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a b s t r a c t 

Heterogeneous sensor networks have been proposed to address some fundamental limits and perfor- 

mance issues present in homogeneous Wireless Sensor Networks (WSNs). Questions such as the number 

of high-end sensors should be used, and how to deploy them, need proper assessment. In this work, 

we propose a novel model capable of representing a wide variety of scenarios, from totally random to 

planned stochastic node deployment in both homogeneous and heterogeneous sensor networks. In par- 

ticular, this model encompasses networks with the characteristics of small-world networks. Using only 

about 3% of high-end sensors, and deploying nodes by using the slightly attractive model defined herein, 

we observe improved characteristics of the network topology, such as: (i) low average path length, (ii) 

high clustering coefficient, and (iii) improved relay task distribution among sensors. We also provide a 

guide for deploying nodes in order to improve the network lifetime, showing that the aforementioned 

model can be used to diminish the energy hole effect. Moreover, we evaluate a topological metric, namely 

Sink Betweenness, suitable for characterizing the relay task of a node. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Node deployment and the consequent induced topology both

play an important role in the design of Wireless Sensor Networks

(WSNs). Many important properties such as coverage, connectivity,

data fidelity, and lifetime are directly influenced by the way nodes

are placed in the sensor field. 

Most WSN models in the literature assume that the network

is comprised of homogeneous nodes; that is, that all sensors have

the same capabilities in terms of energy, processing, memory, and

communication. However,Yarvis et al. [37] show that homogeneous

ad hoc networks suffer from fundamental limitations, and hence,

exhibit poor network performance such as end-to-end success rate,

latency and energy consumption. Another class of WSN models as-
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umes the existence of different sets of nodes with different ca-

abilities. For instance, suppose there are two types: the first is

omprised of a small number of powerful high-end sensors (H-

ensors), and the second is comprised of a large number of low-

nd sensors (L-sensors). In this case, we have a Heterogeneous

ensor Network model [37] . The H-sensors have higher powerful

ransmitters, and consequently have a greater communication ra-

ius; in addition, they present a higher battery capacity. 

Wu et al. [36] showed that the lifetime of a uniformly deployed

SN is strongly limited by the sensors at the first hop from the

ink, an issue known as the “energy hole problem”. This problem

nsues from the relay task, which concentrates more intensively

n nodes placed close to the sink. The energy hole problem is also

resent in heterogeneous networks. In this case, it appears in the

eighborhood of each H-sensor and the sink.Wu et al. [36] con-

luded that simply randomly increasing the number of nodes can-

ot elongate the network lifetime as desired when a totally ran-

om deployment is used. They show that the entire network life-

ime can be improved by spreading more nodes near the sink. 

An important task in the development of energy-aware solu-

ions for WSNs is the design of efficient techniques for the cre-

tion of heterogeneous network topologies with specific proper-

ies. Complex networks [27] can be used to model networks with
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ertain non-trivial topological features, such as heavy-tailed de-

ree distribution, high clustering coefficients, community struc-

ures at different scales, and evidence of a hierarchical structure,

mong others. The two most well-known examples of complex

etworks are those of scale-free and small-world networks. In a

cale-free network, a vertex degree obeys a power law distribution,

hile a small-world network has a high clustering coefficient and

 small path length [27] . Small-world networks present interesting

haracteristics with regards to data communication [17] , such as

 shorter average path length and a higher clustering coefficient

which can improve fault-tolerance properties). To create a net-

ork with small-world features, the designer should add a small

umber of long-range links, known as shortcuts. 

In this work, we introduce a novel deployment model for WSNs.

his model can represent topologies that exhibit desirable char-

cteristics for WSNs. Furthermore, an adequate deployment can

roperly address the energy hole problem. We also evaluate a cen-

rality metric, namely Sink Betweenness, introduced in our previ-

us work [28,30,31] , which is able to characterize the energy hole

roblem, and can be used in the design of algorithms for WSNs. 

This work is organized as follows. Section 2 discusses the re-

ated work that motivates this research. Section 3 presents a cen-

rality metric used to characterize topologies represented by the

 

2 P 2 model, and introduces the M 

2 P 2 deployment model pro-

osed herein. Section 4 presents the evaluation of the M 

2 P 2 model.

inally, Section 5 presents the concluding remarks and future di-

ections for this work. 

. Related work 

Social network analysis (SNA) metrics have been used in the de-

ign of ad hoc networks. Katsaros et al. [19] surveyed a variety of

rotocols that take advantage of centrality metrics and community

ormation to improve network performance. They concluded that

NA metrics played a key role for the advancement of the network

erformance, especially when the communication was opportunis-

ic in nature. 

Helmy [17] and Guidoni et al. [15] exploited the possibility

f implementing long-distance links between few nodes to con-

truct WSNs that presented small world characteristics, such as

mall path lengths and high clustering coefficients, and hence, im-

roved their performance. Those studies considered that long dis-

ance links could be established between any two nodes, and then,

sed only a few of them to create the small world characteristics.

n contrast, we use less high powerful nodes, because we plan their

eployment a priori. As we will see, our deployment is planned

ut not deterministic. We also provide a guide for deploying real-

orld WSNs following our model and preserving the improved fea-

ures. 

