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a b s t r a c t 

In this paper, real-time energy trading in smart grid is modeled as an optimization process under un- 

certainties of demand and price information — a problem perspective that is divergent from the ones 

in the existing literature. Energy trading in smart grid is affected by demand uncertainties — intermit- 

tent behavior of renewable energy sources, packet loss in the communication network, and fluctuation in 

customers’ demands. Energy trading is also affected by price uncertainty due to the demand uncertain- 

ties. In such uncertainty-prone scenario, we propose the algorithm named ENTRUST using the principles 

of robust game theory to maximize the payoff values for both sides — customers, and grid. We show the 

existence of robust-optimization equilibrium for establishing the convergence of the game. Simulation re- 

sults show that the proposed scheme performs better than the existing ones considered as benchmarks in 

this study. Utilities for the customers are also maximized in order to promote cost-effective and reliable 

energy management in the smart grid. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

A smart grid is envisioned to facilitate bidirectional electricity

flows in terms of renewable and non-renewable energy services

[1] . Therefore, communication networks play an important role in

order to offer cost-effective energy services for both sides — cus-

tomers, and grid. Utility provider estimates the real-time energy

demand, depending on the demand information received from the

customers. Based on the received information, the utility providers

reserve energy from the main grid in advance, in an attempt to

impart reliable electric supply in the subsequent time periods [2] .

The grid decides about real-time price of electricity to maximize

the profit incurred while considering customers’ participation. Ad-

ditionally, the customers schedule their appliances considering the

total amount of energy required for the day, referred to as the ‘day-

ahead energy’ in the existing literature [3] , according to the real-

time price decided by the utility providers. 

1.1. Motivation 

In the smart grid architecture, the customers fulfill their day-

ahead energy requirements using the grid and renewable energy

sources (such as solar and wind). Plug-in hybrid electric vehicles
∗ Corresponding author. 

E-mail addresses: smisra@sit.iitkgp.ernet.in , sudip_misra@yahoo.com (S. Misra). 
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an charge and discharge their batteries depending on the avail-

ble energy and the availability of vehicle to grid (V2G) and grid to

ehicle (G2V) infrastructure. Therefore, the day-ahead energy from

 customer depends on his/her energy requirements and available

enewable energy sources (including vehicular energy). The cus-

omers also schedule their appliances according to the expected

eal-time prices at different time-slots [4] . However, the expected

emands to the grid are uncertain due to the following constraints

intermittent availability of renewable energy sources, packet loss in

he communication network , and fluctuation in customers’ demands .

nvironmental constraints have important impacts on the capacity

f renewable energy sources. Therefore, demands from customers

aving renewable energy sources are uncertain [5] . On the other

and, energy management in smart grid is dependent on the infor-

ation received through the communication network. To support

his information exchange mechanism, smart meters are deployed

t the customers’ end. However, multiple smart meters also try

o communicate to the utility provider at the same time, thereby

ay induce collision in the smart grid communication network [6] .

ence, due to the presence of packet loss in the smart grid com-

unication networks, the demand information to the grid is not

ndicative of the actual energy demand from the customers [7] . To

ddress this problem, Misra et al. [8] proposed a game-theoretic

nergy management scheme, for use in the presence of packet loss

n the smart grid communication networks. They used Bayesian

ame theory to deal with incompleteness of the received energy

http://dx.doi.org/10.1016/j.comnet.2016.09.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
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emand from the customers. The authors showed that the pro-

osed scheme is capable of establishing cost-effective and reliable

nergy management in smart grid. However, customers’ real-time

nergy requirement may also be changed from the expected one,

nd consequently, payoff of the utility provider is minimized. On

he other hand, real-time price may also be changed drastically

ue to the change in real-time energy demand, which, in turn,

aximizes the customers’ energy consumption cost. Consequently,

oth the customers and the grid compensate, and, thus, the

ayoff1 values are minimized for both the sides. Therefore, an en-

rgy demand estimation process needs to be developed for execut-

ng under these uncertainty constraints, so that the payoff values

or both the players — customers and grid — are maximized. 

.2. Contributions 

In this paper, we propose a scheme named ENTRUST for real-

ime energy trading under uncertainty in the smart grid. The un-

ertainty is attributed to the fluctuating real-time demand and

rice information from the customers, and the grid, respectively.

herefore, ENTRUST is staged as a two part energy trading scheme

one for the customers, and another for the grid. We consider the

ncertainty constraints — intermittent behavior of renewable en-

rgy sources, packet loss in the communication network, and fluc-

uation in customers’ demands. The intermittent behavior of re-

ewable energy sources at customers’ end and fluctuation in cus-

omers’ demand are considered as ‘imperfect’ information to the

rid. On the other hand, packet loss in the smart grid communi-

ation network is considered as ‘incomplete’ information to the

rid. For simplicity, we have considered that all the uncertainty

ssues result in ‘imperfect’ information to the grid. Consequently,

he Robust game-theoretic approach is used to deal with all the

ncertainty issues, in order to establish cost-effective and reliable

nergy management in a smart grid. Energy trading between the

ustomers and the grid is modeled as a robust game . In such a sce-

ario, customers send their expected energy demand to the grid

hile taking into account the uncertain price information from it.

n the other hand, the grid reserves energy for the next time-

lot, depending on the uncertain energy demand from the cus-

omers. Consequently, using a robust optimization technique, the

ustomers and the grid optimize the day-ahead energy consump-

ion and the real-time price, respectively, in an attempt to max-

mize their individual payoff. A cost effective and reliable energy

anagement scheme is established, appropriately. In summary, the

pecific contributions in this work are as follows. 

• We model real-time energy trading in smart grid as an opti-

mization problem under demand and price uncertainties from

customers, and grid, respectively. 

• Robust game theory is used to maximize payoff values for the

customers and the grid. We establish the Equilibrium condition

of the proposed model. We also elaborate the necessity of using

robust game theory in the proposed model. 

• We propose a new algorithm, named as ENTRUST , for real-time

energy exchange between the customers and the grid. ENTRUST

includes a two-part optimization process — one for the cus-

tomers, and another for the grid. The algorithm for the cus-

tomers enable the expectation of the real-time price, whereas,

the algorithm for the grid executes the expected real-time de-
mand from the customers. 

