
Computer Networks 110 (2016) 243–252

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Efficient routing for middlebox policy enforcement in

software-defined networking

Xin Li a , ∗, Haotian Wu

a , Don Gruenbacher a , Caterina Scoglio

a , Tricha Anjali b

a Kansas State University, Manhattan, Kansas, USA
b International Institute of Information Technology, Bangalore, India

a r t i c l e i n f o

Article history:

Received 18 February 2016

Revised 10 September 2016

Accepted 4 October 2016

Available online 5 October 2016

Keywords:

Sequenced-middlebox policy

OpenFlow

Load balancing

Middlebox failures

a b s t r a c t

Network applications require traffic to sequence through multiple types of middleboxes to enhance net-

work functions, e.g., providing security and guaranteeing performance. Sequenced-middlebox policy rout-

ing on top of regular layer 2/3 flow routing is challenging to be flexibly managed by network administra-

tors. In addition, various types of middlebox resources concurrently obtained by numerous applications

complicate network-resource management. Furthermore, middlebox failures can lead to a lack of security

and the malfunction of entire network. In this paper, we formulate a mixed-integer linear programming

problem to achieve a network load-balancing objective in the context of sequenced-middlebox policy

routing. Our global routing approach manages network resources efficiently by simplifying candidate-

path selections, balancing the entire network and using the simulated annealing algorithm. Moreover,

in case of middlebox failures, we design a fast recovery mechanism by exploiting the remaining link

and middlebox resources locally. To the best of our knowledge, this is the first work to handle failures

in sequenced-middlebox scenarios using OpenFlow. Finally, we implement proposed routing approaches

on Mininet testbed and evaluate experiments’ scalability, assessing the effectiveness of the approaches.

Results of the optimization on a test topology include an increase up to 26.4% of the throughput with

respect to a sequenced shortest-path routing.

© 2016 Elsevier B.V. All rights reserved.

1

w

m

m

f

a

o

v

w

[

d

t

i

m

m

t

h

b

g

e

i

i

t

s

a

s

t

s

d

b

a

t

i

h

1

. Introduction

Today’s network relies on middleboxes to guarantee critical net-

ork functions, e.g., security inspection and performance improve-

ent. Network applications require traffic to sequence through

ultiple types of middleboxes to accomplish desired network

unctions. For example, Web traffic needs to go through a proxy

nd then a firewall [1] . To fulfill network functions, various types

f middleboxes are utilized and each type might have O (100) de-

ices in a large network [2,3] . In traditional communication net-

orks, traffic steering to meet the above goals is a critical problem

4] , which might create false configurations. It is also difficult to

ynamically update the routing policy. It is even more challenging

o enable the stateful policy routing (sequenced-middlebox rout-

ng) within limited network resources (network link bandwidth,

iddlebox-processing capability, and switch high-speed searching

emory). Software defined networking (SDN) can be used to solve

hese problems and reduce manual configurations.
∗ Corresponding author.

E-mail address: xinli1125@ksu.edu (X. Li).

d

t

u

Q

ttp://dx.doi.org/10.1016/j.comnet.2016.10.002

389-1286/© 2016 Elsevier B.V. All rights reserved.
The problem of routing under middlebox sequence constraints

as recently gained remarkable attention due to the role played

y many network devices called middleboxes (e.g., firewalls, VPN

ateways, proxies, intrusion detection systems (IDS), WAN optimiz-

rs) on the network performance [5–9] . To enforce middlebox pol-

cy, a novel middlebox architecture was presented by Sekar et al.

n [5] . In this paper, the authors designed a network-wide con-

roller and a local coordinator to manage middlebox resources, re-

embling the architecture of SDN networks. As a matter of fact,

 centralized SDN controller makes a network transparent and

ynchronous [6] , and more efficient for network administrators

o manage. Furthermore, Joseph et al. proposed a policy-aware

witching layer to enforce middlebox policy and increase mid-

leboxes utilization [7] . They also presented an off-path middle-

ox deployment. However, under this off-path deployment, flows

re often required to travel on one link multiple times, increasing

he probability of link overload. Fayazbakhsh et al. further mod-

fied legacy middleboxes to support FlowTags, which is used to

ifferentiate flows with different policy requirements [8] . Alterna-

ively, OpenFlow allows the identification of stateful policy flows

sing the available tuples in the packet header. Using OpenFlow,

azi et al. elaborated the complexity of selecting middleboxes

http://dx.doi.org/10.1016/j.comnet.2016.10.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.10.002&domain=pdf
mailto:xinli1125@ksu.edu
http://dx.doi.org/10.1016/j.comnet.2016.10.002

244 X. Li et al. / Computer Networks 110 (2016) 243–252

2

F

p

a

t

t

d

t

p

g

b

t

t

o

2

d

p

i

r

p

2

p

b

fi

i

p

[

c

p

2

l

t

w

[

e

f

p

p

b

m

2

i

i

e

s

c

i

i

m

r

u

c

and scheduling flows, and simplified the middlebox traffic steering

problem by offline pruning some less promising routing paths [2] .

The proposed offline calculation is time-consuming, and it was per-

formed each time when failures occurred or policy changed. This

aspect is problematic since networks should quickly respond to-

wards middlebox/link overloads and failures. This is the most re-

lated work with our paper.

Another topic of research in the field of middlebox manage-

ment concerns how to deal with link failures and middlebox fail-

ures [10–13] . Research indicated that middleboxes contribute to

43% of high-severity incidents [13,14] . Thus, it is critical to study

middlebox failures. Existing solutions are either preventing mid-

dlebox failures effect beforehand [15] or reacting after middlebox

failures, for example, reconstructing middlebox state after a failure

[16] . However, today’s network relies on sequenced types of mid-

dleboxes to provide network functions and different types of traf-

fic go through different sequences, which are all beyond the scope

of existing approaches. Restarting middleboxes is a common ap-

proach to deal with middlebox failures, but few articles considered

the impact during the restarting period.

In this paper, we narrow the choices of candidate paths to ac-

celerate routing path selection procedure for network scalability

purposes. Then we formulate a flow-routing optimization problem

with the goal of globally balancing the loads of the entire network,

including balancing link loads and middlebox loads. We determine

flow routing paths by solving this optimization problem, and then

install the routing paths through the OpenFlow controller. We val-

idate our approach’s efficiency, compared with the classic flow-

routing approach, by testing network performance on Mininet [17] .

In addition, we employ a fast local rerouting approach to respond

to transient disturbances occurring in the network. Finally, we con-

duct complementary experiments to validate the efficiency of our

fast local rerouting approach and analyze experiment scalability.