Matthias et al. [24] explored the small-world effect by build-

ng a topology control algorithm that worked with local infor-

ation, instead of computing metrics such as clustering coeffi-

ients and average path-lengths that require global data. In con-

rast, we do not tackle the topology control problem, but instead

lan deployments to build topologies that feature small-world

roperties.Vázquez-Rodas and de la Cruz Llopis [34] proposed a

ew technique for topology control based on centrality metrics,

orrowed from social network analyses such as degree, closeness

nd Betweenness. 

Younis and Akkaya [38] presented a survey on strategies and

echniques for node placement in WSNs. They also propose a clas-

ification for different deployment methods. The first criterion is

hether a node is static or mobile. Two deployment strategies

re considered for static nodes: controlled and random. A con-

rolled deployment is usually appropriated to indoor applications,

r whenever the designer is able to specify the placement of all
odes, whereas random location is usually pursued in applications

n which the designer is unable to precisely place the sensor nodes.

he latter scenario assumes that sensors will be randomly placed;

or instance, they can be dropped from a helicopter or an airplane.

he authors [38] also suggested that the deployment can be op-

imized for the following metrics: (i) area coverage, (ii) network

onnectivity, (iii) network longevity, and (iv) data fidelity. Mean-

hile nodes can assume the following roles: sensor, relay, cluster-

ead, and base station. 

Topology influences the core characteristics of WSNs. Despite

his, studies involving different topologies are seldom found in the

iterature. Actually, uniform random placement (URP) is the most

idely used deployment strategy in WSN simulations [35,38] . To

ridge this gap, we define a novel deployment model as a stochas-

ic point process, i.e., a collection of random variables capable

f describing the location of a number of points in a region of

he space. For the sake of simplicity, let us assume that we are

nterested in stochastic point processes on the compact window

 = [0 , � ] 2 ⊂ R 

2 , where � is the side length of the sensor field. A

xed number of n points obeys a URP distribution on W if they are

laced independently of each other. A sample from such a process

an be built observing outcomes from 2 n independent identically

istributed random variables X 1 , . . . , X n , Y 1 , . . . , Y n , obeying the uni-

orm law on [0, � ], say x 1 , . . . , x n , y 1 , . . . , y n , and then placing the n

oints on coordinates ( x i , y i ) 1 ≤ i ≤ n .Younis and Akkaya [38] stated

hat the URP assumption can be unrealistic or even undesirable for

SN scenarios. 

Hoydis et al. [18] presented a study on the effects of the topol-

gy on the local throughput capacity of the slotted aloha MAC pro-

ocol in the context of ad hoc networks, and observed that URP

eployment negatively affected network capacity and performance.

hey used cluster-based point processes [5] to conclude that sim-

lations and analytic calculations done under the URP hypothesis

ay lead to incomplete findings and insights. They pointed out the

ecessity of further studies and consideration of other deployment

odels beyond the URP. 

Strübe et al. [33] discussed the importance of better representa-

ion of real-world deployments such as fragile hardware and mis-

ehaving software. They suggested analyzing the actual environ-

ent conditions of a deployed network, and mapping them to a

imulator. Our article proposes a deployment model that can be

seful for this purpose, i.e., a wide variety of real-life network

opologies can be represented by this model, and can be embedded

o a simulation tool. Ducrocq et al. [11] showed that the topology

an greatly affect the routing performance, and studied this phe-

omenon using geographic routing algorithms [8,26] . They showed

hat the topology can influence up to 25% of the delivery ratio and

verage route length, and up to 100% of the overall cost of trans-

issions. 

Haenggi et al. [16] presented a tutorial that showed a study in-

olving the modeling of random node placement based on, among

thers, a Poisson point process. They argued that stochastic ge-

metry and random graph theory are indispensable tools for the

f wireless networks analysis, and that such tools lead to analytic

esults on a number of concrete and important problems. For in-

tance, they applied those techniques to model and quantify inter-

erence, connectivity, outage probability, throughput, and capacity

f wireless networks deployed as Poisson point process. 

Li and Mohapatra [20] and Mohapatra [25] presented one of the

rst mathematical models towards the characterization of the en-

rgy hole problem. They considered sensor nodes distributed fol-

owing the URP law (see Section 2 ) in a circular region, divided

n concentric coronas. They studied the impact of four factors on

he network performance: node density, hierarchical deployment,

ource bit rate, and traffic compression, and they showed that the

se of hierarchical deployment and data compression could miti-
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gate the energy hole, whereas increasing the bit rate led to worse

results. 

Wu et al. [36] showed that it is possible to achieve nearly bal-

anced energy depletion by increasing the density in geometric pro-

gression from the outer to the inner coronas. Based on this fact,

they proposed a nonuniform node distribution strategy: the Q-

Model (see Section 3.2 ). The model proposed in this work encom-

passes the Q-model, among others, as a particular case. 

Chatterjee and Das [10] and Mahmud and Wu [23] proposed

multi-sink deployment to tackle the problem of the design of large

scale wireless sensor networks. The first article presented a tech-

nique for optimizing the number of clusters and their diameter

and, thus, increasing the network lifetime. They applied a graph

theoretical approach based on a random graph decomposition, and

they showed that their technique generated topologies with diam-

eters that, in most cases, approached the specified bounds. In the

second article, two different problems were studied: (i) deploying

k static sinks such that the lifetime is maximized, and (ii) deploy-

ing k mobile sinks such that the lifetime is maximized. This study

resulted in high energy savings for both cases when using multiple

sinks. 