1 In this work, “customers’ payoff” refers to minimization of energy consumption 

ost incurred by them, while fulfilling their energy requirement. Therefore, higher 

ayoff value indicates the lower energy consumption cost to the customers and 

ice-versa. 
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e

The rest of the paper is organized as follows. In Section 2 , we

riefly present the literature review for demand and price estima-

ion based on real-time information. Section 3 describes the sys-

em model related to the problem. We formulate the robust game

trategy as the solution of the problem in Section 4 . The results of

erformance of the proposed scheme are presented in Section 5 .

inally, Section 6 concludes the paper, while suggesting some fu-

ure extensions of this work. 

. Related work 

Several issues related to communication, renewable energy, and

ustomers’ preference-based energy management in smart grid are

ddressed separately in [5,7,9–23] . 

Zio et al. [9] discussed different uncertainty issues in smart grid

n the aspects of market risks, lack of knowledge, different mea-

urement errors, and so on. They discussed different possibilities

o analyze the uncertainty issues in order to deal with it. However,

hey did not discuss the uncertainty issues from the energy gen-

ration and distribution viewpoint which are the most important

omponents in a smart grid energy management systems. 

Jiang et al. [5] proposed a demand response model with un-

ertain renewable energy sources. The authors jointly optimized

upply-demand model using dynamic programming. In such a sce-

ario, two dynamic decisions are evaluated — day-ahead, and real-

ime. In the day-ahead policy, an initial demand response is mod-

led throughout a day. On the other hand, in the real-time policy,

he modeled demand response is changed dynamically according

o the real-time situations. However, the authors only considered

he uncertainty in the supply of renewable energy (such as solar

nd wind). The impact of packet loss in the smart grid communi-

ation network is studied in [7] in two different aspects — energy

emand estimation and associated cost. In such a scenario, the au-

hors showed that with an increase in the packet loss in the com-

unication network, the energy cost to the grid and the customers

ncreases almost exponentially. To counter this problem, they used

 queuing model to measure the amount of packet loss at the data

ggregator units. According to the measured amount of packet loss,

rid estimates the demand from the customers and also calculates

he energy cost. 

In [10] , the author proposed a distributed generation (DG) im-

act assessment tool for taking into account uncertainty issues re-

ated to different renewable energy sources. The proposed assess-

ent tool combines two models — probabilistic and possibilistic.

he probabilistic scenario is applied to model some of the cases

n a DG environment. On the other hand, the possibilistic scenario

s applied to describe rest of the cases where probabilistic model

s not applicable. However, similar to other existing works, the

roposed model considered only the renewable energy sources as

he uncertainty component. Similarly, Saber et al. [12] proposed a

esource scheduling scheme under uncertainly caused due to the

resence of renewable energy sources and plug-in electric vehi-

les. They showed that the real-time energy demand from the cus-

omers differs from the requested one as unit commitment 2 in the

resence of renewable energy sources. Additionally, they consid-

red the issues related to controlling electric vehicles in a smart

rid system. They used particle swarm optimization (PSO) method

o deal with the uncertainty issue. Soroudi et al. [13] discussed dif-

erent decision making strategies under the uncertainty-prone sce-

arios in energy management systems as different solutions. They
2 The unit commitment in smart grid is the forecasted energy demand from the 

ustomers to the grid in a time period to be consumed in next time period. Accord- 

ng to the forecasted energy demand, the grid informs the generated units about the 

mount of energy to be generated in next time period in order to provide reliable 

nergy service to the customers. 
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Table 1 

Comparison of existing works related to uncertainty in smart grid systems 

(A: Intermittent renewable energy, B: Imperfect information, C: Fluctuations 

in customers’ demand). 

Literature Energy management Scheduling Demand uncertainty 

A B C 

[14,15,18] � � ✕ ✕ ✕ 

[5,10] � ✕ � ✕ ✕ 

[7] � ✕ ✕ � ✕ 

[12,16] ✕ � � ✕ ✕ 
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3 A micro-grid is a small-scale power grid which provides electricity to the cus- 

tomers as the combination of renewable and non-renewable energy sources. 
4 The customers cannot modify the generated energy from renewable energy 

sources. It depends on the natural resources such as solar and wind power. There- 

fore, we term the demand uncertainty caused by renewable energy sources as ‘un- 

intentional uncertainty’. On the other hand, when the demand uncertainty caused 

by customers or grid, it can be termed as ‘intentional uncertainty’. 
5 We consider that the total energy demand to the grid from the customers is 

always greater than or equal to zero. 
discussed different mathematical tools (such as Monte–Carlo simu-

lation, point estimation, robust optimization, combination of prob-

abilistic and possibilistic methods, and information gap theory)

which are useful to address the uncertainty issues in the energy

systems. We limit our discussions on these specific mathemati-

cal tools in details, while describing the use of robust optimization

method to deal with the smart grid uncertainties in Section 3.4 . 

Chen et al. [15] proposed a cost-optimization scheme with re-

newable energy sources while allowing different levels of delay tol-

erance for appliances. The delay tolerant appliances are used in

off-peak hours. The renewable energy is stored in batteries, and

is used during peak-hours, in order to partially offset customers’

energy cost. Samadi et al. [16] proposed an energy consumption

scheduling scheme under demand uncertainty due to the imper-

fect knowledge of customers’ energy requirements. An optimiza-

tion model is formed to minimize the energy consumption cost to

the customers, while taking into account the imperfect knowledge

of the energy demands from the customers. 

Table 1 shows the comparison of existing works in different

aspects — energy management, energy consumption scheduling,

and demand uncertainty. The analysis of the existing literature

reveals that cost-effective energy management schemes are ad-

dressed while considering the uncertainty issue in the smart grid

systems only related to renewable energy sources. However, uncer-

tainty of energy demands due to the constraints discussed earlier

makes it difficult to estimate the actual real-time energy demands

for cost-effective ener gy supply to the end-users. In order to ad-

dress this research lacuna, we propose real-time demand and price

estimation schemes under demand and price uncertainty to maxi-

mize payoff for both sides (such as customers and grid) due to the

changes in customers’ energy requirements, intermittent behavior of

renewable energy sources , and packet loss in the smart grid commu-

nication networks . 