Our approaches are appropriate to tackle both long-term network

changes and transient network disturbances.

The paper is organized as follows. We introduce the chal-

lenges and feasibility of a sequenced-middlebox policy routing

in Section 2 . In Section 3 , we introduce a global load-balancing

routing approach by selecting candidate paths and formulating a

mixed-integer linear programming problem to allocate network re-

sources. Solutions to the optimization problem are introduced in

Section 4 . We propose to reroute affected flows locally to deal with

transient network disturbances and make network more resilient

towards failures in Section 5 . In Section 6 , we test our approaches

using Mininet and analyze the results of the experiments. Finally,

conclusion and future work are discussed in the last section.

2. Problems and challenges

To guarantee security and performance of network applica-

tions, traffic must sequence through multiple types of middleboxes,

which is called stateful middlebox policy routing. To fulfill such

routing, one flow can go through a switch several times that is be-

yond the scope of regular layer 2/3 flow routing. Thus, we need

to keep track of the state of a flow, and that’s why the routing is

stateful. In the following sections, we call this policy “middlebox

policy” for short. Many issues arise when implementing the mid-

dlebox policy. One is the mapping between logical middlebox pol-

icy and physical device selection. Also, the physical selection must

update as the logical policy changes, bringing the routing paths’ re-

configuration. Another issue is the allocation of network resources,

e.g., link bandwidth and middlebox-processing capability. Finally,

a fast-recovery mechanism is necessary in case of failures, but it

is also challenging to design an efficient and effective approach to

realize it.
.1. Policy mapping

Mapping the logical policy and physical routing path is difficult.

or example, we have Web traffic which needs to go through a

roxy middlebox, then a firewall middlebox. If we have 100 proxies

nd 100 firewalls in the network, we have 10,0 0 0 middlebox selec-

ion combinations [2] . In addition, for a given middlebox combina-

ion, there are various routing paths to choose from. Furthermore,

ifferent applications have distinct middlebox policies. The selec-

ion of middleboxes and routing paths is very critical to network

erformance. Moreover, the solution search space of the problem

rows exponentially as the number of flows increases.

Realizing the physical routing can also be a problem. The

iggest challenge is, since a flow may travel through a switch mul-

iple times, the switch must be able to assign different actions to

he same flow. Therefore, the switch should keep track of the state

f a given flow.

.2. Policy updating

Network applications require various types of middleboxes and

istinct routing sequences. These policies are updated when ap-

lication requirements change. To avoid the misconfiguration dur-

ng policy update, centralized and programmable management is

equired in the network to solve this middlebox policy routing

roblem.

.3. Network resources

Network resources include link bandwidth, middlebox-

rocessing capability and switch-processing capability. Link

andwidth is the most studied network resource constraint in traf-

c engineering research. Switch-processing capability constraint

s often automatically satisfied. However, in the middlebox policy

roblem, the switch-processing capability must be considered

2] . Furthermore, the constraints of limited middlebox-processing

apability must be taken into consideration and, therefore, this

roblem becomes much more complex.

.4. Fast response towards failures

Our global load-balancing optimization quickly responds to

ong-term network topology changes or failures. As a response to

ransient network changes, global flow management makes net-

ork convergence difficult from the view of network scalability

18] . We find a fast local rerouting mechanism that only consid-

rs the flows, which are affected by the failures. If one middlebox

ails, we can restart it. When we assign an alternative rerouting

ath during the restarting period, we need to assure the alternative

ath has no effect on the normally working subnetwork. Middle-

ox centralized control and monitoring are required to deal with

iddlebox failures.

.5. Software-defined networking technique

Flow routing along a sequence of middleboxes is complex. It

ncludes traffic steering, network configuration, failures monitor-

ng, policy update, network resilience and network convergence,

tc. Software-defined networks (SDN) [19,20] are the techniques to

olve such problems. The SDN architecture decouples the network

ontrol plane from the data plane: the network administrator spec-

fies middlebox policy and manages the network from the central-

zed controller; the programmable datacenter makes flow routing

ore flexible and realizes faster network recovery. Thus, we can

ealize middlebox policy routing easily using SDN; specifically, we

se OpenFlow protocol to enable the communication between the

ontrol plane and the data plane.

X. Li et al. / Computer Networks 110 (2016) 243–252 245

Fig. 1. Middlebox-by-middlebox shortest paths.

Table 1

Routing path (S 1 → Firewall (FW) → IDS → S 6).

Path \ Step 1 2 3 4 5 6 7 8 9 10 11

a S 1 S 2 S 5 S 8 FW 1 S 8 S 5 IDS S 5 S 4 S 6
b S 1 S 3 FW 2 S 3 S 6 S 4 S 5 IDS S 5 S 4 S 6
c S 1 S 3 FW 2 S 3 S 1 S 2 S 5 IDS S 5 S 4 S 6

3

d

i

o

o

r

b

a

d

l

3

m

t

d

m

d

M

b

M

F

p

i

t

3

fi

t

a

fi

p

d

l

s

t

Fig. 2. Middlebox overloaded example.

3

n

d

g

c

g

3

E

t

r

fi

r

r

a

t

d

b

. Global load-balancing routing

In this section, we first propose a selection approach of can-

idate routing paths, by removing the paths with a low probabil-

ty to be selected. Our selection approach largely reduces choices

f routing paths. Then we formulate a flow-routing problem to

ptimize network resource allocation in the sequenced-middlebox

outing scenario. The objective of the optimization problem is to

alance the loads of entire network, including link load balancing

nd middlebox load balancing. To maintain flow integrity and re-

uce the number of flow entries on each switch, we adopt a flow-

evel routing where one flow is assigned one path.

.1. Candidate paths generation

We propose a set of routing paths called “middlebox-by-

iddlebox shortest routing paths” (m-by-m routing paths). When

he middlebox policy is specified by network administrators, can-

idate paths are determined. M i denotes the set of the i th type

iddleboxes, e.g., firewalls, and | M i | denotes the number of mid-

leboxes of the type i . A middlebox policy is “Source → M 1 →
 2 → . . . → M n → Dest inat ion .” Each candidate path is determined

y finding the shortest path to or from each middlebox: Source →
 1 , M 1 → M 2 , ..., and M n → Destination . An example is shown in

ig. 1 . There is a directed demand from S 1 to S 6 with the logical

olicy “S 1 → firewall → intrusion detection system → S 6 .” Step 1

s to find the shortest path from S 1 to FW 1 (or FW 2). Step 2 is de-

ermination of the shortest path from FW 1 (or FW 2) to IDS . Step

 is to find the shortest path from IDS to S 6 . Since there are two

rewalls and one IDS, there will be at least two candidate paths for

he demand “S 1 → S 6 ” to route along. To be more general, if there

re | M FW

| firewalls and | M IDS | IDSs, and the flow must go through a

rewall then an IDS, there will be at least | M FW

| × | M IDS | possible

aths for this flow to choose from.