Abo-Zahhad et al. [1] and Liu et al. [21] explored mobile sink

approaches to tackle the energy hole problem. In the first, the sink

follows a path that minimizes the total dissipated energy, while

second uses mobile sink nodes in the edge of the network to in-

crease coverage. Although these approaches are interesting, mobile

and multi-sink schemes are not feasible in all scenarios. 

In contrast from the aforementioned approaches, in this work

we present a novel stochastic deployment model for WSNs that

leads to planned but not totally controlled (i.e., nondeterminis-

tic) topologies that are able to represent a wide variety of WSNs.

This new model encompasses many other models present in the

literature, and is capable of properly addressing the energy hole

problem. We assess a wide variety of scenarios that can be de-

scribed by this new model in terms of (i) coverage, (ii) connectiv-

ity, (iii) small-world characteristics, and (iv) energy hole behavior.

We show that with a planned stochastic deployment, the gener-

ated topology improves the network performance by means of a

better average path length (shorter paths) and a higher clustering

coefficient, and reduces the energy hole problem with the addition

of only 3% of H-sensors. 

3. Topology-based characterization and modeling of WSNs 

3.1. Topological characterization: the Sink Betweenness metric 

In the WSN context, we aim to find strong relationships be-

tween topological metrics and network metrics. For instance, in

this work we investigate the relationship between energy deple-

tion and topological metrics that defines the centrality of a node

in a specific context. 

Distributed inference of topological metrics is always desir-

able for the design of topology-aware algorithms. In this context,

energy-efficient distributed inference is a challenge that requires

attention. In this work, we are interested in studying a central-

ity metric that presents nifty characteristics for WSNs. We refer

to [28,30] for an energy-efficient distributed algorithm to calculate

our proposed metric. 

3.1.1. Centrality metrics 

Consider a network whose topology is represented by the graph

G ( V , E ), where V = { v 1 , . . . , v n } is the set of n = | V | nodes, and E is

the set of edges. 

Several centrality metrics are based on graph features such as

the distance between vertices, Closeness , degree, Eccentricity , neigh-

borhood importance, Eigenvector , and Hub Score (see [22] for an ex-
mple). Another widely used concept in centrality metrics is the

raph shortest path; for example, the Shortest-path Betweenness

entrality [12] calculates the centrality of vertex i , based on the

roportion of geodesics between any pair of vertices that fall on i

with respect to the total number of geodesics in the graph). 

It is difficult to locate and count geodesics in large networks

12] , and computational resources are limited in WSNs. The most

fficient centralized algorithm for calculating the Betweenness has

unning time O (n | E| + n 2 log n ) for weighted graphs, and O ( n | E |)

or non-weighted graphs. 

The Betweenness of node v is defined as: 

 (v ) = 

n ∑ 

s =1 

n ∑ 

t=1 

σst (v ) 
σst 

, (1)

here σ st is the number of shortest paths from s to t , { s, t } ∈ V ,

nd σ st ( v ) is the number of shortest paths from s to t that pass

hrough v ∈ V , s � = v � = t and s � = t . The rationale behind the Be-

weenness metric is to indicate node centrality by means of the

umber of shortest paths from all nodes to all others that pass

hrough that node. 

In WSN scenarios, communication typically takes place between

ensor nodes and the sink node, and vice versa. In order to con-

ider this characteristic, we adopt a new centrality metric, namely

ink Betweenness (SBet), [28,32] , which considers only the short-

st paths that include the sink as one of the terminal nodes. It is

efined, for every v ∈ V , as 

Bet (v ) = 

∑ 

v ,t∈ V 
v � = t 

σts (v ) 
σts 

, (2)

here s is the sink, σ st is the number of shortest paths from t to

he sink node, and σ ts ( v ) is the number of shortest paths from t

o the sink that pass through a vertex v . In contrast to Between-

ess, the SBet metric indicates centrality by means of all shortest

aths from all nodes towards the sink node that passes through

hat node. 

For the sake of simplicity, in this work we consider that WSNs

an be represented by non-weighted graphs. In some scenarios, it

s more appropriate to use weighted graphs, and both Betweenness

nd Sink Betweenness can easily be modified to support such a

eature. 

.1.2. Evaluation models 

In the following section, we assess whether centrality metrics

re capable of capturing the energy consumption behavior in a va-

iety of WSN scenarios. Other metrics commonly used in complex

etworks theory fail to represent the energy consumption in WSNs

cenarios [31] ; thus, in this work we only study the Betweenness

nd SBet. For this, we estimate the correlation between the spent

nergy of the nodes and the centrality metrics that interest us.

e used Spearman’s rank correlation, a non-parametric statistical

easure of dependence between two variables, which is shown to

e robust, and is recommended if data are not necessarily Gaussian

7] . 

We evaluate the performance of these two centrality metrics,

onsidering a realistic wireless channel model. We refer to [39] for

ore details about the wireless channel. For this assessment, we

onsidered that nodes are deployed following the URP model. 

