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a b s t r a c t 

In Software Defined Networks (SDN), users manage network services by abstracting high level service 

policies from lower level network functions. Edge-based SDN, which relies on end hosts to implement 

lower level network functions, has been rapidly developed and widely adopted in cloud system. A crit- 

ical challenge in such an environment is to ensure that lower level network configurations, which are 

distributed in many end hosts, are in sync with the high level network service definitions, which are 

maintained in the central controller, as state inconsistency often arises in practice due to unreliable state 

dissemination, human errors, or software bugs. In this paper, we propose an approach to extract, ana- 

lyze the network states of OpenStack from both controller and end hosts, and identify the inconsistencies 

between them across multiple network layers systematically. Through extensive experiments, we demon- 

strate that our system can correctly identify network state inconsistencies with little system and network 

overhead, therefore can be adopted in large-scale production cloud to ensure healthy operations of its 

network services. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

In Software Defined Networks (SDN), the control plane is de-

coupled from the data plane. Operators only need to define high

level services and leverage programmable controller to send con-

figurations to distributed forwarding devices to implement the low

level network functions. This makes network management flexible

and easy. Depending on the forwarding devices that controller con-

trols, SDN can be categorized into two types: core-based and edge-

based . In core-based SDN, the controller directly configures core

network devices, such as [21] switches and [2] routers. In edge-

based SDN, the controller configures network edge devices, i.e.,

end hosts that act as virtual switches or routers. Recently, edge-

based SDN has been rapidly adopted in the emerging cloud envi-

ronments, e.g., [22] , [6] , [7] , etc. 

A critical challenge in SDN is to ensure the consistency between

high level network service definitions and low level configurations.

In other words, how would an operator know the network services

and policies defined at the controller are faithfully implemented by

network devices? This problem is more prominent in edge-based

SDNs, because: (1) in such environments, low level network con-

figurations are distributed across potentially many end hosts, and
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2) virtual switches or routers implemented in end hosts are less

eliable than dedicated network devices, hence are more likely to

ace various errors during their operations. Misconfigurations on

nd hosts can potentially break the intended network functions. In

 multi-tenant cloud, such misconfigurations may even lead to se-

urity breaches by exposing private network traffic to unauthorized

sers. 

In this paper, we study the problem of identifying state incon-

istencies between controller and end hosts in such edge-based

DN system. We want to design one general approach and some

echniques to solve this problem. And we take OpenStack as our

xplicit study example. In [23,25] , many operators have reported

heir encountered network inconsistency problems. In our own ex-

erience, those inconsistencies often arise due to the following

easons: 

• Unreliable State Dissemination : In OpenStack, the controller

sends network configurations to end hosts through asyn-

chronous messages. If a message is lost (e.g., due to messag-

ing server queue overflow) or communication is disrupted, the

states of the two become out-of-sync [24] . Although one can

use message acknowledgement to enhance reliability, end hosts

may still fail to act on it properly after receiving the correct

message. For example, the modification to iptables, vSwitch , etc,

can be interfered by software configuration, access permission,

or other softwares running on the same host, etc. 

http://dx.doi.org/10.1016/j.comnet.2016.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
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Fig. 1. SDN components in OpenStack. 

1

 

m  

e  

[  

c  

t  

t  

a  

r  

o  

[

 

t  

t  

l  

O  

a  

S  

n  

O

 

i  

a  

a  

a  

s  

m  

b  

o

 

t  

e  

S  

w  

h  

e  

n

2

2

 

c  

a  

s  

r  

a  

v

 

• Human Errors : The commodity servers used to build today’s

cloud are not always reliable. System admins often need to re-

boot, patch or repair the system manually. This process can po-

tentially introduce human errors in virtual network configura-

tions. 

• Software Bugs : Even though rare, edge-based SDN implementa-

tions are not bug-free. We did experience cases in which the

network configurations pushed into the end hosts do not ex-

actly reflect the network policies defined at the controller. And

some bugs are very hard to detect before the real deployment. 

To address those problems, we propose an approach to system-

tic identification of the state inconsistencies between the con-

roller and the end hosts. We model network states at three dif-

erent network layers. In our approach, we will first extract the

etwork configuration from the SDN controller, which is typically

tored in a database. By parsing this data, we obtain the network

tates that should be implemented in the network. Then, we de-

loy a light-weight agent on each end host to extract the virtual

etwork configurations, and parse out the network states that are

ctually implemented. The two sets of network states are then sent

o a central verification server, which compares the two and iden-

ifies any potential inconsistencies between them. 

Towards developing this approach, we made several contribu-

ions to address the following challenges: 

• Network State Abstraction : The first challenge is to develop a

method to map the variety of virtual network configurations

into a common network state abstraction. We developed suc-

cinct representations for network states at layer 2, layer 3, layer

4, and provided mechanisms to efficiently map raw configura-

tion data into such state representations. 

• Sheer Volume of Data Processing : A practical challenge is to deal

with the sheer volume of configuration data to be processed

and the network states to be interpreted. In particular, for L4

state parsing, security group rules, typically implemented with

iptables , need to be parsed and analyzed for each VM. For a pro-

duction cloud environment that contains thousands (or more)

of VMs, this can become a daunting task. We develop several

methods in addressing this challenge. First, we develop an effi-

cient method of traversing the iptable rules and use Binary De-

cision Diagram (BDD) to succinctly represent and analyze these

rules. Second, to speed up the parsing process, we developed

smart L4 state cache to avoid repetitive network state parsing

for VMs with similar configurations. Finally, we design a two-

level verification method to further speed up the verification

process. 

• Continuous State Verification : If SDN converges to stable state at

both controller and the end hosts, we could snapshot network

states of these two to do static verification. However, network

configurations tend to change frequently. The fact that the con-

troller state and the actual state constantly evolve imposes an-

other challenge: while the controller state can be captured eas-

ily, the actual state on end hosts may be “in transit” at the time

when the snapshot is taken. We developed mechanisms to align

snapshots taken on the controller and the end hosts and iden-

tify legitimate transient snapshots on the end hosts. Continuous

state verification is done using these mechanisms. 

• System Design and Implementation : The last challenge is to de-

sign and implement a verification system that can be used in

a large scale production environment. To this end, we imple-

mented a verification system for the OpenStack cloud, devel-

oped various data processing and caching mechanisms to re-

duce its overhead. We also conducted extensive experiments to

demonstrate that our system can quickly identify network state
inconsistencies in real cloud environments. t  
.1. Related work 

Consistency maintenance is important for network manage-

ent, as [17] and [28] mentioned. [11] provided a survey on the

xisting studies and tools for troubleshooting SDN. Specifically,

26] and [8] studied high level abstractions for easier OpenFlow

onfigurations. The work in [15] , [5] , [18] and [1] provided various

echniques, e.g., model checking, boolean expressions, SAT solver,

o detect the inconsistencies between the defined network policy

nd the actual network state, in a core-based SDN environment. To

educe the overhead, [16] and [14] proposed to use trie structure

r dependency graph to allow incremental checking. Also [30] and

9] did some related work on debugging SDN configurations. 