We show three different m-by-m routing paths in Table 1 . The

ifference between path a and path b is a different firewall se-

ection; the difference between path b and path c is a different

hortest-path selection among multiple shortest paths.

We propose the m-by-m routing paths as candidate paths for

he following reasons:
• The m-by-m approach allows the simple generation of many

candidate paths and one of them will be chosen by the cen-

tralized controller to achieve network load balancing. On the

chosen path, we can easily record link and middlebox loads.

Therefore, we are able to balance link and middlebox loads si-

multaneously.

• To avoid network congestion, the flows may be routed through

a longer m-by-m routing path. However, within a certain step,

the shortest path is always chosen to save network resources.

• Using this approach, flow-level routing can largely reduce the

number of flow entries installed on each switch, compared with

the flow-splitting routing.

• The m-by-m approach can reduce congestion on a middlebox.

Let’s consider a routing example, shown in Fig. 2 . The mid-

dlebox policy is “Source → Firewall → Destination”; the di-

rected pairwise demand list is { S 1 → S 5 : 10 Mbps, S 6 → S 5 :

10 Mbps, S 7 → S 5 : 10 Mbps, S 8 → S 5 : 10 Mbps}; and the ca-

pability of either firewall is 30 Mbps. FW 1 will be overloaded

if all flows choose the sequenced, shortest source-destination

path (SP routing approach). We use m-by-m routing paths in-

stead, with which a middlebox of the same type (FW 2) can help

reduce congestion on the highly used middlebox FW 1 (because

FW 1 is connected with a high-betweenness switch S 2).

.2. Mixed-integer linear programming problem

In the middlebox policy routing problem, we need to achieve

etwork load balancing not only on the links but also on the mid-

leboxes. In this section, we formulate a mixed-integer linear pro-

ramming (MILP) problem to describe the network [21] and ac-

omplish our goal, given the set of candidate paths. We call this

lobal load-balancing routing approach (global LB approach).

.2.1. Notations

Traffic matrix D t represents demands of traffic type t, t ∈ T .

ach traffic type has a different policy requirement. For example,

raffic matrix D 1 represents HTTP traffic demands, which need to

oute through a firewall middlebox then an IDS middlebox; traf-

c matrix D 2 represents all other traffic demands, which need to

oute through a firewall middlebox only. Traffic demands are di-

ected pairwise demands. P d denotes the set of candidate paths for

 given pairwise demand d . Given a network topology, E denotes

he set of links and M denotes the set of middleboxes. Vertical bars

enote the cardinality of a set, for example, | D t | denotes the num-

er of demand pairs of traffic type t .

246 X. Li et al. / Computer Networks 110 (2016) 243–252

f

f

m

o

3

t

i

W

t

fl

fi

m

t

n

4

l

a

o

n

r

T

w

W

t

p

t

t

o

g

m

4

K

l

o

e

t

o

O

Constants:

n tdpe : the number of times link e occurs in path p of demand pair d

of traffic type t .

δtdpm : 1 if middlebox m belongs to path p of demand pair d of traffic

type t; 0, otherwise.

h td : volume of demand pair d of traffic type t .

c e : capacity of link e .

c m : capacity of middlebox m .

Variables:

x tdp : flow allocated to path p of demand pair d of traffic matrix t .

u tdp : binary variable associated with x tdp .

θe : utilization of link e .

θm : utilization of middlebox m .

θ : maximum utilization of links and middleboxes.

3.2.2. Formulations

The demand satisfaction constraints are shown in Eq. (1) . From

the candidate paths, if we choose path p to route the flow, the

corresponding binary variable u tdp equals 1; otherwise 0. The de-

mand volume can be routed on only one path out of all the can-

didate paths, shown in Eq. (2) . Here, Eqs. (3) and (4) represent

link-capacity constraints and middlebox-capacity constraints, re-

spectively. We use the variable θ to constrain link and middle-

box utilization. Both link and middlebox utilizations should be no

greater than 1. The goal is to minimize the maximum link or mid-

dlebox utilization, therefore achieving network load balancing. We

call θ the network utilization in the following sections.

P1:

minimize θ
subject to

x tdp = h td u tdp , t ∈ T , d ∈ D t , p ∈ P d . (1)

∑

p

u tdp = 1 , t ∈ T , d ∈ D t . (2)

∑

t

∑

d

∑

p

n tdpe x tdp ≤ θe c e , e ∈ E. (3)

∑

t

∑

d

∑

p

δtdpm

x tdp ≤ θm

c m

, m ∈ M. (4)

θe ≤ θ ≤ 1 , e ∈ E. (5)

θm

≤ θ ≤ 1 , m ∈ M. (6)

We substitute x tdp by h td u tdp using Eq. (1) , which largely re-

duces the number of variables and simplifies P 1. Also we can di-

rectly use variable θ , so the variables θ e and θm

are omitted. P 2 is

the same problem derived from P 1.

P2:

minimize θ
subject to
∑

p

u tdp = 1 , t ∈ T , d ∈ D t . (7)

∑

t

∑

d

h td

∑

p

n tdpe u tdp ≤ θc e , e ∈ E. (8)

∑

t

∑

d

h td

∑

p

δtdpm

u tdp ≤ θc m

, m ∈ M. (9)

3.2.3. Effectiveness and extension

Nowadays, communication network demands are increasing

dramatically so network resources are limited. Our LB routing ap-

proach improves network performance by balancing the entire net-

work loads. Our approach relies on the accuracy of estimated traf-

fic demands, which can be guaranteed using the approaches in

[22–24] . By minimizing the maximum utilization, the approach is

effective to balance the entire network resources well.
Other network features (cost, delay, congestion, etc.) can also be

ormulation objectives. We can slightly modify the load-balancing

ormulation to meet the new requirements. For example, we for-

ulate a problem P 3 to minimize network cost in a simplified case

f a single traffic type.

• Problem formulation: y e denotes load of link e. y m

denotes load

of middlebox m. ξ e represents unit cost of link e. ξm

represents

unit cost of middlebox m .