We also consider a simple MAC protocol that intends to allevi-

te collisions, and therefore keeps high delivery rates to the sink

ode. Observe that under intense traffic, the energy hole problem

ight be not well-characterized; this is due to a high packet loss

ate, even in nodes that are at a large distance from the sink. Thus,

odes close to the sink will not receive the lost packets, and will

ot deplete energy relaying them. Such saturated environments are

sually avoided by the network designer, and we do not consider
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Table 1 

Simulation scenarios. 

Parameter Value 

sink node (center-most or a random node) 

network size n ∈ {100, 200, 300, 400}nodes 

deployment model URP 

simulation time 30 0 0 s 

data rate 1 packet/m 

sensor field 100 × 100m 

2 

collision model additive 

routing model random tree 

app. model continuous data collection 

comm. radius 15 m 

tx power −10 dB 

sensor model Mica 2 CC 10 0 0 
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his situation. The MAC protocol we employ performs carrier sense,

xponential back-off scheme and random off-set transmissions to

lleviate collisions. 

To deliver the data, we use a random tree: flooding begins in

he sink node, and each node then stores its neighbors upon re-

eiving the setup packet. Every time a node is ready to transmit a

acket, it randomly chooses one of its neighbors along a shortest

ath to the sink. 

The application represents the usual situation in which sensor

odes periodically report information to the base station, but not

ollectively at the same time. Each node has a parameter called

ampling rate , all initialized with the same value t sr : this is the

xpected time between sensed values, to be reported by a sensor

ode. In order to avoid collisions as much as possible, each sensor

ode chooses a random value to transmit its i th value uniformly in

he time interval ((i − 1) t sr , it sr ] . Other data collection models, such

s event-driven and query-based applications [2] , are not consid-

red in this work. For those models, the results of the correlation

etween the centrality metrics and energy consumption are con-

idered only for the subgraph formed by the nodes that are used

o collect and relay data. Thus, one can expect similar results to

hose presented herein, but restricted to the subset of nodes that

re used. 

.1.3. Evaluation scenarios 

Whenever analytic results are unavailable; the Monte Carlo ap-

roach is useful for estimating quantities of interest by simulation.

uch estimation approximates the result of an integral, e.g. the ex-

ected value of a quantifier, by the average of representative ran-

om samples. The relevance of this class of procedures can be at-

ested to by computing confidence intervals and other measures

f variability. In the following simulation, we estimate the correla-

ion between the energy consumption and two centrality metrics,

amely, Betweenness and SBet. 

Table 1 presents our evaluated simulation scenarios. The Monte

arlo experiment we performed was replicated independently 30

imes, each scenario indexed by the parameters shown in Table 1 .

e empirically found this number of replications sufficient for hy-

othesis testing sample mean differences at the 95% level. 

The radio power is set to provide 15 m of communication ra-

ius under the UDG (Unit Disk Graph) model. This radius induces

raphs whose nodes typically have 11 and 49 neighbors, on aver-

ge, for 100 and 400 nodes, respectively. Thus, we assess typical to

igh density WSNs. 

We used the R package version 3.2.2 [29] for statistical analy-

is, the Omnet ++ simulator version 3.3 p 1 for discrete event simu-

ation, and the Castalia version 2.3 b 2 for WSN models. The wireless

hannel, the MAC models, and the Mica 2 CC 10 0 0 radio module
2 http://castalia.npc.nicta.com.au . 

l  

l  

s

re already available in Castalia; the routing and application mod-

ls were implemented as specified. 

.1.4. Relation between the Sbet metric and energy consumption 

We studied the following centrality metrics, borrowed from the

heory of complex networks: Betweenness [13] , (SBet, eigenvector

entrality, closeness, degree centrality, Kleinberg’s hubscore cen-

rality, and Kleinberg’s authority centrality (see [22] ). All those

etrics indicate the centrality of a node by using different ap-

roaches. Betweenness and SBet are related to shortest paths; de-

ree and eigenvector centrality account for the number of nodes’

onnections; but eigenvector centrality gives more importance to

odes that are connected to important nodes. Closeness indicates

hat as a node’s centrality increases, its distance from all other

odes decreases. Kleinberg’s hub score and authority centralities

re equal for undirected networks, and consider a node as an au-

hority if it is linked to hubs and vice-versa, that is, a node is a hub

f it is linked to authorities. These metrics consider the importance

f the connections, not only the number of connections. 

We investigated how those metrics relate to the distribution of

nergy spent by nodes in all scenarios derived from Table 1 . Even

hough all the aforementioned metrics have been investigated, only

etweenness and SBet present good results, as they capture the

nergy consumption behavior of the relay task when nodes use

hortest paths to communicate to the sink. We evaluated these

etrics by using the Spearman correlation between all aforemen-

ioned metrics and the energy consumed in the node. In the fol-

owing, we present the results of our simulations, omitting the val-

es of all other metrics, which did not appear useful in our studies.