All of the existing studies were focused on the state inconsis-

ency problem in core-based SDNs, e.g., OpenFlow. They assume

he inconsistencies are due to the discrepancy between admins’

ogical designs and their actual flow-level implementations. Since

penStack only offers coarse-level commands to admins and don’t

llow them to work directly on flow-level implementations, Open-

tack doesn’t have those inconsistency problems, and the tech-

iques developed for core-based SDNs cannot be directly used for

penStack. 

The study in [13] shows that the state inconsistency problem

n edge-based SDN is becoming critical. [3] proposes a differential

pproach to detect misconfigurations and security failures in virtu-

lized infrastructure in near real-time. Their work primarily targets

t the verification of L2 policy. We provide a more comprehensive

olution covering from L2 domain to L4 domain, and we imple-

ent it for real Openstack system. We traverse and model ipta-

les for L4 state extraction, using approaches adapted from previ-

us work that [19] , [10] and [29] proposed. 

The rest of this paper is organized as follows. Section 2 in-

roduces the SDN functions in OpenStack and some inconsistency

xamples. Section 3 provides the overview of our methodology.

ections 4 –7 introduces details of our methodology. In Section 8 ,

e describe the system implementation. Then, Section 9 presents

ow our approach detects previous mentioned inconsistency cases

ffectively. Section 10 evaluates the performance of our system. Fi-

ally, Section 11 concludes the paper. 

. Background 

.1. SDN In openstack 

OpenStack is an open source Infrastructure-as-a-Service (IaaS)

loud management system that has gained industrywide support

nd adoption in recent years. It has several subsystems that are re-

ponsible for managing virtualized compute, storage, and network,

espectively. Its networking subsystem has two generations, known

s Nova-network and Neutron respectively. Both of them support a

ariety of edge-based SDN options. 

A typical edge-based SDN setup in OpenStack involves three

ypes of nodes (see Fig. 1 ): Controller node , which handles user re-
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Fig. 2. Sample SDN configurations in OpenStack compute and network nodes. 
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quests for defining network services; Compute node , which is the

end host that runs hypervisor to host VMs and implements the

virtual network configurations for these VMs; Network node , which

serves multiple roles, including virtual routers, DHCP servers, etc.,

in order to support the communications between different virtual

networks. In a cloud data center, these different types of nodes

are typically connected by hardware switches. The virtual network

functions are defined by the user at the controller via API calls, and

then communicated to the compute or network nodes, via AMQP

messages, for the actual configuration. 

Through the controller, a user could define 1) Layer 2 networks;

2) Layer 3 subnets that are associated with a block of IP addresses

and other network configurations, e.g., default gateways or DHCP

servers; 3) virtual interfaces that can attach to a Layer 2 net-

work as well as an IP address; 4) VMs that are attached to des-

ignated networks; 5) Layer 4 security group rules that determine

the protocols and ports of the traffic admissible to selected VMs.

These high-level network function definitions are stored in a cen-

tral database. 

The network functions defined on the controller are eventu-

ally translated into system configurations on the compute or net-

work nodes. These configurations can be implemented with dif-

ferent technologies. For example, Open vSwitch (OVS) is one of

widely used option in the community. Fig. 2 illustrates, together

with OVS, how various Linux system configurations work together

to implement the high-level network functions. 

L2 network functions are implemented as internal VLANs 1 by

OVS. On a compute node, VMs in the same L2 network are at-

tached to the same VLAN via vNICs, Linux kernel devices, bridges,

etc. For example, in Fig. 2 , VM1 has a vNIC eth0 connecting to a

TAP device vnet0 , which connects to a virtual ethernet interface

pair qvb1 and qvo1 through Linux bridge qbr1 , and then connects

to VLAN 1. Across compute nodes, VMs attached to the same VLAN

are connected to each other via a private network, which is either

a switch-configured L2 network, or IP tunnels. 

L3 network functions are implemented mostly on the network

node. The network node provides DHCP services to each L2 net-

work, and assigns IP address to VMs. Through OVS, it also de-

fines the routing between different subnets, as well as between

subnets and the public network. Note that Linux supports multi-

ple name spaces on a single OS, which allows the same IP address

to be reused on multiple internal VLANs on the same compute

node. Therefore, the routing function also supports network ad-

dress translation (NAT) for different subnets to communicate with
1 Note these are internal VLANs defined in Linux OS, which are different from the 

VLANs configured on physical switches. 

t  

w

ach other. NAT is also used to support the communication be-

ween private subnets and the public network, by translating be-

ween private IP and public IP (called floating IP) assigned to des-

gnated VMs. 

L4 security groups are implemented as iptables rules in com-

ute nodes, which include subsets of rules for accepting or reject-

ng certain types of traffic from/to each VM. 

Obviously, in such an environment, the validity of network

unction critically relies on the configurations on the end hosts

both compute and network nodes) being consistent with the high

evel network state defined at the controller. Verifying such consis-

ency is not a trivial task, given that so many configurable compo-

ents on the end hosts are employed to realize the network func-

ions. 

.2. Inconsistency examples 

In a real production environment, the state inconsistency does

ot occur often. But when it occurs, the impact can be quite signif-

cant. In Openstack, state inconsistencies can happen at all layers.

n the following, we introduce an inconsistency examples across

2, L3 and L4 layers. 

.2.1. L2 State inconsistency caused by unreliable state dissemination 

In OpenStack, the controller communicates the network con-

gurations to compute or network nodes via asynchronous AMQP

essages. Occasionally, we observe that end hosts fail to act on

hem properly, due to message loss, software configuration, per-

issions, etc. When this occurs, state inconsistencies may appear,

ince the controller state in database has been updated, while the

nd hosts did not modify their configurations. For the example in

ig. 2 (a), if the user requests through the controller to move VM1

rom network 1 to network 2, but the message is not executed cor-

ectly, then L2 inconsistency related to VM1 happens. 