P3:

minimize F =

∑

e ξe y e +

∑

m

ξm

y m

subject to

x dp = h d u dp , d ∈ D, p ∈ P d . (10)

∑

p

u dp = 1 , d ∈ D. (11)

∑

d

∑

p

n dpe x dp = y e , e ∈ E. (12)

y e ≤ c e , e ∈ E. (13)

∑

d

∑

p

δdpm

x dp = y m

, m ∈ M. (14)

y m

≤ c m

, m ∈ M. (15)

.3. Complexity of our approach

P 2 is an MILP problem and cannot be solved in polynomial

ime. It’s challenging for the controller to make routing decisions

n a short time once the network topology or policy is updated.

e will illustrate how to solve this problem in Section 4 .

For the complexity of management, we have an estimation of

he number of flow entries. The upper bounds of the number of

ow entries on each switch in the simplified case of a single traf-

c type: | D | (| Len | +1) ∅

switch
. | Len | denotes the number of distinct types of

iddleboxes in the middlebox policy sequence of that single traffic

ype. ∅ represents the diameter of network. # switch indicates the

umber of switches in the network.

. Solutions of the global load-balancing routing

We propose how to solve the load-balancing optimization prob-

em P 2 in this section. Branch-and-bound algorithm (BBA) [21] is

ble to find the optimal solution of this problem. However, in the

ptimization problem, there are
∏

t∈ T (
∏

i | M i |) | D t | possible combi-

ations of variables. Though BBA is an optimized algorithm, the

unning time grows exponentially with the number of variables.

herefore, the problem cannot be solved by BBA in a larger net-

ork. We omit the detailed discussion of BBA for simplification.

e use the simulated annealing algorithm (SAN) [21] instead. Af-

er adjusting SAN’s parameters, it shows a good convergence com-

ared with optimal solutions. We introduce our parameter’s selec-

ion in SAN, shown in Algorithm 1 . SAN is a general optimization

echnique for solving combinatorial optimization problems, based

n randomization techniques [25] . SAN is a heuristic algorithm and

ives us an acceptably good solution; and, more importantly, it is

uch faster than search-based algorithms.

.1. Realization of the SAN algorithm

Our stopping criterion is either the outer loop counter reaches

 (in our case K = 10 0 0), or θ SAN haven’t updated for 10 outer

oops. Initial temperature T 0 represents the ability of jumping out

f a local minimum of the algorithm. We reduce the temperature

very L inner loops. L = 200 . Since in our algorithm, the running

ime of computing F (x) is O ((| E| + | M|) X) , where X is the number

f binary variables, the worst-case overall running time of SAN is

 (KL (| E| + | M|) X) . This is a polynomial-time heuristic algorithm.

X. Li et al. / Computer Networks 110 (2016) 243–252 247

Algorithm 1 Simulated Annealing (SAN) Algorithm.

Input: A feasible solution x , T ← T 0 and L

Output: θSAN

1: x best ← x , θSAN ← F (x best)

2: while stopping _ cr iter ion not true do

3: l ← 0

4: while l < L do

5: z ← random _ neighbor(N(x))

6: �θ ← F (z) − F (x)

7: if �θ ≤ 0 then

8: x ← z

9: if F (x) < θSAN then

10: θSAN ← F (x) , x best ← x

11: else if random (0 , 1) < e −�θ/T then

12: x ← z

13: l ← l + 1

14: end

15: r educe _ temperatur e (T)

16: end

Fig. 3. SAN and BBA test network.

4

b

F

t

w

t

i

d

t

d

d

n

o

t

c

5

o

W

n

i

p

C

w

a

e

i

w

d

b

5

b

o

a

b

l

h

r

a

m

u

5

p

a

a

r

f

q

t

5

f

a

f
.2. Algorithm test and comparison

We test the running time of these two algorithms as the num-

er of binary variables increases. Our test topology is shown in

ig. 3 . Test results are listed in Table 2 . There are two types of

raffic: one is HTTP traffic, which needs to route through a fire-

all then an IDS; the second is OTHER traffic, which only needs

o route through a firewall. The number of binary variables u tdp s

s related to the number of demand pairs and the number of can-

idate paths of each demand pair. In the matrix of HTTP traffic,

here are five demand pairs and each demand pair has four can-

idate paths; while in the matrix of OTHER traffic, there are two

emand pairs and each demand pair has two candidate paths. The

umber of binary variables is “5 × 4 + 2 × 2 = 24 .” We get a group

f test cases by increasing the number of demand pairs. We keep

he total traffic volume in the network identical for all eight test

ases. We have two observations from the results:
Table 2

Test cases and results.

Results \ Test case 1 2 3

Binary variables 24 26 28

Combinations of variables 4096 8192 16,384

Running time ratio (BBA / SAN) 88 157 876

θ best
BBA

0.90 0.90 0.90

θ SAN 0.90 0.90 0.90
• The ratio grows exponentially as the number of variables in-

creases. The ratio is defined as the BBA algorithm’s actual run-

ning time divided by the SAN algorithm’s actual running time.

• The SAN algorithm can always achieve a near-optimal solution.

Specifically, the SAN algorithm can achieve the optimal solution

θ in all eight test cases.

. Fast local rerouting

When there are long-term changes, recalculating routing paths

f the entire network is unavoidable but should be done quickly.

hen there is a transient disturbance (temporary failure) on the

etwork, we can centrally recalculate the MILP problem accord-

ng to the working subnetwork (global LB approach). However, this

rocess takes more time and forces the unaffected flows to reroute.

onsequently, it increases the delay, packet loss, and use of net-

ork resources. Therefore, the entire network recalculation is not

 good way to handle the transient disturbance. We have already

valuated the efficiency of solving the MILP problem when deal-

ng with long-term network changes in last section. In this section,

e design a local rerouting strategy to deal with network transient

isturbance. With regard to the transient disturbance, a redundant

ackup path is used until the disturbance has ended.

.1. Middlebox failures

Network failures may happen on links, switches, or middle-

oxes. Link and switch failures are mostly studied; therefore, we

nly consider failures on middleboxes. We call the flows that are

ffected by the failures “affected flows,” while flows not affected

y the failures are called “unaffected flows.” Middlebox failures be-

ong to the transient disturbance, since one of the approaches of

andling middlebox failures is to restart it [14] . We propose a fast-

ecovery mechanism to handle middlebox failures by rerouting the

ffected flows during the restarting period. More importantly, this

echanism is realized locally, and therefore does not disturb the

naffected flows.