Fig. 1 shows a typical panorama of the distribution of Between-

ess and SBet. The gray level of a node is proportional to its Be-

weenness or SBet. Points become darker with greater Between-

ess or SBet. The sink node is represented by a triangle. Figs. 1 (a)

nd 1 (b) show the Betweenness and SBet when the sink node

s positioned at the center of the network. Observe that both

etweenness and SBet identify the nodes that concentrate more

outes toward the sink node. Notice, also, that SBet is more se-

ective, and presents high values only in nodes that participate in

ore paths to the sink. Betweenness presents more nodes with

igh values far from the sink, once it considers paths among all

odes. Those figures offer an indication of why SBet is more likely

o be related to energy depletion than Betweenness. When the sink

s located far from the center, Betweenness fails to represent the

odes that participate along more paths to the sink, and lacks the

bility to characterize the energy hole problem. 

Fig. 2 shows the correlograms for 100 and 400 nodes, with

he sink both centered and randomly placed. The pies depicted

bove the diagonal illustrate the correlation between the spent en-

rgy, Betweenness, and SBet, whereas the figures below the di-

gonal depict the scatterplots between those metrics. All correlo-

rams correspond to a realistic channel with collision. Notice that

Bet presents higher correlation values than Betweenness. In those

ases, the Betweenness fails to represent the energy consumption

ue to the low correlation. As we can observe, the SBet’s corre-

ations with the spent energy are 0.9, 0.84, 0.9 and 0.83 for 100

odes with a centrally located sink, 100 nodes with a randomly

laced sink, 400 nodes withe sink located in the center and 400

odes with the sink randomly placed, respectively. Observe also

hat the Betweenness’ correlations with the spent energy are only

.52, 0.47, 0.34 and 0.31 for the same scenarios. These results in-

icate that the SBet metric is much more appropriate than the Be-

weenness for capturing the energy consumption related to the re-

ay task. This is also reflected in the scatterplots: SBet relates more

inearly to the spent energy than Betweenness, in every considered

cenario. 

http://castalia.npc.nicta.com.au
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(a) Betweenness (b) SBet (c) Betweenness (d) SBet

Fig. 1. Examples of Betweenness and SBet maps when sink is in the center of the sensor field (first line) and at the left-bottom corner (second line). The sink is represented 

by a triangle. 

Spent Energy

0.52 0.9

Betweenness

0.57

Sink
Betweenness

(a) 100 nodes (C)

Spent Energy

0.47 0.84

Betweenness

0.48

Sink
Betweenness

(b) 100 nodes (R)

Spent Energy

0.34 0.9

Betweenness

0.41

Sink
Betweenness

(c) 400 nodes (C)

Spent Energy

0.27 0.83

Betweenness

0.31

Sink
Betweenness

(d) 400 nodes (R)

Fig. 2. Correlograms for tree routing, 100 and 400 nodes, centered (C) and randomly placed (R) sink. 
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In the following sections we will formally define the M 

2 P 2 

topology model proposed herein. For the sake of completeness, we

will present an introduction to the stochastic point process the-

ory, which is necessary to fully understand the proposed model.

We also present a theoretical analysis of the energy consumption

of this model. 

3.2. Topology model: the M 

2 P 2 process 

3.2.1. Stochastic point process 

A stochastic spatial point process χ defined on a space W ,

equipped with a σ -algebra B and a probability measure β , is a fi-

nite subset of W that describes the location of a number of points
n a region of the space, for all { ξ } ∈ W , ξ ∈ B and β({ ξ} ) ∈ B
6] . The state space of χ is the set of all finite point configu-

ations � = ∪ 

∞ 

i =0 
{ x ⊆ W : n (x ) = i } , where n ( x ) denotes the num-

er of points in x ; for i = 0 we have the empty point configura-

ion x = ∅ . We equip � with the smallest σ -algebra making the

appings n B (x ) = n (x ∩ B ) measurable for all B ∈ B. Let ν denote

 Poisson point process on W with intensity measure λβ , where

> 0 is a parameter. In other words, if χ follows ν , then n ( χ )

s Poisson distributed with mean λ, and conditionally on n (χ ) = i,

he i points in χ are independent and each point has distribution

. Specifically, consider a circular space W 

c 
r s 

, where r s , c ∈ R 

+ is the

adius of the sensor field, and its center, respectively, B as the Borel
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ets, and λ as the uniform distribution, in which case ν is a stan-

ard Poisson Process. 

If the number of points n is the outcome of N , a random vari-

ble following the Poisson distribution with parameter (mean) λ >

, i.e., Pr (N = k ) = e −λλk /k ! for every k ∈ N 0 and N(ω) = n, ω ∈ �

s an arbitrary event, i.e., points are placed according to a binomial

oint process on W , we then have a Poisson point process with

ntensity λ on W . This distribution process is regarded as one of

he basic tools in the theory and practice of point process, since it

escribes complete randomness. 

Several properties stem from the aforementioned constructive

efinition provided for Poisson point processes, some of them be-

ng equivalent definitions as, for instance, the following two: 

PPP1 The number of points in every compact set A ⊂ W , de-

noted by C ( A ), follows a Poisson distribution with mean

λ�( A ), where λ > 0 is called “intensity” and �( A ) is the area

of A . 

PPP2 If A 1 , A 2 , . . . , A m 

are disjoint subsets of W , then

C (A 1 ) , C (A 2 ) , . . . , C (A m 

) are collectively independent random

variables. 

An important generalization is obtained by varying the inten-

ity λ suitably on W . In order to do so, we define the bounded

ositive function λ : W → R + , called “intensity function”, and re-

lace property PPP1 above by the following: 

PPP1’ The number of points in every compact set A ⊂ W , de-

noted by C ( A ), follows a Poisson distribution with mean β =∫ 
A λ(u ) du . 