.2.2. L3 State inconsistency caused by software bug 

We also found there are software bugs in the OpenStack code

hat can potentially lead to network state inconsistencies. An ex-

mple we observed was depicted in Fig. 3 illustrates an exam-

le we experienced when configuring a virtual network using the

lanManager setting in OpenStack’s nova-network 2 functions. In

penStack nova-network , there is no network node acting as virtual

outer. Instead, each compute node implements the routing func-

ions for the VMs running on it. In Fig. 3 , VM1 and VM2 are on one
2 Nova-network is the virtual networking option in older releases of OpenStack, 

hich only allows VMs to be attached to switch-configured VLANs. 
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Fig. 3. An example of L3 state inconsistency when using OpenStack nova-network 

mode. 
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Fig. 4. Overall Approach. 
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s  
ompute node, VM3 and VM4 are on the other compute node. VM1

nd VM3 are attached to vlan 1 , while VM2 and VM4 are attached

o vlan 2 , through the Linux virtual devices and bridges (e.g., VM1

onnects to vlan1 through vnet0 and br100 ). Across compute nodes,

Ms on the same VLAN are connected through the physical switch,

hich assigns ID 1 and 2 to the two VLANs, respectively. For VMs

n the same VLAN but residing on different compute nodes to

ommunicate, they go through their respective bridge gateways,

.g., VM1 will use br100 (10.0.0.1) in Compute node 1 to reach

r100 (10.0.0.2) in Compute node 2, then reach VM3. For VMs on

ifferent VLANs to communicate with each other, they go through

he local routes first. For example, for VM1 to reach VM4, it goes

hrough VM2 on the same compute node to reach VLAN 2, through

he local routing configuration, which allows packets from network

0.0.0.x to be routed to network 10.1.0.x . 

However, in OpenStack nova-network implementation, the rout-

ng entries to a subnet are created on the compute node only

hen a VM on that subnet is instantiated on this compute node.

n the case of Fig. 3 , if VM2 is not yet created on compute node 1,

M1 will not be able to reach any VM on VLAN 2, e.g., VM4, even

hough from the controller configuration, one would assume there

s a route from VLAN 1 to VLAN 2. Thus, L3 inconsistency occurs. 

.2.3. L4 State inconsistency caused by human error 

In this case, an operator mistakenly deleted the following

ngress iptables rules for a VM on a compute node, when perform-

ng regular maintenance tasks: 

. . . 

DROP udp 0.0.0.0/0 0.0.0.0/0 udp spt:67 dpt:68
RETURN 0.0.0.0/0 0.0.0.0/0; 
. . . 

The DROP rule ensures that any UDP packets from port 67 to

ort 68 will be rejected for this VM. Then the RETURN rule will al-

ow the packets to traverse the calling iptables chains. In the effort

f manually recovering the configurations for this VM, the operator

ccidentally switched the order of these two rules. As a result, the

ROP rule becomes ineffective, as the packets will hit the RETURN
ule first. Consequently, this VM will be exposed for potential se-

urity risks from this UDP port. 

. System overview 

We propose an approach to systematically identify the state in-

onsistencies between the controller and end hosts. As depicted in

ig. 4 , our approach involves the following steps: 

• Data Extraction : In the controller, we fetch configuration data

directly from a central database. In end hosts, we deploy a

light-weight agent to execute system commands or read con-

figuration files. 

• Network State Abstraction : We model network states at three

layers: Layer 2 state , which indicates the L2 network that each
Virtual Machine (VM) connects to; Layer 2 state , which repre-

sents the IP level reachability between VMs and Layer 4 state ,

which describes the set of rules for accepting/rejecting packets

of various protocols and ports on each VM. 

• Data Parsing : We parse data extracted from the controller and

end hosts to the above state abstraction format. All extracted

data are sent to one verification server for parsing and verifi-

cation. For the most time-consuming L4 layer parsing, we use

efficient L4 state cache to speed it up. 

• State Verification : After data parsing, we get the controller net-

work state and the actual end-host network state. We can do

State Verification to check the inconsistency among the two

state expressions. For the most time-consuming L4 layer veri-

fication process, we develop a two-level verification method to

avoid unnecessary computations. 

In the following sections, we describe each of these steps in

ore details. 

. Network state abstraction 

A critical step of our approach is to characterize the network

tates for both the controller and the end hosts using a common

ormat. We characterize the network states for both the controller

nd end hosts using a common format. 

Layer 2 State: it defines VM’s MAC layer connectivities or isola-

ions, i.e., whether a VM can receive ethernet packets from certain

2 network. We define the L2 state as a mapping between the two:

ap l2 = { MAC i : Network j } (1) 

here MAC i represents the MAC address of a VM’s vNIC, and

etwork j represents the L2 network (uniquely identified by an ID,

.g., external VLAN ID) it is attached to. 

Layer 3 State: it defines the IP layer reachability between VMs,

nd between a VM and the external network. We define the con-

ectivity within the private network as a binary matrix 

⎛ 

⎜ ⎜ ⎝ 

IP-MAC 1 IP-MAC 2 . . . IP-MAC M 

IP-MAC 1 r 11 r 12 . . . r 1 M 

IP-MAC 2 r 21 r 22 . . . r 1 M 

. . . 
. . . 

. . . 
. . . 

. . . 
IP-MAC M 

r M1 r M2 . . . r MM 

⎞ 

⎟ ⎟ ⎠ 

(2) 

If a VM with IP and MAC address combination, IP-MAC i can reach

nother VM with IP-MAC j , then r i j = 1 ; otherwise, r i j = 0 . Since the

ame IP address can be reused in different private networks, we

eed to use 〈 IP − MAC〉 tuple to uniquely identify a VM’s vNIC at

ayer 3. A VM can connect to the external network if and only if it

s assigned with a public IP by the NAT router. Therefore, we can

epresent VMs’ connectivity to the external network as the follow-

ng mapping: 

ap publ ic l 3 = { IP-MAC i : Public IP j } (3) 

here Public IP j represents the public IP address that a VM is

ATed to, if it can reach the external network. 

Layer 4 State: defines each VM’s security groups and the as-

ociated packet filtering rules. For each iptables rule, we generate
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Fig. 5. Examples of BDD Representation of L4 State. 

Table 1 

Central DB for Neutron mode. 

Table Related Layer 

ovs_network_bindings L2 

ipallocations L3 

floatingips L3 

ports L2, L3 

subnets L3 

securitygroupportbindings L4 

securitygrouprules L4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Extracting method for Nova-Network mode in end host. 

Component Command / File Path Related Layer 

IPTable iptables -t table _ name -L -n L4 

Routing Table netstat -rn L3 

Linux Bridge brctl show L2 

VM Info virsh list –all L2, L3, L4 

virsh dumpxml domain _ name 

IP Address ip addr L2, L3 

Linux Vlan /proc/net/vlan/config L2 

Table 3 

Extracting method for Neutron mode in end host. 