3. System model 

Fig. 1 shows the conceptual view of the smart grid architec-

ture, where each customer consumes energy from the grid. All

the customers are connected to the data aggregator unit (DAU)

for bidirectional information flow. Each of the N customers sched-

ule their appliances in different time slots, each of which, in turn,

is divided into T time-slots. As an example, the whole day may

be divided into 24 equal time-slots, each with one hour duration.

Let T be a one dimensional vector of different time-slots, so that

T = { 1 , 2 , . . . , T } . Additionally, let there be N number of customers,

and the set of customers is represented as N = { 1 , 2 , . . . , N} . Each

customer has a renewable energy resource, E r, i, t , and the expected

required energy at any time-slot is x i, t , where i ∈ N and t ∈ T . The

DAU sends the total demand at a time-slot t ∈ T to the meter data

management system (MDMS) to estimate the total demand to the

grid ( X t ) from all customers at the time-slot t . As each customer

has renewable energy sources, his/her actual demand to the grid

is x ∗
i,t 

= { x i,t − E r,i,t } , if renewable energy is used at that time-slot.

Otherwise, it is the same as the required energy, x i, t , at the same
ime-slot, t . Therefore, each customer sends the estimated energy

emand for a time-slot, t , to the grid in the previous time-slot

hrough the communication link, as shown in Fig. 1 . 

.1. The issues of uncertainty 

In smart grid, customers schedule their day-ahead appliances to

inimize electricity cost according to certain assumptions, such as

n-peak hours or off-peak hours, and available renewable energy.

he grid also announces the expected price, P t , in different time-

lots ( t ). However, the customers’ consumption of energy, ˜ x ∗
i,t 

, in

eal-time may not be equate with the estimated one, x ∗
i,t 

, as shown

n Fig. 1 . The real-time demand, ˜ x ∗
i,t 

and price, P ∗
i,t 

, are uncertain to

he grid and customers, respectively, due to following reasons. 

.1.1. Renewable energy 

In the smart grid architecture, each customer is expected to

ave renewable energy sources. The micro-grids 3 distribute elec-

ricity to the end-users with the help of renewable and non-

enewable (from main grid) energy sources. In such a scenario,

ustomers’ predictions depend on real-time supply from the re-

ewable energy sources. Due to the intermittent behavior of these

enewable energy sources, the expected demand and the real-time

rice may be changed in different time-slots. Therefore, while con-

idering renewable energy sources, uncertainty of these resources,

hich we term as unintentional uncertainty 4 , needs to be taken

nto consideration. Mathematically, 

T 
 

t=1 

˜ E ∗r,i,t = 

T ∑ 

t=1 

F(E r,i,t ) , ∀ i ∈ N (1)

q. (1) indicates that the real-time energy supply from renewable

nergy sources differ from the expected one. Therefore, we present

he real-time energy supply from the renewable energy sources as

 function of the expected one. It is noteworthy that the function is

sed for generic purpose. It does not follow a specific pattern due

o the uncertainty issues (such as speed of wind for wind power

nd strength of sunlight for solar power) related to the renewable

nergy sources. This type of uncertainty results in ‘imperfect’ in-

ormation to the grid, as the grid does not have any information

bout the behavior of renewable energy sources at the customers’

nd. 

.1.2. Packet loss in communication 

In the presence of packet loss in the communication network,

xpected demand to the grid is always lower than the actual de-

and from the customers. 5 In such a scenario, payoff of the grid

s almost exponentially decreased, as illustrated by the authors in

7] . According to the authors, the received demand to the grid is

epresented as follows: 

N 
 

i =1 

T ∑ 

t=1 

x ∗i,t = 

N ∑ 

i =1 

T ∑ 

t=1 

x i,t ( 1 − L n ) (2)

here L n = 

(
1 − (1 − L 

te )(1 − L 

cg )(1 − L 

d ) 
)

is the ratio of packet

oss in the communication networks, and L 

te , L 

cg , and L 

d are the

acket losses due to transmission error, congestion, and commu-

ication delay, respectively. Packet loss depends on the allowed
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Fig. 1. Schematic view of the smart grid architecture. 
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6 The utility of the grid is the difference between income and cost incurred by 

the grid in order to provide energy to the customers. 
ime-to-live (TTL) of each packet. It is also noteworthy that sev-

ral re-transmissions may not be useful due to the requirements

f demand information from the customers within a specified time

eriod. Therefore, we consider the packet loss rate as an impor-

ant element of uncertainty. Unlike uncertainty in renewable en-

rgy sources, packet loss results in ‘incomplete’ information to the

rid, as the grid knows the strategies of the customers. Conse-

uently, the grid can estimate the behavior of packet loss in the

ommunication networks, as only few packets are lost. 

.1.3. Fluctuation in Customers’ demand 

Customers may change their expected demand for a particular

ime-slot in real-time energy consumption at that slot due to the

hange in their energy requirements. Therefore, real-time demand

o the grid can be expressed as: 

N 
 

i =1 

˜ x ∗i,t = 

N ∑ 

i =1 

F(x i,t ) , ∀ t ∈ T (3)

q. (3) denotes that the real-time energy demand from a cus-

omer is a function of the forecasted energy demand. Similar to

q. (1) , the variation in customers’ demand depends on several

actors (such as changes in energy requirements and sources of

elf-generated energy sources in real-time), which are probabilis-

ic, rather than deterministic. We consider the uncertainty caused

y the fluctuations in customers’ energy demand as ‘imperfect’ in-

ormation, as the grid does not have any information about the

hanges of energy demand at the customers’ end in real-time. 