Whenever λ is not a constant, we have an inhomogeneous Pois-

on point process. 

In the WSN context, such an inhomogeneous process can be

sed to specify some areas with a greater concentration of points

sensors) by using the intensity parameter in an appropriate man-

er. 

Thus, by construction, the intensity function will tend to con-

entrate more points in regions near both the sink and the H-

ensors, with fewer points in other regions. 

.2.2. The M 

2 P 2 model 

Let us introduce the Multilevel Marked Point Process (M 

2 P 2 ).

irst we place m H-sensors on W , and we then deploy the re-

aining n − m sensors “close” to them. We denote the coordinates

f the m H-sensors by h = { (hx 1 , hy 1 ) , . . . , (hx m 

, hy m 

) } (how these

ensors are placed will be described later). 

In this work, we adopt two different strategies for deploying

he L-sensor nodes considering the H-sensors. The first strategy is

he Q-model proposed by Wu et al. [36] to deal with the energy

ole problem in homogeneous WSNs. We adapted this model to

ccomplish the heterogeneous WSNs needs, and consider the in-

ensity function λ as: 

(i ) = 

1 

q i 
, (3) 

here q ≥ 1, and i = 1 , 2 , 3 , . . . is the corona index, i.e., the dis-

ance, in hops, to the sink node. This model concentrates more and

ore nodes close to the H-sensors as q increases, following a geo-

etric progression with common ratio q , i.e., the expected number

f nodes N i in the corona C i is q = N i / N i +1 . 

The second model, namely the P-model, considers the following

ntensity function λ: 

(x, y ) = 

{
a, if d((x, y ) , (hx i , hy i )) ≤ r c , 1 ≤ i ≤ m, 

1 , otherwise . 
(4) 

here a ≥ 1 is the attractiveness parameter, d is any distance mea-

ure, and r c is the communication radius of the L-sensors. In the
emainder of this work we employ the Euclidean distance, but any

uitable distance measure may be used to enhance realism. 

Notice that a stochastic point process defined by an intensity

unction λ, as the one in Equation (4) , has an overall mean inten-

ity given by ∫ W 

λ. If a > 1, then it is more likely to have points

round the m coordinates where there is an H-sensor; if A 1 be-

ongs to the area of influence of an H-sensor and A 2 does not, but

(A 1 ) = �(A 2 ) , there will be on average a more sensors in the for-

er than in the latter subset. As defined, two or more H-sensors

hat are arbitrarily close will behave as a single H-sensor for the

eployment of L-sensors. 

We have described two processes for deploying the L-sensors.

e denote such processes by �(n − m, v , h ) , where v indexes the

odel: q for the Q-model and a for the P-model. 

In heterogeneous WSNs, H-sensors are useful for providing

ong-range shortcuts and diminishing the number of hops re-

uired to reach the sink node. They have a high-powerful radio

hat is able to communicate in long-range distances, and a high-

apacity battery that increases their lifetime. These features make

he H-sensors more expensive than the other nodes. Ideally, the

-sensors would be deployed in such a way that the number of

-sensors in close proximity to one another is diminished, thus

ecreasing the total amount of H-sensors required for creating the

ppropriate shortcuts. 

The SSI (Simple Sequential Inhibition) stochastic point process

5] is a convenient model for the repulsive deployment of sensors. 

his process is defined on a circle W by the maximum number of

 points and an inhibition distance d . The first of the m points is

laced in W , obeying a binomial process. At each subsequent itera-

ion, a new point is placed in W , and it is accepted only if all other

revious points lie further than d ; otherwise it is rejected. The pro-

edure stops either when the m points have been placed, or when

 maximum number of iterations has been reached. If d > � / m 

1/2 ,

here � is the side of the square circumscribed inside the circu-

ar sensor field, it will be impossible to place all the points in W .

maller inhibition distances do not guarantee that there will be all

he n points, unless d is negligible. This is the process that places

t most m non-overlapping disks of radii d /2 on W . In some richer

epulsive point processes there is no strict inhibition, such as the

trauss process [5] ; the SSI will suffice for our purposes, because

e only want to avoid the overlap of the regions of influence of

he H-sensors. It will be denoted by H ( m , 2 r ), for hardcore . 

We now are ready to define the Multilevel Marked Point Pro-

ess M 

2 P 2 . 

efinition 1. (M 

2 P 2 ( m, n, a, r c , r i ) on W ) . Consider a number m ≥
 of H-sensors over a total of n > m sensors, the intensity v of L-

ensors on a circle or radius r c > 0 centered at each H-sensor ( r c is

he communication radius among L-sensors) and inhibition radius

 i > 0 among H-sensors. Thus, M 

2 P 2 is a compounded process of m

amples of H ( m , 2 r i ) (the H-sensors) and n − m samples of �(n −
, v , h ) (the L-sensors). 

Sampling from this process can be achieved in two steps. First,

onsider a sample from an H ( m, r i ) process with exactly m points:

he coordinates of the m H-sensors. Second, return the outcome of

n inhomogeneous binomial point process with intensity function

, such as those defined in Equations (3) , and (4) , using as h the m

oordinates obtained in the first step, and take a sample of n − m

oints by using �(n − m, v , h ) . 

