performance of clients using the Google DNS ser-

ice. The causal model allows to unveil dependencies that would

e very difficult, if not impossible, to extract otherwise from the

ata. We showed that the choice of the DNS service has a strong

mpact on the location of the servers the clients are redirected to,

hich in turn impacts not only the distance from clients to servers

ut also the type of configuration of the servers. Distance and con-

guration are captured by the dependence between the DNS and

he RTT and the dependence between the DNS and the server min-

mum congestion window. 

A very interesting property of causal models is their “stability

nder intervention ”. The model inferred from data following a given
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istribution is still valid when we predict the effect of modifying

his distribution. When comparing the performance of the users of

he local DNS and the users of the Google DNS, we can observe

hat the performance difference cannot simply be explained by the

edirection of Google DNS users to more distant Akamai servers.

ased on the causal graph obtained, we can formulate the hy-

othesis that the configurations of the Akamai servers Google DNS

sers are redirected to allow them to experience a performance

lose to the one of the local DNS service users. This hypothesis

s confirmed by our prediction where we give to Akamai servers

erving the local DNS users a minimum congestion window equiv-

lent to the one of the Akamai servers serving Google DNS users.

e estimate the gain in throughput corresponding to this inter-

ention to be 32%. By comparison, the gain in terms of throughput

orresponding to the redirection of the local DNS users to closer

ervers is estimated to be only 14%. 

We demonstrated the potential of adopting a causal approach

sing counterfactuals. Counterfactuals are one of the possible way

o approach Causality and we use this technique to evaluate the

ffect of a parameter on the system performance by predicting the

ffect that changing its parent would have with the rest of the sys-

em parameters left unchanged. We manage to answer questions

uch as “How would the system behave under the condition C1 if one

f its parameter was to behave as it has done under the condition

2 , knowing that C1 and C2 are exclusive ? ”. The ability to make

redictions for such scenarios illustrates the power of the inherent

echanisms underlying the development of Causality. Counterfac-

uals are relatively complex to study, explain and even more so

o predict. However, thanks to the Bayesian network as a repre-

entation of the causal model of our system, using counterfactuals

ecomes easier. 

Complex interventions, where many parameters are modi-

ed simultaneously, require important resources in terms of the

mount of data and computational power. The results presented

n this paper document a first successful attempt. Based on this

ork, we are confident that the underlying tools and methods can

e improved to reduce the required resources and increase both,

he accuracy of such predictions and the range and complexity of

he interventions that one can consider. 

We see the following directions for future work: 

• By fitting a parametric model we could extend the prediction

of counterfactuals for cases where the two conditional proba-

bilities have only partial overlap. 

• The weight of an edge, X → Y , corresponds to what is known

as the direct effect of one parameter, X on another, Y . However,

in the absence of linearity, the estimation of the direct effect of

X on Y is complex and requires predicting the effects of several

interventions [12] for each direct effect, which requires a lot of

computational resources. 

• Regarding a selection criterion, the absence of any assumption

regarding the distribution of the parameters and the nature of

their dependencies prevents us from using a classical selec-

tion criterion such as maximum likelihood. Two possibilities

could be used instead: (i) A Bootstrap approach, where, by re-

sampling the original data set to create new data sets, we could

infer one causal model for each data set and, by comparison,

derive a confidence level for our model. This approach is sim-

ple to implement. However, the inference of the causal model

presented in this paper took up to one week running on a clus-

ter of 30 machines. Therefore, a bootstrap approach requires im-

portant resources in terms of computation time. On the other

hand, when creating sub-data sets, we work with smaller data

sets, which has an impact on the accuracy of the results. (ii)

We could use the independence test p-values to obtain a confi-
dence in the presence or absence of any edge in the graph we

obtain to give us a confidence in the model. This approach be-

comes complex due to the number of tests to consider for a

given pair of nodes and no general criterion has been designed

as this stage of our work. 

• We had to design several solutions to build a reliable frame-

work for causal knowledge inference [6] that implied an in-

crease in complexity and resource requirements. While we have

used very small data sets to validate our approach and to

show its benefits, there are many directions to explore to make

Causal reasoning work more efficiently on large quantities of

data thanks to the use of distributed computing. The paral-

lelization of the independence testing for causal model infer-

ence [6] and the parallelization of the estimation of interven-

tions (see Appendix B.2) fit very well a Big Data approach.

Working with a bigger and partitioned data set on which paral-

lel computing could be done, would improve the performance

of the Causal knowledge inference framework we presented in

this work. 
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