Component Command/File Path Related Layer 

IPTable iptables -t table _ name -L -n L4 

Routing Table netstat -rn L3 

Linux Bridge brctl show L2 

Open vSwitch ovs-dpctl show L2 

ovs-vsctl show 

ovs-ofctl dump-flows bridge _ name 

Veth Pair ethtool -S de v ice _ name L2 

Network ip netns L2, L3 

Namespace ip netns ns _ name command 

VM Info virsh list –all L2, L3, L4 

virsh dumpxml domain _ name 

IP Address ip addr L2, L3 
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a bitmap representation, which consists of five fields, with a to-

tal of 98 bits: source IP range (32 bits), destination IP range (32

bits), protocol (2 bits), source port (16 bits), and destination port (16

bits). This bitmap can then be presented in the form of a BDD as

[4] mentioned, which compactly and uniquely represents a set of

boolean values of these fields, and the corresponding actions when

the values of these fields match certain conditions. As the exam-

ples shown in Fig. 5 , a BDD has two end nodes: 0 represents re-

ject , 1 represents accept. B n represents the n th bit that needs to be

checked. Using BDD, IP address set 128.0.0.0/28 and 192.0.0.0/28

can be represented as Fig. 5 (a) and 5 (b), respectively. 

Note that with BDD, we can also easily perform set operations,

such as Union, Intersection , and Difference , which are important for

this study. For example, to obtain the union of the two BDDs in

Fig. 5 (a) and 5 (b), one can simply remove B 2 , as the rest of the

two BDDs are the same, as shown in Fig. 5 (c). The union and in-

tersection operations are needed when we analyze the aggregate

effect of multiple iptables rules, each represented in a BDD. The

difference operation is important when comparing the BDD repre-

sentations of L4 states between controller and end hosts. 

Given the above network state abstractions, we next discuss

the details on extracting, parsing the configuration data at each

layer, and verifying state consistency between the controller and

end hosts. 

5. Data extraction 

The verification process starts with state data extraction from

both the controller and the end hosts. Extraction from controller

is straightforward: the configuration data is typically stored in a

central database. For instance, the database named neutron in

the OpenStack controller contains all the network states that are

supposed to be implemented when Neutron network mode is used.

In Table 1 , we list the tables that need to be queried. And we just

run simple SQL command to get the information. For example, we

can get each subnet’s IP range and gateway’s IP by running “SELECT

network_id,cidr,gateway_ip FROM subnets”. 
Extraction from the end hosts is more complicated. It typically

nvolves executing certain system commands or checking the con-

ent of some configuration files on each end host. In Table 3 we list

he methods we use to extract end host configurations in the Neu-

ron network settings of OpenStack. (The table for Nova-network

an be found in Table 2 .) 

For L2 state, we need to determine which network a VM’s vNIC

s attached to. For the data extracted from the controller, this infor-

ation is readily available as the database defines the associations

etween MAC addresses and subnets. For the data extracted from

he end hosts, local agent will execute the related commands in

able 3 on each compute node, collecting the information regard-

ng the vNIC, virtual devices, internal VLANs, and the connectivities

mong them. 

For L3 state, the controller database provides information re-

arding each VM’s private IP address, the subnet it belongs to, the

ateway of the subnet, as well as whether or not the private IP ad-

ress will be mapped to a public IP address to communicate with

he external network. At the end hosts, in addition to the L2 con-

gurations, we also need to extract routing table, iptables in

ifferent Linux name space from the network node, VMs and their

P addresses from the compute nodes, etc. 

For L4 state, the controller database contains the detailed defi-

itions of security groups and the associated iptables rules. At

he end hosts, the same rules should present for each VM. In Open-

tack, these iptables rules are implemented at the hypervisor

S. By executing the system commands as shown in Table 3 , we

an extract the rules applicable to each VM. 

. State parsing 

After data is extracted, the next step is to parse the data into

he corresponding network state representations. State parsing for

he controller is straightforward, since the network configurations

xtracted from controller database can be directly translated into

etwork states. State parsing for the end hosts, however, requires

ore effort. We describe how we do state parsing for the config-

rations data from end hosts into network state representations in

he following. 
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Fig. 6. Structure of iptables chains on OpenStack compute node. 
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Fig. 7. An example of iptables chains. 

Algorithm 1 ParseChain( chain ) 

1: A = D = R = ∅ ; C = P ; 

2: while chain is not empty do 

3: (M, action, Cal l edChain ) =ReadNextRule(); 

4: E = M ∩ C; C = C − M; 

5: switch ( action ) 

6: case ‘accept’ : 

7: A = A ∪ E; 

8: case ‘drop’ : 

9: D = D ∪ E; 

10: case ‘return’ : 

11: R = R ∪ E; 

12: case ‘call’ : 

13: (A 1 , D 1 , R 1 ) = ParseChain( CalledChain ); 

14: A = A ∪ (E ∩ A 1 ) ; D = D ∪ (E ∩ D 1 ) ; 

15: end switch 

16: end while 

17: return (A, D, R ) 
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.1. L2/L3 State parsing 

On a compute node, L2 state can be parsed by tracking the vir-

ual device connections between each VM’s MAC address and the

nternal VLANs configured on the hypervisor host. Across compute

odes, the internal VLAN will be mapped to an external L2 ID by

pen vSwitch. Since the external L2 ID is assigned across compute

odes, we can use the VMs’ associations to external L2 IDs to de-

ermine which VMs belong to the same L2 network. Note that here

he external L2 ID will map to the network in Eq. (1) . 

L3 network states include the IP-level reachability between

Ms, i.e., Eq. (2) , and their connectivity to the external networks,

.e., Eq. (3) . For the former, we first check for each pair of VMs,

hether they are connected in the same L2 network. If they are in

he same L2 network, and their IP addresses are also configured to

he same subnet, then they can reach each other. If they are not

n the same subnet, we determine whether the two VMs use the

ame virtual router in the network node as gateway. If they do,

hen we check whether the virtual router is configured with rout-

ng entries that support the IP routing between the two IP subnets.

or the latter, we need to check for each VM’s private IP address,

hether its gateway virtual router has the corresponding routing

ntry to allow it to reach a public IP address. In addition, we also

eed to check whether the virtual router implements NAT rules

o translate between the two IP addresses. For this, we need to

raverse the corresponding rules in iptables , following a procedure

hat will be discussed next. 

.2. L4 State parsing 

L4 state parsing involves analyzing each VM’s security group

onfigurations to generate BDDs corresponding to its ingress and

gress packet handling actions, respectively. 