.2. Backup middlebox selection

Let’s look at the example in Table 3 which lists all the candidate

aths. These paths are saved before failures by solving the MILP,

nd thus we can find alternative paths immediately when there

re failures on the middleboxes. For example, path 1 is chosen for

outing a directed demand from S 1 to S 2 when no failures. If FW 1

ails, path 3 and 4 can be the alternative paths. The challenge is to

uickly check whether the alternative path has enough resources

o accommodate the affected flows.

.3. Rerouting strategy analysis

We next consider a network scenario in which one middlebox

ails. Flows processed by this middlebox lose some functionality

nd need to be routed through another middlebox with equivalent

unctionality during the restarting period. We work on finding a
4 5 6 7 8

30 32 34 42 46

32,768 65,536 131,072 2,097,152 8,388,608

974 1534 2109 12,884 23,891

0.90 0.85 0.85 0.85 0.85

0.90 0.85 0.85 0.85 0.85

248 X. Li et al. / Computer Networks 110 (2016) 243–252

Table 3

Alternative paths (S 1 → FW → IDS → S 2 with the topology in Fig. 3).

Virtual path Physical path

Path 1 S 1 → FW 1 → IDS 1 → S 2 S 1 → S 2 → S 5 → FW 1 → S 5 → S 2 → IDS 1 → S 2
Path 2 S 1 → FW 1 → IDS 2 → S 2 S 1 → S 2 → S 5 → FW 1 → S 5 → S 3 → IDS 2 → S 3 → S 1 → S 2
Path 3 S 1 → FW 2 → IDS 1 → S 2 S 1 → S 3 → S 4 → FW 2 → S 4 → S 5 → S 2 → IDS 1 → S 2
Path 4 S 1 → FW 2 → IDS 2 → S 2 S 1 → S 3 → S 4 → FW 2 → S 4 → S 3 → IDS 2 → S 3 → S 1 → S 2

Fig. 4. Test topology.

t

l

a

s

t

m

s

s

6

fi

5

t

n

m

a

W

g

s

a

s

h

H

1

l

fi

b

t

t

6

e

5

t

l

t

2

d

g

a
rerouting mechanism to achieve higher speed and better perfor-

mances towards failures without focusing on the routing path up-

date process. The process is referred to as the network convergence

process, during which the network responds to the failures and the

network performance decreases. Routing paths will come back to

the original states when the failed middlebox resumes work after

restarting. To not influence the unaffected flows, we have two ap-

proaches discussed below.

5.3.1. Flow modification

One of the approaches is to assign lower priority to the affected

flows than the unaffected flows. A similar approach is also dis-

cussed in [26] . That is, the switch routes the flows based on pri-

ority. The affected flows can be routed only when all unaffected

flows with higher priority are delivered. This approach works well

to route the unaffected flows first; however, it does not take lim-

ited network resources into consideration. This may lead to packets

from the affected flows being dropped due to queuing-buffer over-

flow.

5.3.2. Flow accommodation

We propose a local fast-recovery mechanism without modifying

the flows. The switch considers the affected and unaffected flows

equally. The affected flows compete with the unaffected flows for

the link bandwidth and middlebox-processing capability. Our ap-

proach is to seek an alternative path with enough bandwidth and

a backup middlebox with enough processing capability to accom-

modate the affected flows. In this way, there will be no failure ef-

fect on the unaffected flows. Once there are several available paths

(including the backup middlebox), we will choose the one which

makes the entire network balanced as much as possible. We mea-

sure the network balance feature using θ and expect to choose the

path with the smallest θ .

5.4. Traffic demand fluctuation

Our fast local rerouting approach is also applicable to the case

where there are minor fluctuations of some flows. For instance,

one flow with a minor increase might overwhelm the middleboxes

and links on its routing path. We can seek for an alternative path

which can accommodate this flow. It can be solved by the local

rerouting approach as middlebox-failure scenarios.

6. Implementation and evaluation

In this section, we first implement our global LB approach us-

ing OpenFlow on Mininet testbed, and evaluate its effectiveness,

compared with SP routing. Then we test our local rerouting ap-

proach when there are middlebox failures. We use the topology

shown in Fig. 4 where the number of middleboxes is comparable

to the number of nodes [5,27] .

6.1. Evaluation of global LB routing

The m-by-m approach provides several choices of paths to bal-

ance network link and middlebox utilization. Each flow is assigned
o only one candidate path according to the LB optimization prob-

em, and all candidate m-by-m shortest routing paths are evaluated

nd stored at the same time. Flow entries on the switches are in-

talled by the centralized POX controller. ‘Iperf’ is used to generate

raffic at constant rates and measure network performances. Nor-

alized throughput is defined as the ratio of received packets over

ent packets, that are given by ‘Iperf’. End-to-end latency is mea-

ured by sending ICMP packets in addition to the regular traffic.

.1.1. Experiment setup

In our test, there are two types of traffic: HTTP and OTHER traf-

c, as described in Section 4.2 . Here we use traffic destined to port

001 to denote ‘HTTP’ traffic, and port 5002 to denote ‘OTHER’

raffic. We test our approach with homogeneous and heteroge-

eous traffic matrices. Homogeneous traffic matrix is a demand

atrix where all directed pairwise traffic demands are identical,

nd the data rate of each pair ranges from 1.5 Mbps to 3.6 Mbps.

e have 182 directed pairwise traffic demands in total. Hetero-

eneous traffic matrix means all but one outgoing traffic from a

ource node have identical data rate, and the exceptional one has

 much higher data rate than others. The exceptional node is cho-

en at random for each source node. For both homogeneous and

eterogeneous matrix, it is the case that half of the traffic are

TTP traffic, and the other half are OTHER traffic. Link capacity is

15.0 Mbps and middlebox capacity is 93.0 Mbps. For end-to-end

atency measurement, during each 10 second trial of regular traf-

c, default size ICMP packets with an interval of 50 ms are injected

etween seconds 8 and 9, so that the network has an opportunity

o stabilize. The average of fifty independent trials is used for each

otal traffic volume.