A sample from the M 

2 P 2 process is a set of marked points.

he connectivity radii among L- and H-sensors, r c and r ch respec-

ively, induce a network topology. Our first approach for tackling

he problem of modeling WSNs is the C model presented in [14] .

he M 

2 P 2 is far more general than the C model, and encompasses

eterogeneous networks. 
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The M 

2 P 2 process defined herein is a general model capable

of generating a wide variety of WSN topologies, from random to

planned stochastic node deployment, and from homogeneous to

heterogeneous networks. This model can be implemented in net-

work simulation tools to take advantage of the M 

2 P 2 expressivity

for evaluating protocols under different topologies. 

3.2.3. Energy consumption analysis of inner models 

Considering that both Q- and P-models represent inhomoge-

neous Poisson stochastic processes, we are able to analytically eval-

uate their energy consumption behavior by estimating the number

of nodes expected to be deployed in each corona. If we consider

the application as the one described in Section 3.1.2 , in which sen-

sors report their sensed data periodically to the base station, we

are able to estimate the total number of messages transmitted by

each corona. Consequently, we are also able to estimate the aver-

age number of messages transmitted by each sensor. For the sake

of simplicity, we show only the homogeneous scenario, but this

analysis can be easily extended to the heterogeneous scenario. 

Following the aforementioned property PPP1’ of Poisson Pro-

cesses, the expected number of nodes in each corona, E (n i ) is ex-

pressed by 

E (N i ) ∝ 

∫ 
�(C i ) 

λ(r) dr, 

where �( Ci ) is the area of the i th corona, and r is the distance to

the sink node. 

For instance, the URP model can be represented by a Poisson

point process with λ = 1 . Thus, the expected number of nodes in

each corona is 

E URP (N i ) = N 

∫ 
�(C i ) 

dr ∫ 
W 

dr 
, (5)

where N is the total number of nodes, and W is the sensing area.

Observe that for this simple case, the expected number of nodes is

the ratio between the area of the corona to the total area. 

For the P-model, we have a similar situation, but we consider

two different regions. The first corona has λ = a and all others

have λ = 1 . Thus, the expected number of nodes per corona is 

E P (N i ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

N 

∫ 
�(C i ) 

adr ∫ 
W 

dr 
, if i = 1 

N 

∫ 
�(C i ) 

dr ∫ 
W 

dr 
, otherwise. 

(6)

Considering the Q-model, we have 

E Q (N i +1 ) ≡
N i 

q 
, (7)

with 

E Q (N 1 ) = 

N 

1 + 

∑ | C| 
i =2 

q −1 
, (8)

where | C | is the total number of coronas. 

Consider, for instance, 10 0 0 sensors with communication radius

r c = 50 m deployed on a circular field with radius R = 500 m. In

this scenario, the area of the coronas are represented by the cir-

cular sectors formed by each corona, E (N i ) is proportional to the

volume of the cylinder sector formed by the area of the corona,

and height is defined by the intensity function λ. In our examples,

the intensity function λ is either constant, as in the URP model,

or constant in each corona, but this method can be applied to any

function λ. To illustrate the method, consider that each node trans-

mits γ own messages and the nodes of corona C i must transmit

the messages from the nodes of corona C i +1 , and so on. Thus, the

expected number of messages transmitted by each node is 

E (M) = γ
(

1 + 

N i +1 

N 

)
. (9)
i 
We used Equations (5), (6), (7) and (9) with the parameters of

he aforementioned network, and used γ = 10 to produce the re-

ults presented in Fig. 3 . As expected, the Q-model outperforms

he P-model and URP regarding energy consumption. Observe that

his situation represents the best case of the energy consumed per

ode to perform data transmission, while in this analysis we do

ot consider retransmissions whatsoever, and we assume that the

otal number of messages originated in corona N i +1 will be equally

istributed with the nodes of corona N i . Notice that in the ideal

cenario, only the Q-model equally divides the relay task among

he nodes in the same corona. In the following sections we ana-

yze, by means of simulation, the average case for many different

cenarios, and show that the P-model may be preferable in some

ituations. 

. Evaluation of the M 

2 P 

2 model 

In this work, we evaluate the M 

2 P 2 model to assess some prop-

rties of the deployments presented in Section 3.2 , namely: (i) cov-

rage, (ii) energy hole behavior, and (iii) clustering coefficient and

verage path length. 

We consider homogeneous and heterogeneous WSNs with sen-

ors with the same sensing capability ( r s ), and two levels of trans-

ission ( r c and r ch ) ranges, which are, for the sake of simplic-

ty, perfect circles. H-sensors have higher data throughput than

he L-sensors, but a comparable sensing capability. H-sensors have

 radio that operates in two different channels; they are able to

chieve long-distance communication only with other H-sensors,

nd they use short-distance communication in order to send data

o and receive data from L-sensors. 

Coverage plays an important role in the design of WSNs. It indi-

ates how the network covers the sensor field, and it has a strong

nfluence on the quality of the information reported by the WSN

14] . 

A simple way of estimating the coverage of a topology is to cal-

ulate the area of the intersection of the circles centered at each

ensor within the sensor field. 