In end hosts, iptables rules are organized in chains. Each chain

ontains a sequence of rules, each of which defines a matching

acket set, and the associated action accept, drop, return , or call an-

ther chain. Fig. 7 shows one example of iptables chain. Chain X is

he main chain with default action drop . It calls chain Y at rule X 3 ,

nd another chain Z at rule X 4 . Chain Y further calls chain J , and

o on. We can characterize the calling relation between chains us-

ng a graph, in which each chain is represented by a node, and a

irected link goes from X to Y , if chain X calls chain Y . Since there

s no calling loop at the chain level, the calling relation graph is

n acyclic graph. For example, Fig. 7 can be abstracted as a tree

ooted at the main chain X . 

To generate BDD representation of a VM’s L4 state, we need

o traverse the entire iptables chain. We developed Algorithm 1

o parse all the rules of a chain sequentially to obtain the ac-

epted/dropped packet sets ( A / D ), and the set of packets ( R ) trig-

ering the action of returning to the calling chain, respectively. C

enotes the set of packets that have not been matched by any rule

et, and is initialized to the set of all packets P . After parsing a new
ule, which consists of the set of matched packets ( M ), rule action

 action ), and the chain to be called ( CalledChain , if the action is

 call ’), the algorithm updates the unmatched packet set C , and adds

he newly matched packets ( M ∩ C ) to the set corresponding to the

ction type (line 5 to 11). If the action is to call another chain, the

lgorithm recursively calls itself to traverse the called chain and

btain its accept, drop and return sets to update the packet sets of

he current chain (line 13–14). Since the calling relation between

he chains is an acyclic directed graph, this algorithm can correctly

raverse all chains in a set of iptables configurations. Note that us-

ng this algorithm, we only need to traverse each chain once, un-

ike the existing approaches [29] , which typically require traversing

 chain multiple times. For the iptables traversing in L3 State Pars-

ng, we just need to modify Algorithm 1 to further consider the

NAT and DNAT packet sets. 

In a compute node, packets to/from a VM have to traverse pre-

outing chain, forward chain , and post-routing chain sequentially. In

urrent OpenStack implementation, VM’s packet filtering rules are

ll placed in the forward chain, which consists of common sub-

hains shared by all VMs, as well as VM-specific subchains, as illus-

rated in Fig. 6 . The subchains for different VMs are uniquely iden-

ifiable by VM’s physical device name or IP address. Note that only

M-specific iptables rules are supposed to be modified by the con-

roller during normal operations. However, on the compute node,

here are other rules (e.g. those shared by all VMs in Fig. 6 ) that

an affect individual VMs. We call these rules shared rules. The in-

ersection between the two forms the overall L4 state of a VM.

nless we assume all iptables rules, including the shared rules, on
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compute node can only be modified by OpenStack controller and

the modifications are always correct, we cannot ignore the possi-

bility of the shared rules being tempered. Therefore, we need to

check the validity of the shared rules as well. Specifically, we need

to first parse out the BDD expression of the accepted packet set

for the host by traversing all iptables rules. We then obtain the ac-

cepted packet set for a VM as a subset of the host’s accepted pack-

ets that match the VM’s device name. 

6.3. L4 State caching 

In practice, converting L4 network configurations into raw

BDD representation is time-consuming. We optimize the conver-

sion process through caching. Intuitively, if network configuration

changes are small between two consecutive verifications, the later

verification can reuse most of the BDDs generated in the previ-

ous rounds of verifications. Even if one runs the verification for the

very first time, since most of L4 security group rules are common

between the controller and end hosts, the BDDs generated from

the controller can also be reused in end host state parsing. So the

cache will keep a copy of BDDs, irrespective of whether they are

generated from the controller or end hosts, as we parse the ipt-

ables rules. At the verification step, if BDD parsing is needed for

a set of rules, the parser will first check whether the rules to be

parsed already have BDDs in its cache. If yes, then the parser will

avoid parsing the same rules again. To achieve the maximal gain,

we design caches for both individual rules and traversed chains . 

Caching for individual rules is straightforward. Whenever we

encounter a rule of form ( S, action ), where S is a string defining the

matched packet set, we cache the BDD calculated for this rule, in-

dexed by string S . We also cache partially or fully traversed chains.

When traversing iptables chains, as described in Algorithm 1 , we

cache the intermediate results after parsing each additional chain.

Each cache item is indexed by the ordered list of the traversed

rule strings (including all the string definitions S ). When the L4

state parser is requested to parse a new chain, it will first look up

the full chain cache for exact match. Since a chain can call other

chains, an exact match can be claimed for a chain only if all its de-

scendant chains have exact match. In our implementation, we in-

dex all chains by topological ordering in the calling relation graph

and always parse the chains with lower order first. So when we

parse a chain, all its descendant chains must have been parsed.

We can quickly check cache hit for this chain. If there is no exact

match, it will then look for maximally matched partial chain, and

only parse the BDD for the unmatched parts of the chain. If partial

chain match cannot be found, it will look up the BDD cache for

individual rules, then traverse the rest of the chain to calculate the

BDD for the entire chain. 

7. Static/continuous verification 

7.1. Static verification 

Once the network states at L2, L3 and L4 are obtained, we can

then verify the state consistency between controller and end hosts

by comparing the two sets of states. 

7.1.1. L2/L3 Static verification 

L2 states are represented as a set of mappings, as defined in

(1) , between VM’s MAC address and L2 network. We can simply

compare the two mapping sets to identify any inconsistency. Simi-

larly, the L3 states of VM’s reachability to public networks are also

represented as a set of mappings, as described in Eq. (3) . The state

comparison also involves identifying different mappings between

controller and end host states. The L3 states of inter-VM reacha-

bility are represented as a binary matrix, as stated in Eq. (2) . We
an compare the two matrices from controller and end hosts, to

dentify any inconsistency. 

.1.2. L4 Two-level static verification 

L4 states are represented in BDDs that describe the ingress and

gress packet filtering rules for each VM. After we obtain the BDDs

or each VM from both the controller (BDD E ) and from the end

osts (BDD H ), their difference can be obtained as [4] : 

iff( BDD E , BDD H ) = BDD � (4)

If BDD � = φ, then the states are consistent; otherwise, it repre-

ents the inconsistent L4 packet filtering behavior. Due to the com-

utation overhead, it is not desirable to conduct BDD comparison

n every round of L4 state verification. Instead, we design a two-

evel verification approach in Algorithm 2 . The intuition is the fol-

lgorithm 2 Two-level Verification 

1: if iptables rules in end host follows OpenStack template then 

2: if rules for a VM match between controller and compute

node in string level then 

3: L4 states are consistent for that VM 

4: else 

5: Invoke BDD parsing for VM-specific chains. 

6: Compare BDDs obtained from controller and end-host. 

7: end if 

8: else 

9: Generate BDDs for all rules defined on compute node, parse

out L4 state as described in Section 6.2. 