.2. Energy supply-demand model 

In general, grid receives energy demands from customers

hrough the DAUs at the distribution side. Upon receiving demand

rom all the customers, the grid takes decision about the energy

o be reserved for fulfilling the energy requirements of the cus-

omers. However, due to the presence of uncertainty of energy de-

and from the customers as presented in Eqs. (1) , (2) , and (3) ,
he grid needs to estimate real-time energy demand to maximize

ts own utility. 6 Therefore, the optimization policy adopted by the

rid is expressed mathematically as follows. 

aximize 

T ∑ 

t=1 

N ∑ 

i =1 

P ∗i,t x 
∗
i,t −

T ∑ 

t=1 

C g,t 

N ∑ 

i =1 

˜ x ∗i,t (4) 

ubject to 

x ∗i,t | min ≤ ˜ x ∗i,t ≤ x ∗i,t | max (5) 

P min 
t ≤ P ∗i,t ≤ P max 

t (6) 

here C g, t is the cost for unit energy production to the grid.

q. (5) ensures that real-time energy demand, ˜ x ∗
i,t 

, always lies

n the interval [ x ∗
i,t 

| min , x 
∗
i,t 

| max ] , where x ∗
i,t 

| min and x ∗
i,t 

| max are the

inimum and maximum energy demands, respectively. Eq. (6) de-

otes that real-time price, P ∗
i,t 

, is also bounded by the minimum,

 

min 
i,t 

, and the maximum, P max 
i,t 

, values, while considering customers’

articipation, ∀ i ∈ N . 

On the other hand, the objective of the customers is to mini-

ize their energy consumption cost, while fulfilling their energy

equirements. Therefore, the customers also optimize their energy

onsumption cost based on real-time price of energy decided by

he grid. Mathematically, 

inimize 

T ∑ 

t=1 

N ∑ 

i =1 

˜ P ∗i,t ̃  x ∗i,t (7) 

ubject to 

x min 
i,t ≤ ˜ x ∗i,t ≤ x max 

i,t (8) 

P min 
t ≤ ˜ P ∗i,t ≤ P max 

t (9) 

here ˜ P ∗t is the modified price of energy decided by the grid. 
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Eqs. (4) and (7) can be combined as one optimization problem

as follows. 

Maximize 

T ∑ 

t=1 

N ∑ 

i =1 

P ∗i,t x 
∗
i,t −

T ∑ 

t=1 

C g,t 

N ∑ 

i =1 

˜ x ∗i,t −
T ∑ 

t=1 

N ∑ 

i =1 

˜ P ∗i,t ̃  x ∗i,t 

subject to 

N ∑ 

i =1 

˜ x ∗i,t ≥ 0 (10)

x ∗i,t | min ≤ ˜ x ∗i,t ≤ x ∗i,t | max (11)

P min 
t ≤ P ∗i,t ≤ P max 

t (12)

P min 
t ≤ ˜ P ∗i,t ≤ P max 

t (13)

where U denotes the set of uncertain parameters. Eq. (10) confirms

that the total demand to the grid at any time-slot is always posi-

tive. 

3.3. Real-time pricing based on information 

Due to the change in real-time demand, ˜ x ∗
i,t 

, from the customer

i ∈ N , real-time price, P ∗
i,t 

, is also changed by the grid. For simplic-

ity, we adopt the real-time pricing model proposed by Liang et al.

[24] . Real-time price per unit energy can be modeled as: 

P ∗i,t = α ˜ x ∗2 
i,t + β ˜ x ∗i,t + γ , ∀ i ∈ N , and t ∈ T , (14)

where α, β , and γ are predefined constants. From Eq. (14) , we

see that the customers pay according to their energy consumption.

Light weight customers, who require less energy, do not suffer due

to the heavy weight customers, who require more energy. Thus, a

fair pricing policy is obtained. 

3.4. The use of robust game theory 

In a smart grid, customers forecast their demand information to

the grid in advance, which is expected to be consumed in the next

time periods. According to the received demand information, the

grid optimizes the energy supply, which is a combination of re-

newable and non-renewable energy sources. Additionally, the grid

also forecasts the expected price of energy to the customers. How-

ever, as mentioned in Section 3.1 , the customers and grid may not

have adequate information due to the different uncertainty issues

— intermittent renewable energy, packet loss in communication

networks, and changes in real-time demand from customers. Con-

sequently, we have ‘imperfect information’ due to the intermittent

behavior of renewable energy sources and changes in customers’

demand. On the other hand, we consider the packet loss in the

communication networks as ‘incomplete information’, as both the

grid and the customers are not involved in this case. We convert

the ‘incomplete information’ to the ‘imperfect’ one to get complete

information about payoff values for each strategy [25] . For simplic-

ity, in this paper, we limit our discussion on conversion of ‘incom-

plete’ to ‘imperfect’. Finally, ‘imperfect information’ is considered

for all uncertainty issues to optimize energy trading in the smart

grid. 

In the proposed scheme, ENTRUST , multiple customers are ser-

viced by single service provider (grid). Therefore, we use game the-

ory, an optimization model, which can optimize the payoff values

for the users while multiple players are considered. In a smart grid

system, there can be different uncertainty issues which need to be

considered to provide reliable and cost-effective energy service to

the customers. There are few optimization tools such as informa-

tion gap decision theory, stochastic models, fuzzy tools , and robust

optimization method which can be used to undertake the uncer-

tainty issues in a system. Therefore, we can use the above men-

tioned optimization tools from different problem perspectives. For
xample, using the information gap decision theory , we can under-

ake the issues of imperfect information caused due to packet loss

n the communication network in the smart grid. 

In the proposed scheme, the real-time demand and price in-

ormation from the customers are uncertain to the grid and cus-

omers, respectively, due to the uncertainty issues — intermittent

ehavior of renewable energy sources, packet loss in the communi-

ation networks, and changes in customers’ demand, as discussed

n Section 3.1 . Therefore, we need such an optimization tool, which

an consider all these uncertainty issues in a smart grid system in

 unified manner. Additionally, we also need to have an optimal

ecision to be executed by both players (customers and grid) to

aximize their payoff values. Therefore, we use robust game the-

ry , which is capable of addressing uncertainties of this nature, and

lso has an equilibrium point to evaluate optimal decision [26] . Us-

ng robust game theory , the customers take optimal decisions for

nergy demand under price uncertainty, and the grid optimizes the

xpected real-time demand from the customers considering the

orst case scenario of the real-time price and demand informa-

ion, respectively. 