.1.2. Observations from experiment results

In Fig. 5 , our global LB routing achieves almost the high-

st normalized throughput, when the total traffic volume equals

46.0 Mbps. At this point, network utilization is 1. When the to-

al traffic volume exceeds 546.0 Mbps, network resources are no

onger sufficient to accommodate all flows and the normalized

hroughput decreases. Our LB approach shows an increase up to

6.4% on the throughput, when compared with the SP approach,

iscussed in Section 3.1 . Throughput varies little between homo-

eneous traffic and heterogeneous traffic in both approaches. We

lso measure overall packet losses. Since the results of normalized

X. Li et al. / Computer Networks 110 (2016) 243–252 249

250 300 350 400 450 500 550 600 650
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Total traffic volume (Mbps)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
Normalized throughput

Homogeneous traffic with LB approach
Homogeneous traffic with SP routing
Heterogeneous traffic with LB approach
Heterogeneous traffic with SP routing

Fig. 5. Evaluation of global LB routing.

t

d

n

i

i

b

t

m

W

a

b

w

b

S

t

i

e

w

e

6

h

a

r

d

s

w

p

6

m

m

e

c

c

a

i

w

a

g

50 100 150 200 250 300 350 400 450 500 550 600 650
0

20

40

60

80

100

120

140

160

180

200

Total traffic volume (Mbps)

O
ne

−
w

ay
 la

te
nc

y
(m

s)

One−way latency

Homogeneous traffic with LB approach
Homogeneous traffic with SP routing
Heterogeneous traffic with LB approach
Heterogeneous traffic with SP routing

50 100 150 200 250 300 350 400 450 500 550 600 650
0

5

10

15

20

25

30

35

40

45

50

Total traffic volume (Mbps)

O
ne

−
w

ay
 lo

ss
 r

at
e

%

One−way loss rate

Homogeneous traffic with LB approach
Homogeneous traffic with SP routing
Heterogeneous traffic with LB approach
Heterogeneous traffic with SP routing

Fig. 6. End-to-end latency and loss rate.

6

l

t

w

r

w

F

a

f

r

s

r

e

c

6

o

d

s
hroughput and normalized packet losses are complementary, we

on’t show the results of overall packet loss.

In Fig. 6 , the end-to-end latency and loss rate from node 1 to

ode 14 are shown as total traffic increases. Node 1 to node 14

s a representative node pair and the shortest path between them

s the diameter of the test topology. When total traffic volume is

etween 273.0 Mbps and 546.0 Mbps, network resources are rela-

ively sufficient for each demand pair and the LB approach achieves

uch lower end-to-end latency and loss rate than the SP routing.

hen the total traffic volume is greater than 546.0 Mbps, there is

 bottleneck link on all possible paths from node 1 to node 14, i.e.

oth LB approach and SP routing are running on a congested net-

ork. Though the network is congested, the LB approach tries to

alance the traffic so each flow is on a “less congested” path, while

P routing leads to “very congested” paths. This is the reason why

he LB approach achieves lower end-to-end loss rate than SP rout-

ng. As expected, the latency for any paths which are not short-

st, including those of the LB approach, is greater than SP routing

hen the entire network becomes fully congested (the total traffic

xceeds 546.0 Mbps), as shown in Fig. 6 .

.2. Evaluation of fast local rerouting

Our local rerouting quickly responds to middlebox failures and

as no impact on unaffected flows. When there is a failure on

 middlebox, all flows routed through this middlebox need to be

erouted to another middlebox with the same functionality, intro-

uced in Section 5.3.2 . SDN flexibly allows this rerouting by in-

talling new flow entries. There are eleven middleboxes (six fire-

alls and five IDSs), and our implementation includes all failure

ossibilities: a single failure on each middlebox, respectively.

.2.1. Experiment setup

We measure our fast local rerouting approach, and find how

any flows are reallocated with a new path and how much nor-

alized throughput is increased when failures occur. Based on our

xperiment settings, firewalls act as the network bottleneck and

an be considered as critical resources. IDSs are considered as non-

ritical resources since IDS resources are relatively sufficient. We

lso consider three other scenarios for comparisons: global rerout-

ng flows, using the global LB approach proposed in Section 3 ,

hen failure occurs; dropping affected flows when failure occurs;

nd no middlebox failures. We test four scenarios with the homo-

eneous traffic matrix.
.2.2. Major observations from experiment results

When a device with critical resources fails, e.g., FW2, our fast

ocal rerouting requires a maximum of 21.1% flow reallocations of

hose required in the global rerouting approach. When a device

ith non-critical resources fails, e.g., IDS2, our fast local rerouting

equires a maximum of 9.1% flow reallocations.

Moreover, our local rerouting approach achieves good net-

ork throughput, compared with the global rerouting approach. In

ig. 7 , two subfigures represent the normalized throughput with

 failure on FW2 and IDS2, as examples, respectively. When the

ailure occurs on the critical-resource device FW2, our fast local

erouting achieves almost the same normalized throughput. Re-

ults of our fast local rerouting approach reside between the global

erouting approach and the affected-flows-dropped approach, as

xpected. Our local rerouting increase the throughput up to 16.8%,

ompared with the affected-flows-dropped approach.

.2.3. Further analysis on experiment results

We test all possible failures occurred on each middlebox. We

btain a group of results with the same trend on critical resource

evices, namely, firewalls; and the other group of results with the

ame trend on non-critical resource devices, namely IDSs. Thus, we

250 X. Li et al. / Computer Networks 110 (2016) 243–252

250 300 350 400 450 500 550 600 650
0.50

0.60

0.70

0.80

0.90

1.00

Total traffic volume (Mbps)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
Normalized throughput (Firewall 2 fails)

Affected flows dropped
Fast local rerouting
Global rerouting
No failures

250 300 350 400 450 500 550 600 650
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Total traffic volume (Mbps)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Normalized throughput (IDS 2 fails)

Affected flows dropped
Fast local rerouting
Global rerouting
No failures

Fig. 7. Failures on different middleboxes. Firewall 2 is connected to Switch 4, and

IDS 2 is connected to Switch 5. Firewall 2 provides critical resources while IDS 2

does not.

w

W

a

a

e

6

a

a

t

T

n

q

m

t

m

r

c

i

c

p

w

f

c

c

t

t

p

t

o

p

7

d

t

t

o

d

T

w

w

p

i

m

w

n

a

w

u

p

l

w

t

a

w

o

A

g

select one failed firewall and one failed IDS, respectively, as exam-

ples in Fig. 7 .

When the total traffic volume is greater than or equal to

546.0 Mbps, the local rerouting approach and the global LB ap-

proach cannot find better routing paths, since no resource is

available to allow rerouting. When there are failures on IDSs

with non-critical resources and total traffic volume is larger than

546.0 Mbps, global rerouting routing and fast local rerouting can

still find alternative paths with IDS resources, shown in Fig. 7 (b).

When network resources are scarce (the total traffic volume is

655.2 Mbps), normalized throughput of any curve converges. As

the global rerouting approach achieves near-optimal results, there

is a shift on the normalized throughput, that is, global rerouting

approach dealing with failures achieves a little bit higher through-

put than the one with no failures.