10: Compare BDDs obtained from controller and end-host. 

11: end if 

owing: if the OpenStack controller correctly configures the secu-

ity group rules for VMs on a compute node, then the iptables rules

hould be configured following the specific template implemented

y OpenStack. With this template, all shared iptables chains should

ollow a standard form, and the only variations are in the VM-

pecific chains, which define the security groups a VM is associated

ith. Plus, the VM-specific chains should contain the rules that are

dentical to the ones defined at the controller. 

In practice, these assumptions should be true during most of

he normal operations. And in these normal scenarios, we can first

heck whether the compute node’s iptables configurations follow

he OpenStack template, and then whether the rules for a VM

atch between controller and compute node. All these can be

one at the string level, without involving BDD calculations. If both

esults are positive, then the L4 states are consistent between the

wo. 

There are two potential anomaly cases. The first case is the ipt-

bles configurations on compute node follow the OpenStack tem-

late, but the specific configurations of a VM are different from

he ones at the controller. This could happen when there is com-

unication error between the controller and compute nodes, or

ue to some (rare) software bugs, as we shall see later in our ex-

eriments. In this case, there will be VM rules mismatch between

ontroller and compute node. Hence, we should invoke the BDD

arsing for the VM-specific chains, and then compare these BDDs

btained from controller and compute node. Note that in this case,

he BDD parsing only involves the chains specific to a VM with

ismatched rules, not the other chains shared across VMs. 

The second case is when the iptables configurations on com-

ute node do not even follow the OpenStack template. This could

appen when configurations are manually modified by system ad-

in or by other programs. In this case, we will have to generate

he BDDs for all rules defined on the compute node, and then

arse out the L4 state for each VM, using the method described

n Section 6 . 
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Fig. 8. Continuous state comparison between controller and end hosts. 
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Fig. 9. Prototype design and implementation . 
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.2. Continuous verification 

When SDN states are static, we can use the above static state

erification. However, configurations can change frequently in re-

lity. Therefore, we need to continuously identify inconsistencies.

or that we should continuously snapshot the configurations from

he controller and end hosts. Thus, when to take a snapshot be-

omes an important design questions for our verification system.

n the controller, since all legitimate state changes are triggered

here, and all states are recorded in a central database, we can take

 snapshot whenever the admin makes a change. On end hosts,

he network configurations are collected by agents in a distributed

anner. The complete state can be obtained by merging the snap-

hots taken from individual end hosts. Because end host states are

ollected from many configurations, taking snapshot for every de-

ected change will result in unnecessarily high overhead. Therefore,

e only take end host snapshots in a periodic fashion. As a result,

he controller and end host snapshots are not taken at the same

ime. Furthermore, when a configuration change is triggered at the

ontroller, it may take a variable amount of time to propagate to

ifferent end hosts. As a result, even with a legitimate network

tate change, the snapshot taken from end hosts may not match

ny snapshot from the controller, since the state of some end hosts

ould be “in transit” when the snapshot is taken. 

For instance, in Fig. 8 , controller states C 1 , C 2 , C 3 , C 5 match with

nd host states E 2 , E 3 , E 5 , E 7 , respectively. The other end host states

re in-transit states. For example, E 4 is a temporary state between

 3 and E 5, and does not match with any controller state. Also note

hat some controller state, e.g., C 4 may not have exact match with

ny end host state either, because the end host snapshot may not

e taken right after the corresponding configurations are set. 

In our design, we use a moving window to take a sequence

f state snapshots from the controller and end hosts, respectively.

ith a same time window 

3 , we then compare the two to 1) de-

ermine the exact matches between controller state sequence [ C ]

nd end host state sequence [ E ], and 2) identify whether some of

he unmatched end host states are in-transit state, or real incon-

istency. 

For 1), we use the following sequence alignment method

dapted from [12,27] . For controller state sequence [ C ] and end

ost state sequence [ E ], we seek the best matching subsequence

 C 1 , C 2 , . . . , C i ] ⊂ [ C] and end host states [ E 1 , E 2 , . . . , E j ] ⊂ [ E] . We

efine the highest matching score between the two as H i, j , which

an be iteratively found using dynamic programming: 

 i, j = max 

{ 

H i −1 , j − d 
H i, j−1 − d 
H i −1 , j−1 + Match (C i , E j ) 

(5) 

here Match ( C i , E j ) denotes the matching score between snap-

hot C i and E j , d is a penalty for having one snapshot, either in

 C ] or [ E ], unmatched with any snapshot in the other sequence.

e set Match (C i , E j ) = 0 if C i does not match E j , Match (C i , E j ) =
 d if C i matches with E j and C i was taken earlier than E j , and

atch (C i , E j ) = (−100) d if C i matches with E j , but C i was taken
3 Here we assume the controller and compute nodes have loosely synchronized 

locks. 

e  

d

 

T  
ater than E j . The last case is when the state snapshot from the

ontroller matches with an earlier state from end hosts, which is

n obvious mismatching that should be avoided. Once we find H i, j 

or all possible subsequences of [ C ] and [ E ], we will pick the one

ith the highest score to be the best matching between [ C ] and

 E ]. Note that this method assumes that the first snapshots in [ C ]

nd [ E ] are always a match, which can be guaranteed by setting

ur state comparison window to always start with the last match-

ng snapshot in the previous window. 

For 2), we use the following method. For L2 state, the controller

an potentially change a VM’s association from one L2 network to

nother. An in-transit end host state really means a VM’s L2 asso-

iation still reflects the previous controller state. For example, if L2

tate sequences are represented in Fig. 8 , if E 4 matches C 2 , E 4 can

e deemed an in-transit or delayed end host state. The same logic

orks for the VM’s L3 association with public networks. 

For L3 reachability between VMs, it boils down to evaluat-

ng the reachable IP address set for every private network, as we

now the L2 association between VMs and the private networks

lready. In this case, to determine whether an end host state is

n transit between two consecutive controller states, we evaluate

hether this end host state (an IP address set) contains the in-

ersect of configurations from two controller snapshots, but does

ot contain any configuration beyond their union. For instance,

f Fig. 8 represents the L3 state for a private network, let us as-

ume two controller states C 2 = { 10 . 0 . 2 . 0 / 24 , 10 . 0 . 3 . 0 / 24 } (reach-

ble IP addresses) and C 3 = { 10 . 0 . 3 . 0 / 24 , 10 . 1 . 4 . 0 / 24 , 10 . 0 . 5 . 0 / 24 } .
f end host snapshot E 4 = { 10 . 0 . 2 . 0 / 24 , 10 . 0 . 3 . 0 / 24 , 10 . 1 . 4 . 0 / 24 } ,
hen it is an in-transit state between C 2 and C 3 . However, if E 4 =
 10 . 0 . 2 . 0 / 24 , 10 . 1 . 4 . 0 / 24 } , then it will be deemed an illegal state.

he L4 in-transit state determination follows a very similar ap-

roach, except that the state is the accepted packet sets, repre-

ented as BDDs. 