. Robust demand and price estimation 

.1. Game formulation 

As discussed previously, we use robust game theory -based opti-

ization approach [26] in order to model energy trading under un-

ertainty. In such an optimization model, customers and grid act as

layers of the game. We assume that both the players know only a

et of possible values of the uncertain payoff function parameters,

nd represented as U = { ̃ x ∗
i,t 

, P ∗
i,t 

} . Therefore, both the players try

o maximize their payoff values while considering the worst case

cenario of the uncertain parameters. Let M be the set of players,

here { 1 , 2 , ..., M} ∈ M , and let a player i ∈ M have A i > 1 possi-

le actions. 

efinition 1. The proposed game model is said to be finite , if the

umber of players (grid and customers) M and actions A i available

o each player i ∈ {1, 2, ..., M } are finite. 

In the proposed model, we consider the following parameters: 

• Number of players : M , where M ∈ {C , G} , where C denotes the

customers, and G denotes the grid. 

• Uncertainty set : U , where { ( ̃  x ∗
1 ,t 

, ̃  x ∗
2 ,t 

, ..., ̃  x N ,t ) , (P ∗
1 ,t 

, P ∗
2 ,t 

, ..., P ∗N ,t ) } ∈
U . 

• Payoff uncertainty set : P . 

• Actions taken by the players : A , where i ∈ M and | A i | >
1 , and each players action is denoted as a i , ∀ i ∈ M . Thus,

{ a 1 , a 2 , ..., a M 

} ∈ A . 

• Strategy of the players : S, where { s 1 , s 2 , ..., s M } ∈ S, and s i is the

individual strategy of each player, ∀ i ∈ M . 

Therefore, �
(
P; s 1 , s 2 , ..., s M 

)
denotes the expected payoff of

layer i , when he/she plays a mixed strategy s i 
′ ∈ S A 

i 
′ game. Math-

matically, 

i (P 

∗; s 1 , s 2 , ..., s M ) = 

a 1 ∑ 

j 1 =1 

· · ·
a i ∑ 

j i =1 

· · ·
a M ∑ 

j M =1 

P 

∗i 
( j 1 ,..., j M ) 

M ∏ 

i =1 

s i j i (15)

As the proposed model is based on incomplete information

ithout private information, the payoff uncertainty set, P, is sub-

ect to uncertainty. For the worst case scenario, we take the infi-

um of the payoff uncertainty set, P . Therefore, the payoff value

an be calculated as follows: 

 

∗(i ) = arg max 
U i ∈S A i 

[ 
inf 
P ∗∈U 

�i 

(
P 

∗, s −i , U 

i 
)] 

, ∀ i ∈ M (16)



S. Misra et al. / Computer Networks 110 (2016) 232–242 237 

 

a  

p  

x  

h  

s  

a  

P

P

w(

4

 

a  

t  

i  

c

 

 

 

E  

w  

t  

t  

p  

d  

a  

t  

a  

t  

p  

c  

a  

t  

t  

p  

t  

i  

s  

c  

s  

c

4

 

i  

e  

t  

c

 

 

E  

w  

t  

c  

h  

a  

a  

t

 

f  

i  

s

D  

e  

P

P

4

 

o  

r

P

 

p  

t  

p

D  

p  

o  

c

s  

P  

u

P  

t  

r  

a  

a  

w  

e

L  

s  

i

P  

t  

t

P

F

�

C  

i  

o

 

In the game model, customers and grid select their actions,

 i ∈ A , simultaneously. Let the customers take expectations under

rice uncertainty. Thus, the customer incurs cost x ∗
i,t 

(P ∗
i,t 

− P i,t ) =
 

∗
i,t 

� ˜ C p , and the grid gains x ∗
i,t 

(P ∗
i,t 

− C g,t ) = x ∗
i,t 

� ˜ G p . On the other

and, when grid takes expectations under demand uncertainty, it

uffers with cost (x ∗
i,t 

− ˜ x ∗
i,t 

) C g,t = � ˜ W C g,t , and the customers save

n amount of (x ∗
i,t 

− ˜ x ∗
i,t 

) P ∗
i,t 

= �HP ∗
i,t 

. The payoff uncertainty set,

 

∗, can be represented as follows: 

 

∗ = 

⎛ 

⎝ 

(0 , −� ˜ W C g,t ) (�HP ∗
i,t 

, −�HP ∗
i,t 

) 

(�HP ∗
i,t 

− x ∗
i,t 

� ˜ C p , (�HP ∗
i,t 

− x ∗
i,t 

� ˜ C p , 
x ∗

i,t 
� ˜ G p − �HP ∗

i,t 
− � ˜ W C g,t ) x ∗

i,t 
� ˜ G p − �HP ∗

i,t 
) 

⎞ 

⎠ (17) 

here 

� ˜ C p , � ˜ G p , � ˜ W 

)

∈ 

{(� � ˜ C p 	 , 
 � ˜ C p � 
)

×
(� � ˜ G p 	 , 
 � ˜ G p � 

)
×

(� � ˜ W 	 , 
 � ˜ W � )}

.1.1. Payoff functions for customers 

The payoff function � i ( ·) of any customer i ∈ N decreases with

n increase in the change of real-time energy demand, � ˜ W , to

he grid, and the real-time price, � ˜ C p , from the grid. Also, � i ( ·)
ncreases with the increase in the renewable energy, E r, i, t , of the

ustomer. Mathematically, 

∂�i (� ˜ W , E r,i,t , � ˜ C p ) 
∂� ˜ W 

< 0 , ∀ t ∈ T . (18)

∂�i ( ̃  x ∗
i,t 

, E r,i,t , � ˜ C p ) 
∂E r,i,t 

> 0 , ∀ t ∈ T . (19)

∂�i ( ̃  x ∗
i,t 

, E r,i,t , � ˜ C p ) 
∂� ˜ C p 

< 0 , ∀ t ∈ T . (20)

q. (18) denotes that the payoff value of the customers decreases

ith an increase in the real-time energy demand, while keeping

he other parameters constant. In a practical scenario, the cus-

omers forecast their expected energy demand for the next time

eriod to the grid in advance. According to the forecasted energy

emand, the grid optimizes the balance between energy supply

nd demand from the customers. Further, the grid also forecasts

he expected price of energy. However, due to the changes in the

ctual energy demand from the forecasted one from the customers,

he grid needs to buy the extra energy, while the clearing market,

rice which is higher than the usual one. Consequently, the grid

harges higher price than the forecasted one to the customers. As

 result, the customers’ payoff value decreases with an increase in

he real-time energy demand. On the other hand, Eq. (19) indicates

hat the payoff value increases with an increase in the energy sup-

ly from the renewable energy sources. Finally, Eq. (20) denotes

hat the payoff value of the customers decreases with an increase

n the real-time energy price, while the other parameters are con-

tant. As the energy supply from the renewable energy sources in-

reases, the customers need to buy less energy from the grid. Con-

equently, the payoff value of the customers increases with an in-

rease in the renewable energy supply. 