Failures on middleboxes can also overwhelm the links. Let’s ex-

amine the HTTP traffic. When a firewall fails, each affected flow

arrives at one of the working firewalls and selects one IDS. Thus,

there are (6 − 1) × 5 = 25 working candidate paths and each af-

fected flow chooses the best one. Near-optimal routing paths can

always be found. However, an IDS’s failure is different from a fire-
all’s, as the IDS is the last-type middlebox in the policy sequence.

hen an IDS fails, each affected flow arrives at one working IDS

nd then routes along the shortest path to its destination. There

re less alternative paths (5 − 1 = 4) ; thus, some links can be more

asily overloaded.

.3. Network topology’s scalability

We discuss network scalability to verify the practicability of our

pproaches. First, we narrowed the choices of candidate paths to

ccelerate routing path selection procedure. Then we demonstrated

he upper bounds of the number of flow entries in Section 3.3 .

he number of flow entries on each switch scales linearly as the

umber of distinct types of middleboxes in a middlebox policy se-

uence increases. It also linearly depends on the number of de-

and pairs. The number of flow entries on each switch is within

he switch-processing capability since ∅ and # switch increase si-

ultaneously and are canceled out. Furthermore, the SAN algo-

ithm solved that NP-complete problem efficiently. The algorithm

onverges fast because of its polynomial time complexity, shown

n Section 4.1 . In addition, our design of fast local rerouting indi-

ated only affected flows need to be rerouted during the restarting

eriod of the failed middlebox. This mechanism is realized locally

hich does not disturb the working subnetwork. This is a great

eature that supports network topology’s scalability.

The possible limitation of scaling the network resides in the

ontroller. The limitation includes the difficulty of synchronized

ommunication between the controller and all switches, con-

roller’s limited processing capability, etc. Distributed controller

echniques can help reduce the burden on the controller [28] . The

roblem on how to exploit the benefits of centralized SDN con-

roller and scale the controller’s processing capability remains an

pen question in SDN researches, which is beyond the scope of our

aper.

. Conclusion

The middlebox policy makes the network routing problem more

ifficult. To solve this problem, we formulated an MILP optimiza-

ion problem to allocate limited network resources and then solved

he problem with the simulated annealing algorithm. The solution

f the optimization problem indicates one path out of the candi-

ate paths is assigned to each flow for balancing network loads.

he global load-balancing routing not only balances network loads

ell but also keeps the number of flow entries on each switch

ithin the range of its processing capability. Furthermore, we pro-

osed fast local rerouting to tackle middlebox failures. The rerout-

ng has no effect on the working subnetwork and can respond to

iddlebox failures quickly. With all these features implemented,

e evaluated the efficiency and effectiveness of our approaches. Fi-

ally, our experiments on Mininet further validated our approach

nd attested the feasibility of applying our approaches to real net-

orks. On our test topology, our LB approach shows an increase

p to 26.4% on the throughput, when compared with the SP ap-

roach; and the LB approach also indicates expected end-to-end

atency. Our fast local rerouting approach achieves similar results

ith the global rerouting approach: both approaches increase the

hroughput up to 16.8%, compared with the affected-flows-dropped

pproach. Our future work will include experiments on a real net-

ork testbed in addition to Mininet, and the design and evaluation

f flow aggregation approaches.

cknowledgment

This work was supported by the Electrical Power Affiliates Pro-

ram (EPAP) at Kansas State University.

X. Li et al. / Computer Networks 110 (2016) 243–252 251

R

[

[

[

[

[

[

[
eferences

[1] S.K. Fayazbakhsh , L. Chiang , V. Sekar , M. Yu , J.C. Mogul , Enforcing net-

work-wide policies in the presence of dynamic middlebox actions using flow-

tags, in: Proc. USENIX NSDI, 2014 .
[2] Z.A. Qazi , C.-C. Tu , L. Chiang , R. Miao , V. Sekar , M. Yu , Simple-fying middlebox

policy enforcement using sdn, in: ACM SIGCOMM Computer Communication
Review, 43, ACM, 2013, pp. 27–38 .

[3] V. Sekar , N. Egi , S. Ratnasamy , M.K. Reiter , G. Shi , Design and implementation
of a consolidated middlebox architecture, in: Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, USENIX Asso-

ciation, 2012 . 24–24.
[4] H. Kim , N. Feamster , Improving network management with software defined

networking, Commun. Mag. IEEE 51 (2) (2013) 114–119 .
[5] V. Sekar , S. Ratnasamy , M.K. Reiter , N. Egi , G. Shi , The middlebox manifesto:

enabling innovation in middlebox deployment, in: Proceedings of the 10th
ACM Workshop on Hot Topics in Networks, ACM, 2011, p. 21 .

[6] Y. Zhang , N. Beheshti , L. Beliveau , G. Lefebvre , R. Manghirmalani , R. Mishra ,
R. Patneyt , M. Shirazipour , R. Subrahmaniam , C. Truchan , et al. , Steering: a

software-defined networking for inline service chaining, in: Network Protocols

(ICNP), 2013 21st IEEE International Conference, IEEE, 2013, pp. 1–10 .
[7] D.A . Joseph , A . Tavakoli , I. Stoica , A policy-aware switching layer for data cen-

ters, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 51–62 .
[8] S.K. Fayazbakhsh , V. Sekar , M. Yu , J.C. Mogul , Flowtags: enforcing net-

work-wide policies in the presence of dynamic middlebox actions, in: Proceed-
ings of the Second ACM SIGCOMM Workshop on Hot Topics in Software De-

fined Networking, ACM, 2013, pp. 19–24 .

[9] P. Wang , J. Lan , X. Zhang , Y. Hu , S. Chen , Dynamic function composition for
network service chain: model and optimization, Comput. Netw. 92 (2015)

408–418 .
[10] D. Ganesan , R. Govindan , S. Shenker , D. Estrin , Highly-resilient, energy-efficient

multipath routing in wireless sensor networks, ACM SIGMOBILE Mob. Comput.
Commun. Rev. 5 (4) (2001) 11–25 .

[11] H. Yang , L. Cheng , J. Yuan , J. Zhang , Y. Zhao , Y. Lee , Multipath protection for

data center services in openflow-based software defined elastic optical net-
works, Opt. Fiber Technol. 23 (2015) 108–115 .

[12] W. Cui , I. Stoica , R.H. Katz , Backup path allocation based on a correlated link
failure probability model in overlay networks, in: Network Protocols, 2002.