. System design and implementation 

We designed and implemented a prototype of the proposed

tate verification system on OpenStack. Here we describe the im-

lementation details of this prototype. 

Our verification system primarily consists of three subsystems:

) data collection subsystem, b) state parsing subsystem and c) state

erification and reporting subsystem, as shown in Fig. 9 . 

The data collection subsystem is responsible for collecting all

he data required for state verification. It includes i) data collection

gent residing on each end host, with plugins that can be invoked

o collect various virtual network configurations, e.g., iptables rules,

outing tables, etc., and ii) data collector residing on the verification

erver, which is used to receive the data collected from agents on

nd hosts, as well as to issue SQL queries to collect configuration

ata from controller database. 

The data collection agent is a lightweight program. “File-Per-

able” mode [20] is enabled on the controller database so that each
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Table 4 

Hardware configurations. 

Server CPU Memory 

Controller/Network Node Intel Core i3 3.07GHz 4MB Cache 4GB 

Compute Nodes Intel Core i3 3.30GHz 3MB Cache 8GB 

Verification Node Intel Core i3 2.50GHz 3MB Cache 8GB 

Table 5 

Network settings. 

Scale # VM # # Rules # # Floating # Name 

per node SG per SG Subnet IP space 

Small 5 2 5 4 10 6 

Medium 10 4 20 8 20 12 

Large 15 6 50 12 30 18 

Table 6 

Data extraction time. 

Scale End-host Agent Verification Server 

Network Compute Compute Controller 

Node Node 1 Node 2 DB 

Small 0.662s 0.228s 0.204s 0.020s 

Medium 0.955s 0.346s 0.354s 0.022s 

Large 1.314s 0.481s 0.522s 0.027s 
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table is stored in its own data file. The data collector will snapshot

database table only when the corresponding data file is modified.

The data collection agent on end hosts are invoked periodically

as a cron job. To support continuous verification, we use NTP to

ensure clock synchronization between these agents. Both the data

collection agent and the central data collector are designed with a

pluggable architecture to be able to extend to other cloud manage-

ment systems. 

The data processing subsystem includes a state parser that in-

gests all the data from the data collector and parses it into three

layers of network state representations. Since L4 state parsing is a

computation intensive task, we implement a configuration data fil-

ter to perform the two-level comparison , as described in Section 7 .

Only if the filter determines L4 state parsing is needed, will the

state parser converts the configuration data into a BDD represen-

tation. To further reduce the overhead of L4 state parsing, the state

parser stores previous parsing results in a local cache as described

in Section 6.3 . Whenever a new L4 state parsing is requested and

there is a hit in the cache, the state BDD will be directly retrieved

from the cache. To support continuous verification, we need to do

some additional processing, e.g., deleting duplicate state snapshots,

etc. 

Finally, the state verification and reporting subsystem takes the

L2, L3, and L4 state representations obtained from both the con-

troller and end hosts in each verification window, as well as gener-

ates inconsistency alerts. The state inconsistencies and the affected

servers, VMs can be presented as an integrated part of an admin

UI (e.g., the Horizon dashboard of OpenStack). 

All components described above are implemented in Python.

Except for the end host data collection agent and the state incon-

sistency reporting function, all other components run on a central

verification server, which is hosted in the management network of

OpenStack. 

9. Case studies 

In a production cloud, when the state inconsistency occurs, the

impact can be quite significant. Previously in Section 2.2 , we listed

three inconsistency examples across L2, L3 and L4 layers. Here we

show how our system can help identify those inconsistencies. 

• L2 State Inconsistency Caused by Unreliable State Dissemination

in Section 2.2.1 : Our system will show that the L2 state at the

controller is: 

{ VM1 : Network 2 } 
{ VM2 : Network 1 } 
{ VM3 : Network 2 } 
{ VM4 : Network 2 } 

However, the state parsed from the compute node would show

that VM1 is still attached to network 1, instead of network 2.

Thus, admin would be notified inconsistency happens. 

• L3 State Inconsistency Caused by Software Bug in Section 2.2.2 : On

the controller, the L3 state between VMs indicates: 

( 

VM1 VM3 VM4 

VM1 − r 1 , 3 = 1 r 1 , 4 = 1 

VM3 r 3 , 1 = 1 − r 3 , 4 = 1 

VM4 r 4 , 1 = 1 r 4 , 3 = 1 −

) 

(6) 
t

However, using our approach, the L3 state parsed from compute

node 1 and 2 would show that r 1 , 4 = 0 , r 4 , 1 = 0 , hence there

are inconsistencies between the two. 

• L4 State Inconsistency Caused by Human Error in Section 2.2.3 :

Through our method, BDD E derived from the controller

and BDD H from the compute node are clearly different:

Diff( BDD E , BDD H ) = BDD �, where BDD � represents the inef-

fective DROP rule. 

0. Performance evaluations 

We set up a three-node OpenStack environment for our exper-

ments: one node acting as both the controller and network node,

he other two acting as compute nodes. Machine configurations are

eported in Table 4 . 

0.1. Overhead of data extraction 

We first measure the CPU and memory overhead of data ex-

raction over a one-hour period, with data extraction and pars-

ng triggered every 10 minutes. To test the performance in vir-

ual networks of different scales and complexities, we experiment

ith small, medium and large network configurations, with differ-

nt numbers of VMs per compute node, security groups, etc., as

hown in Table 5 . Fig. 10 (a) and 10 (b) show the CPU and memory

verhead. We observe that the data extraction agent imposes only

ight CPU overhead of < 0.02% and memory overhead of < 30 KB

n end hosts, even in the most complex setting. 

We also measure the data extraction time in different network

ettings in Table 6 . Data extraction time from compute node and

etwork node is acceptable even for the large network with a

airly complex setting. The data extraction time from the controller

ySQL database is less then 30ms in all the three settings. 

Summary: The data extraction subsystem only incurs light CPU and

emory overhead to the SDN components, and can finish the extrac-

ion in seconds for typical virtual network settings. 
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Fig. 10. Data extraction overhead caused by agents on end hosts. 

Table 7 

Parsing and verification time. 