.1.2. Payoff function for grid 

The payoff function � j ( ·) of the grid j ∈ G increases with the

ncrease in the change in real-time energy demand, � ˜ W , and the

ffective price, � ˜ G p , which is computed as the difference between

he real-time price, P ∗
i,t 

, and the generation cost, C g, t . Mathemati-

ally, 

∂� j (� ˜ W , � ˜ G p ) 
˜ 

> 0 , ∀ t ∈ T , i ∈ N . (21)

�W P
∂� j (� ˜ W , � ˜ G p ) 
∂� ˜ G p 

> 0 , ∀ t ∈ T , i ∈ N . (22)

qs. (21) and (22) indicate that the payoff of the grid increases

ith an increase in the real-time energy demand from the cus-

omers and the effective ener gy price, respectively. Due to an in-

rease in the effective price, i.e., the real-time energy price is

igher than the forecasted one, the marginal benefit to the grid

lso increases. Therefore, the payoff value is also maximized with

n increase in the real-time demand from the customers and real-

ime energy price. 

In such a scenario, we evaluate the payoff uncertainty set, P 

∗,
or the players as shown in Eq. (17) . The first and second elements

n the tuple represent the customers’ and the grid’s payoffs, re-

pectively. 

efinition 2. The worst case expected payoff is greater than or

qual to the expected worst case payoff with the uncertainty set,

 

∗. Mathematically, 

inf 
 

∗∈U 
�i 

(
P 

∗; s −i , U 

i 
)

≥ �i 

(
inf 
P ∗∈U 

[ P 

∗] ; s −i , U 

i 
)

.2. Robust optimization equilibrium 

We now evaluate the existence of equilibrium in the proposed

ptimization model. According to the formal definition of equilib-

ium, the following condition holds: 

inf 
 

∗∈U 
�i 

(
P 

∗, s −i , s i 
)

≥ inf 
P ∗∈U 

�i 

(
P 

∗, s −i , U 

i 
)

(23) 

Eq. (23) presents that the worst case payoff uncertainty of a

layer i with strategy s i is greater than the payoff uncertainty with

he uncertain strategy set, U i for the same player, when the other

layers’ strategies, s −i are given. 

efinition 3. The ex-post-equilibrium defines an equilibrium

oint, in which each player’s strategy is the best response to the

ther players’ strategies under all possible realizations of the un-

ertain data without private information [26] . Mathematically, 

 

i ∈ inf 
P ∗∈U 

�i (P 

∗; s −i ,U 

i ) , ∀ i ∈ M , and P 

∗ ∈ U 

i (24)

roperty 1. If the infimum of the uncertainty set U exists, then it is

nique, where P 

∗ ∈ U i , and i ∈ N . 

roof. We consider that U ⊆ R is bounded, and let a and b ∈ R be

wo infimums of the set U . According to the definition of infimum

ule, both a and b are the greatest lower bounds of U . Therefore, if

 is the greatest lower bound of U , then b is a lower bound of U ,

nd a ≤ b . On the other hand, the contradiction is the same for b ,

here b ≤ a . Hence, both the contradictions yield a = b, and there

xists only one greatest lower bound in the uncertainty set U . �

emma 1. The proposed scheme has an equilibrium with the strategy

 

i , where (s 1 , s 2 , ..., s M ) ∈ S under the uncertainty set while preserv-

ng privacy of the players (such as personal data). 

roof. Let, if possible, (s 1 , s 2 , ..., s M ) ∈ S be not an equilibrium of

he proposed model. Suppose ∃ i ∈ {1, 2, ..., M } and ∃U i ∈ S A i , such

hat: 

inf 
 

∗∈U 
�i (P 

∗; s −i , s i ) < inf 
P ∗∈U 

�i (P 

∗; s −i , U 

i ) 

rom Eq. (24) , we get, 

i (P 

∗; s −i , s i ) ≤ �i (P 

∗; s −i , U 

i ) , ∀P 

∗ ∈ U 

onsequently, from the definition of the infimum operator,

nf P ∗∈U �i (P 

∗; s −i , s i ) is the greatest lower bound on �i (P 

∗; s −i , s i )

ver P 

∗ ∈ U . Therefore, ∀ i ∈ {1, 2, ..., M }, and ∀U i ∈ S A i , 

inf 
 

∗∈U 
�i (P 

∗; s −i , s i ) ≥ inf 
P ∗∈U 

�i (P 

∗; s −i , U 

i ) (25)
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Table 2 

Simulation parameters. 

Parameter Value 

Number of grids 1 

Number of customers 50 

Simulation area 2 Km × 2 Km 

Demand of a customer 10–30 KWh 

Self-generation 2–5 KWh 

Packet loss rate 5–20% 

Average cost for supply 5 Cents/KWh 

Predefined constants [8] a > 0, b = 0 , c = 0 

5
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to the customers. 

7 http://www.eia.gov/electricity/sales _ revenue _ price/xls/table5 _ a.xls . 
8 OpenEI Transparent Cost Database ( http://en.openei.org/apps/TCDB/ ). 
From Eq. (25) , it is obvious that (s 1 , s 2 , ..., s M ) ∈ S is an equilibrium

of the proposed scheme. �

4.3. ENTRUST: the proposed algorithm 

In this section, we describe the procedure for energy exchange

between the customers and the grid. The customers evaluate the

optimal energy demand to the grid with uncertain price informa-

tion to maximize their payoff values. On the other hand, the grid

also takes an optimal strategy to decide the real-time price for in-

dividual customers to maximize its payoff. 