Proceedings. 10th IEEE International Conference, IEEE, 2002, pp. 236–245 .
[13] R. Potharaju , N. Jain , Demystifying the dark side of the middle: a field study of

middlebox failures in datacenters, in: Proceedings of the 2013 Conference on

Internet Measurement Conference, ACM, 2013, pp. 9–22 .
[14] B. Carpenter , S. Brim , Middleboxes: taxonomy and issues, Technical Report,
2002 .

[15] S. Rajagopalan , D. Williams , H. Jamjoom , Pico replication: a high availability
framework for middleboxes, in: Proceedings of the 4th Annual Symposium on

Cloud Computing, ACM, 2013, p. 1 .
[16] J. Sherry , P.X. Gao , S. Basu , A. Panda , A. Krishnamurthy , C. Maciocco ,

M. Manesh , J. Martins , S. Ratnasamy , L. Rizzo , et al. , Rollback-recovery for
middleboxes, in: Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication, ACM, 2015, pp. 227–240 .

[17] B. Lantz , B. Heller , N. McKeown , A network in a laptop: rapid prototyping for
software-defined networks, in: Proceedings of the 9th ACM SIGCOMM Work-

shop on Hot Topics in Networks, ACM, 2010, p. 19 .
[18] M. Caesar , M. Casado , T. Koponen , J. Rexford , S. Shenker , Dynamic route re-

computation considered harmful, ACM SIGCOMM Comput. Commun. Rev. 40
(2) (2010) 66–71 .

[19] H. Farhady , H. Lee , A. Nakao , Software-defined networking: a survey, Comput.

Netw. 81 (2015) 79–95 .
20] A.S. Da Silva , P. Smith , A. Mauthe , A. Schaeffer-Filho , Resilience support in soft-

ware-defined networking: a survey, Comput. Netw. 92 (2015) 189–207 .
[21] M. Pióro , D. Medhi , Routing, Flow, and Capacity Design in Communication and

Computer Networks, Elsevier, 2004 .
22] A . Nucci , A . Sridharan , N. Taft , The problem of synthetically generating ip traf-

fic matrices: initial recommendations, ACM SIGCOMM Comput. Commun. Rev.

35 (3) (2005) 19–32 .
23] M. Roughan , M. Thorup , Y. Zhang , Traffic engineering with estimated traffic

matrices, in: Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, ACM, 2003, pp. 248–258 .

24] A . Feldmann , A . Greenberg , C. Lund , N. Reingold , J. Rexford , F. True , Deriv-
ing traffic demands for operational ip networks: methodology and experi-

ence, in: ACM SIGCOMM Computer Communication Review, 30, ACM, 20 0 0,

pp. 257–270 .
25] P.J. Van Laarhoven , E.H. Aarts , Simulated Annealing: Theory and Applications,

37, Springer Science & Business Media, 1987 .
26] D. Li , Y. Shang , C. Chen , Software defined green data center network

with exclusive routing, in: INFOCOM, 2014 Proceedings IEEE, IEEE, 2014,
pp. 1743–1751 .

[27] N. Jain, R. Potharaju, Middlebox reliability, 2012, (US Patent App. 13/536,782).

28] I.F. Akyildiz , A. Lee , P. Wang , M. Luo , W. Chou , A roadmap for traffic engineer-
ing in sdn-openflow networks, Comput. Netw. 71 (2014) 1–30 .

http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30334-6/sbref0027

252 X. Li et al. / Computer Networks 110 (2016) 243–252

ation engineering from Beihang University, China, in 2012. She is currently pursuing the

sas State Unversity. Her research interests include software defined networking, security

formation engineering at Beihang University, China, in 2012. He is currently pursuing the

nsas State Unversity. He is interested in programmable applications with SDN, network

ngineering from Kansas State University. He is an associate professor and the department

eering at Kansas State University. He is interested in software defined networking, secure

rical and Computer Engineering at Kansas State University since 2005. Her main research
ng and analysis of complex networks, and applications in epidemic spreading and power

a” Rome University, Italy, in 1987. Before joining Kansas State University, she worked at

e Georgia Institute of Technology from 20 0 0 to 2005.

dian Institute of Technology, Mumbai in 1998, and Ph.D. from Georgia Institute of Tech-
 assistant professor in the Department of Electrical and Computer Engineering at Illinois

fessor in the same department in 2010. She is currently an associate professor at Interna-
rch interests are in the area of wireless mesh networks, multipath routing, heterogeneous
Xin Li received her B.S. degree in electronics and inform

PhD degree in electrical and computer engineering at Kan
applications for smart grids and network optimization.

Haotian Wu received his B.S. degree in electronics and in

PhD degree in electrical and computer engineering at Ka
security and complex networks.

Don Gruenbacher received the PhD degree in electrical e

head in the Department of Electrical and Computer Engin
applications for smart grids, and intrusion detection.

Caterina Scoglio is a professor in the Department of Elect
interests include software defined networking, the modeli

grids. She received the Dr. Eng. degree from the “Sapienz

the Fondazione Ugo Bordoni from 1987 to 20 0 0, and at th

Tricha Anjali received her Integrated M.Tech. (EE) from In
nology in Atlanta in 2004. From 2004 to 2010, she was an

Institute of Technology. She was promoted to associate pro
tional Institute of Information Technology, India. Her resea

networks and network optimization.

	Efficient routing for middlebox policy enforcement in software-defined networking
	1 Introduction
	2 Problems and challenges
	2.1 Policy mapping
	2.2 Policy updating
	2.3 Network resources
	2.4 Fast response towards failures
	2.5 Software-defined networking technique

	3 Global load-balancing routing
	3.1 Candidate paths generation
	3.2 Mixed-integer linear programming problem
	3.2.1 Notations
	3.2.2 Formulations
	3.2.3 Effectiveness and extension

	3.3 Complexity of our approach

	4 Solutions of the global load-balancing routing
	4.1 Realization of the SAN algorithm
	4.2 Algorithm test and comparison

	5 Fast local rerouting
	5.1 Middlebox failures
	5.2 Backup middlebox selection
	5.3 Rerouting strategy analysis
	5.3.1 Flow modification
	5.3.2 Flow accommodation

	5.4 Traffic demand fluctuation

	6 Implementation and evaluation
	6.1 Evaluation of global LB routing
	6.1.1 Experiment setup
	6.1.2 Observations from experiment results

	6.2 Evaluation of fast local rerouting
	6.2.1 Experiment setup
	6.2.2 Major observations from experiment results
	6.2.3 Further analysis on experiment results

	6.3 Network topology’s scalability

	7 Conclusion
	 Acknowledgment
	 References