Scale Parsing Verification 

L2 L3 L4 L2 L3 L4 

Small 0.012s 0.006s 0.021s < 1ms < 1ms < 1ms 

Medium 0.019s 0.014s 0.042s < 1ms < 1ms < 1ms 

Large 0.029s 0.021s 0.093s < 1ms < 1ms < 1ms 
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0.2. Static state verification 

Next, we measure the time required for static state verifica-

ion, after configuration data has been collected in the verification

erver. Table 7 shows the parsing and verification time at L2, L3,

nd L4 for the three network setups, where there was no state

nconsistency. 4 Since we implemented the two-level comparison

echanism in Section 7 , without any inconsistency, L4 parsing and

erification finish after quick string-level checking. The parsing and

erification time are very small. 

When inconsistencies do exist and are detected by the string-

evel checking, we will have to verify L4 state using BDD. To

emonstrate the savings brought by two-level comparison and

aching, we conduct four experiments with three different imple-

entations: 

1. one-level BDD verification that always generates BDD for all ipt-

ables chains and rules; 

2. two-level verification without cache that first checks if the end

hosts” iptables rules match with those on the controller, and

performs BDD parsing only if there is mismatch; 

3. two-level verification with cache of the previously calculated

BDDs, and run the program for the first time, and the cache

is empty initially; 

4. two-level verification with cache , same as in 3), but the program

has been run once before, and the cache has been built up from

the previous run. 

We focus on the large network and run verification with three

ifferent levels of inconsistencies. These inconsistent configura-

ions are injected by modifying the iptables rules on the com-

ute nodes. By randomly selecting IP addresses and port numbers,

e generate erroneous rules to replace randomly selected original

ules in iptables . We vary the modified configurations from 1%, 5%,

o 10% of the overall configurations (measured by the number of

ptables rules). In each setting, we also create two different scenar-

os according to the reasoning in Section 7 : a) the modified rules

nly affect individual VMs, and b) the modified rules can affect
4 Even when inconsistency happens, parsing and verification time for L2, L3 have 

o change. 

2  

t  

c  

o  
oth individual VMs and the entire compute node (i.e., all VMs on

t). 

In the first scenario, we can quickly identify VMs whose rules

re inconsistent at the string-level, and only need to do BDD

arsing for those VMs. This explains the big saving of the two-

evel verification schemes over the one-level verification scheme

n Fig. 11 (a). Among the two-level verification schemes, caching re-

ults in additional savings. As expected, the second run can reuse

DDs calculated in the previous run, even with 10% rules changed

etween the two runs. In the second scenario, the modifications

re no longer associated with individual VMs. After inconsistencies

re detected in the first-level verification, we will have to do com-

rehensive BDD parsing for each host. In Fig. 11 (b), two-level veri-

cation consumes almost the same time as the one-level BDD ver-

fication. Nevertheless, caching can still reduce the time by reusing

DDs calculated earlier in the same run, or from the previous run. 

Summary: Our system typically takes only seconds to perform state

erification in a reasonably-sized SDN environment, hence can provide

imely inconsistency alerts to the operator. 

0.3. Continuous verification 

To validate the design of continuous verification mechanism, we

et up experiments in a medium setting in Table 5 . We randomly

ssue OpenStack API calls that can affect VMs’ network configu-

ations, e.g., adding/deleting VM, adding/deleting subnet, updating

irtual router, updating security group, etc., to the system. We col-

ect controller state upon every change and collect end hosts state

nce every 10 seconds. We run this experiment for 2 hours, during

hich 157 state changes were made from the controller. 

We first evaluate system performance in an inconsistency-free

nvironment, using the traces collected in the above experiment.

e downsample the end host snapshots to emulate the setting

hat end host state snapshots are taken at longer intervals. Using

he snapshot sequences from this 2-hour window, we first evaluate

ow well the mechanism introduced in Section 7.2 finds the cor-

ect match between snapshots taken on controller and end host,

hile varying the snapshot interval. Fig. 12 shows the percentage

f end host state snapshots that can be correctly matched with

ontroller states. It is worth noting that unless the snapshot inter-

al becomes too large (i.e., longer than 300s in our case), we can

lways match the end host states 100%. When snapshot interval

s greater than 300s, performance start degrading, as it becomes

arder for the algorithm to find match for state snapshots from

nd hosts, given they are more sparsely taken. 

To evaluate the effectiveness of our system in detecting state in-

onsistencies, we inject 21 inconsistent states, ranging from layer

 to layer 4, to randomly selected end host state snapshots ob-

ained in the previous study. We then invoke our verification pro-

ess to identify these injected inconsistencies. As shown in Fig. 13 ,

ur method can identify 100% of these inconsistencies, as long as
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Fig. 11. L4 state verification: a) when modifying rules for individual VMs; b) when modifying arbitrary rules. 

Fig. 12. Percentage of end host state snapshots correctly matched with controller 

states, with varying snapshot interval. 

Fig. 13. Performance of identifying inconsistent states in continuous verification. 
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the end host snapshot interval is no larger than 300 seconds.

When the snapshot interval is set larger, we will see some false

positives and false negatives, largely due to the fact that the al-

gorithm struggles to find the correct matching states between the

controller and end hosts. Even in those situations, it can still iden-

tify more than 85% of state inconsistencies. 

Summary: our continuous verification mechanisms can correctly

detect most of the state inconsistencies in a given time window. To

ensure good performance, we recommend setting end host snapshot

interval no longer than twice the average time interval between con-

secutive controller state changes. 

10.4. Performance estimation 

Currently we have no access to industry-scale Openstack de-

ployment, but we can estimate the performance of our tools in

large scale scenarios. In reality, if we use continuous verification,
he modification between adjacent state snapshots is very mini-

al. When no inconsistency happens, parsing and verification pro-

ess will be very quick, as Table 7 suggests. When inconsistency

appens, the caching mechanism could help finish the most time

onsuming L4 verification within seconds if only few VMs have L4

nconsistency errors. Besides this, we could further utilize multiple

ores or multiple verification nodes to speed up the whole pro-

ess. Thus, it is estimated that our method satisfies the real world

emand. 

1. Conclusion 

In this paper, we studied the problem of network state verifi-

ation in Edge-based SDN. We take OpenStack as our study focus.

ur solution consists of data extraction, state parsing and state ver-

fication at L2, L3 and L4 layers. To reduce the parsing time for L4

tate, we proposed a two-level comparison design and developed

 hierarchical BDD caching algorithm. We further studied and pro-

osed continuous verification schemes to handle the frequent SDN

tate changes. Through extensive experiments on our local testbed,

e demonstrated that our verification system can effectively de-

ect a variety of configuration inconsistencies in a dynamic cloud

etting, with low computation and memory overheads. Although

e focus on studying OpenStack, our solution framework and the

echniques within this paper could be easily adopted in solving

imilar problems in other Edge-based SDN systems as well. 
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