4.3.1. Algorithm for customer 

We present the procedure to evaluate optimal energy demand,

˜ x ∗
i,t 

for a customer i ∈ N to the grid in Algorithm 1 . The customer

calculates the expected price variation, � ˜ C p , as follows: 

� ˜ C p = e ∗(P ∗i,t ) = arg min 

e ∗∈U 
(P ∗i,t , e 

∗) , (26)

where e ∗(P ∗
i,t 

) is the expected price variation in real-time. 

Algorithm 1: Algorithm for customer. 

Input : Required energy, x i,t , Renewable energy, E r,i,t , Expected 

price, P i,t , where P min 
i,t 

≤ P i,t ≤ P max 
i,t 

. 

Output : Real-time energy demand, ˜ x ∗
i,t 

, to the grid. 

1 Calculate the expected price variation, � ˜ C p , from Equation 

(26) ; 

2 while P ∗
i,t 

≤ (P i,t + � ˜ C p ) do 

3 Calculate the payoff values, �i , ∀ i ∈ N , for all possible 

realizations of the price uncertainty, where P ∗
i,t 

∈ U i , from 

the payoff uncertainty set in Equation (17) ; 

4 Select the optimal demand, ˜ x ∗
i,t 

= arg max 
P ∗∈U i 

P 

∗, to maximize 

the payoff; 

5 Send optimal energy demand, ˜ x ∗
i,t 

, to the grid in real-time t; 

4.3.2. Algorithm for grid 

Algorithm 2 presents the procedure followed by the grid to op-

timize real-time price, P ∗
i,t 

, for each customer i ∈ N . We also use

the expected load variation for each customer to calculate the ex-

pected real-time demand, ˜ x ∗
i,t 

, which is represented as: 

� ˜ W = e ∗(x ∗i,t ) = arg min 

e ∗∈U 
(x ∗i,t , x 

∗
−i,t e 

∗) , (27)

where e ∗(x ∗
i,t 

) is the expected load variation of customer i ∈ N . 

Algorithm 2: Algorithm for grid. 

Input : Received energy demand, x ∗
i,t 

, from customer i ∈ N , 

where x ∗
i,t 

| min ≤ x ∗
i,t 

≤ x ∗
i,t 

| max , and generation cost, C g,t , 

per unit. 

Output : Real-time price, P ∗
i,t 

, for the customer i . 

1 Calculate expected load variation, � ˜ W , from Equation (27) ; 

2 while ˜ x ∗
i,t 

≤ ( x ∗
i,t 

+ � ˜ W ) do 

3 Calculate payoff values, � j , ∀ j ∈ G, for all possible 

realizations of the demand uncertainty, where ˜ x ∗
i,t 

∈ U i , 
from the payoff uncertainty set in Equation (17) ; 

4 Select the optimal price, P ∗
i,t 

= arg max 
P ∗∈U i 

P 

∗, to maximize 

payoff; 

5 Send the optimal price, P ∗
i,t 

, for the customer i in real-time t; 
. Performance evaluation 

We simulated the proposed scheme in NS-3 ( http://www.

snam.org) . The simulation parameters are listed in Table 2 . We

onsider the values of the predefined parameters a > 0, b = 0 , and

 = 0 , in a manner similar to the existing literature [8] . The simu-

ation area is considered as 2 Km × 2 Km with 50 number of cus-

omers. The day-ahead energy requirement of a customer is taken

s 10–30 kWh. 7 The packet loss rate is considered as 5–20% [7] . Fi-

ally, average cost for energy generation to the grid is considered

s 5 Cents/kWh. 8 Different performance metrics are considered for

valuating the performance of the proposed scheme — effect of de-

and uncertainty, reliability of energy supply, energy cost , and utility

o the customers and grid. It is noteworthy that all the results are

btained in this work by considering all the uncertainty issues —

hanges in renewable energy supply and customers’ demand, and

acket loss in the communication networks. Due to the packet loss

n the communication networks, the received information is al-

ays less than or equal to that sent. On the other hand, due to

he changes in renewable energy sources and customers’ demand,

oth the real-time supply and demand either increase or decrease.

owever, all the sources of uncertainty are probabilistic in nature,

ather than deterministic. Consequently, we do not explicitly men-

ion the rate of change in packet loss, renewable energy sources

nd customers’ demand. However, we consider the effects of all

he uncertainty issues in the smart grid to obtain the results, as

entioned in Section 4 . 

We compare the performance of the proposed scheme, EN-

RUST, with the existing scheme where only the renewable energy

ources are considered as the sources of uncertainties in smart

rid systems (such as Jiang et al. [5] and Soroudi [10] ). Jiang et al.

5] proposed a demand response scheme in smart grid in the pres-

nce of uncertain renewable energy sources. In such a scenario, the

ntermittent behavior of the renewable energy sources is consid-

red as the source of uncertainty in the smart grid systems. Sim-

larly, Soroudi [10] proposed a possibilistic model for distribution

rid (DG) impact assessment in an uncertain environment. In such

 model, the renewable energy sources are considered as the un-

ertainty factors. 

However, in the proposed scheme, ENTRUST, we consider differ-

nt types of uncertainties in the smart grid systems — intermittent

ehavior of renewable energy sources, changes in customers’ de-

and, and packet loss in the smart grid communication networks,

s discussed in Section 3 . Consequently, ENTRUST addresses these

ncertainties to provide reliable and cost-effective energy supply

http://www.nsnam.org)
http://www.eia.gov/electricity/sales_revenue_price/xls/table5_a.xls
http://en.openei.org/apps/TCDB/
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Fig. 2. Energy demand at different time periods from customers. 

Fig. 3. Total aggregated energy demand from customers. 
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Fig. 4. Reliability of energy service to customers. 
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.1. Results and discussion 

.1.1. System dynamics 

Fig. 2 presents the system dynamics of obtained energy de-

ands using different schemes at each time period. The grid re-

erves energy as unit commitment for a subsequent time-slot, de-

ending on the received energy demand from the customers. How-

ver, real-time demand may be changed due to different con-

traints, as discussed in Section 3 . Therefore, we show the varia-

ions of energy demand from three aspects — received demand (as

n [5,10] ), estimated demand (proposed), and real-time demand. In

he proposed scheme, we estimate the expected energy demand in

eal-time from the customers, while considering the uncertainty is-

ues related to intermittent behavior of renewable energy sources,

hanges in customers’ energy demand and packet loss in the com-

unication network. It is noteworthy that, due to the probabilis-

ic nature of the estimation process, the exact values of the un-

ertainty parameters are not presented in a deterministic manner.

owever, we consider all the uncertainty parameters in each time

eriod, as shown in Fig. 2 . Additionally, the presented energy de-

and dynamics is used to get the subsequent results. 

.1.2. Energy demand from customers 

Fig. 3 shows the cumulative energy demand at different time

eriods. We see that the proposed scheme, ENTRUST, estimates

he energy demand from customers adequately. On the other hand,

he estimated energy demand using the existing schemes is lower

han the real-time demand, as they do not consider the uncer-

ainty issues related to packet loss and changes in customers’ de-

ands. Therefore, in case of the existing schemes, the additionally

equired energy demand in real-time increases the peak-to-average

atio, and moreover, it may cause the grid to fail. However, us-

ng ENTRUST, the grid estimates the energy demand from the cus-

omers adequately, which, in turn, does not create extra load on

he grid. Therefore, the proposed scheme, ENTRUST, is capable of
roviding adequate energy services to the customers, while consid-

ring the uncertainty issues. The peak-to-average ratio is calculated

s follows: 

peak −a v g = 

E demand − E a v g 

E a v g 
(28) 

n the existing schemes (as in [5,10] ), the grid estimates the real-

ime demand according to the received demand information from

he customers without considering all the uncertainties present in

he smart grid, as discussed in Section 3 . Accordingly, the grid cal-

ulates the average energy demand from the customers. However,

he difference between the estimated demand and actual demand

ncreases in real-time, as the actual demand is more than the cal-

ulated one. Consequently, the peak-to-average ratio increases us-

ng the existing schemes. In contrast, as the proposed scheme, EN-

RUST, estimates the real-time demand from the customers ade-

uately and it is less fluctuated from the expected one, the differ-

nce between the demanded energy and the average energy is less

ompared to the existing ones. Consequently, peak-to-average ratio

s minimized using the proposed scheme, ENTRUST, which is one

f the important aspects of the smart grid. 

.1.3. Reliability of energy supply 

As discussed in Section 1 , smart grid is envisioned to increase

he reliability of energy supply to the customers. The reliability of

nergy service is calculated as the ratio between the demanded

nergy from a customer and the supplied energy by the grid to

he customers, while incurring the same unit energy consumption

ost. We compare the reliability of energy service using the pro-

osed scheme, ENTRUST, with the existing schemes, as in Fig. 4 .

he reliability of energy service to the customers decreases with

he existing schemes, as the grid does not receive adequate energy

emand information (as shown in Fig. 3 ) from the customers in an

ncertain environment. On the other hand, the proposed scheme,

NTRUST, provides more reliable energy services to the customers

ompared to the existing ones, while considering different uncer-

ainty issues, as shown in Fig. 4 . 

.1.4. Energy cost 

Due to the uncertainty in energy demand from the customers,

s shown in Fig. 3 , the unit energy consumption price is also un-

ertain to the customers. According to the expected demand from

 customer, the grid decides the real-time price, as depicted in Eq.

14) . In ENTRUST, we consider the real-time price, as calculated

rom the estimated energy demand to the grid. We see that EN-

RUST estimates the adequate energy consumption cost incurred

y the customers, as shown in Fig. 5 (a). 

Additionally, Fig. 5 (b) presents the cumulative energy consump-

ion cost to the customers. We see that the energy cost to the cus-

omers is also minimized using the proposed scheme compared to

he existing ones, as it estimates the real-time energy demand ad-

quately. On the other hand, in the presence of unit commitment



240 S. Misra et al. / Computer Networks 110 (2016) 232–242 

Fig. 5. Energy cost to customers. 

Fig. 6. Utility of customers. 
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scenario, using the existing schemes, the grid needs to buy extra

energy from shared energy markets in real-time, which, in turn,

increases the energy consumption cost to the customers. There-

fore, we see that the use of ENTRUST yields significant results to

promote a cost-effective energy supply to the customers. 

5.1.5. Utility 

We present the utility of the customers in Fig. 6 . It is evident

that the utility of the customers also increases with the proposed

scheme, ENTRUST, over the existing scheme. As ENTRUST estimates

the real-time energy demand from customers adequately, the grid

reserves the same amount of energy to provide reliable energy ser-

vices. Therefore, the grid does not need to procure extra energy

by paying the market price, which is higher than the normal one.

Consequently, the customers incur lower energy cost by using the

proposed scheme, which, in turn, maximizes the utility of the cus-

tomers. 

6. Conclusion 

In this paper, we proposed a scheme for energy management

under different uncertainties concerning demand and price in a
mart grid. The performance of the algorithms proposed in the ex-

sting literature on the issue of energy management, in general,

uffers from uncertainty constraints. Therefore, we modeled the

nergy management scheme as a robust optimization approach us-

ng robust game theory to account for these uncertainty constraints.

n the proposed model, the customers and the grid act as players

f the game. The theoretical analysis of equilibrium of the game

odel is also presented. The simulation results showed that using

he proposed approach, improved energy management over the ex-

sting ones, is achievable. 

The future extension of this work includes improvement in the

xpectation of the real-time demand from the customers in order

o overcome the overestimation issue. We saw that the proposed

cheme overestimates energy demand from customers in case of

ery low packet loss rate. Therefore, in future, we also plan to in-

orporate this issue in the smart grid systems. It also includes the

stablishment of a network architecture for smart grid to minimize

acket loss in the communication network. This will enable us to

chieve improved reliability and cost-effectiveness in energy man-

gement. 
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