We only consider nodes inside the connected component to

hich the sink belongs, since only their data will be reported. No

ata fusion is considered in the following analysis. 

Small-world networks share characteristics of both regular and

andom graphs, presenting high values of clustering coefficients

similar to regular networks), and small values of the average

hortest path length (similar to random networks) [17,22,27] . 

High clustering coefficients make the topology more fault-

olerant, due to the high density of cycles of order three in the

etwork. Thus, if a node fails, is a greater number of neighbors

hat can recover from the failure [9] . Networks with high clustering

oefficients typically increase the probability of routing loops. Ran-

om topologies, typically presented in WSNs, are prone to routing

oops; hence, the overlying routing protocol should address this is-

ue. 

Small values of the average shortest paths indicate that the

hortcuts provided by the H-sensors tend to reduce latency in data

ommunication [15] . Thus, as stated by Helmy [17] , small-world

etworks present desirable characteristics for WSNs. 

We used the SBet metric to evaluate the energy hole behav-

or of the topologies generated by our deployment model, as we

ave showed that it is highly correlated to energy consumption

see Section 3.1.4 ). 

Table 2 presents the simulation scenarios we evaluated. Each

cenario was replicated independently 30 times, for the aforemen-

ioned reasons. Observe that the parameters are quite different

rom those in Table 1 , because now we are interested in large scale

etworks. We simulate those large networks with and without H-

ensors, to stress the benefits of using a heterogeneous approach
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Fig. 3. Expected number of nodes per corona/Expected number of messages transmitted per node with respect to three different models. 

Table 2 

Simulation scenarios. 

Parameter Value 

sink node 1 (center-most node) 

network size {10 0 0, 20 0 0, 30 0 0} nodes 

L-sensors’ comm. radius 50 m 

H-sensors’ comm. radius 300 m 

number of H-sensors {0, 20, 30, 40} nodes 

Q-model deployment parameter ( q ) {1, 1 .5, 2, 2.5, 3, 4, 5} 

P-model deployment parameter ( a ) {1, 3, 5, 7, 10, 15, 30} 

sensing radius 30 m 

sensor field circular with radius of 500 m 
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3 This is an arbitrary choice, any other coverage guarantee can be chosen here. 
or such large networks. It is worth mentioning that some deploy-

ent model parameters ( q and a ) listed in that table were eval-

ated only either in homogeneous or heterogeneous networks in

rder to find the most suitable parameters for each scenario. We

lso simulate the P-model with a = 1 to produce a URP deploy-

ent used as baseline in our evaluation. In the following, we used

 Monte Carlo experiment to estimate the mean value and the con-

dence intervals of (i) coverage, (ii) SBet metric, (iii) clustering co-

fficient, and (iv) average path length, for a wide variety of sce-

arios of homogeneous and heterogeneous networks and different

opology models, namely, URP, Q-model and P-model. 

Except for the homogeneous networks, H-sensors are placed

y a repulsive deployment with inhibition radius between r c and

 s / m 

1/2 , where r c is the L-sensor communication radius, and r s is

he sensor field radius. Additional details about the inhibition ra-

ius are provided in Section 4.4 . The sink node is the most central

-sensor of the sensor field. 

We use R language and programming environment version 3.3.0

29] for node deployment and estimation of topological quantities.

he following sections discuss the simulation results. 

.1. Coverage 

Fig. 4 shows the coverage provide respectively by the Q- and

-models for homogeneous networks, with respect to the num-

er of nodes. The curves depict the behavior of each parameter

f the deployment model. Usually, higher coverage means better

eployment. However, there is a trade-off between the coverage

nd the energy balance by distributing more nodes in the coro-

as near the sink node. Thus, we conduct this first experiment to

uide the choice of the parameter for each model. We observe that
n Fig. 4 (a), the best coverage for the Q-model is achieved when

 = 1 . However, as we will see in Section 4.2 , this is the value that

resents the most uneven energy balance (highest SBet). When

onsidering the homogeneous case, q = 1 is the only value that

uarantees at least 85% coverage. 3 This occurs because the network

iameter (highest distance to the sink) is high. As the Q-model ag-

ressively concentrates more nodes near the coronas close to the

ink, we expect only a few sensor nodes in the farthest coronas.

e repeat this analysis for the other model, and based on Fig. 4 (b),

e chose a = 5 for the P-model. It is worth mentioning that the P-

odel preserves high coverage, above 90% for all situations. This

s because this model only changes the first corona (nearest to the

ink node), and preserves the node distribution for all other coro-

as. Therefore, with 10 0 0 nodes, the P-model shows similar cover-

ge as the Q-model achieves with 20 0 0 nodes. 

Fig. 5 shows the comparison between the aforementioned two

odels, along with the URP model, for both homogeneous and het-

rogeneous scenarios. The URP model is used as a baseline. We

ee in Fig. 5 (a) that the P- and URP models present similar results.

his means that considering the parameters we chose for the two

odels, the P-model ensures almost the same coverage results as

he URP model, while the Q-model requires more nodes to achieve

imilar results. 

In Fig. 5 (b) we show the results for heterogeneous networks,

ith 20, 30 and 40 H-sensors deployed as described in Section 3.2 .

e conduct a similar evaluation as the one described for homoge-

eous networks, to choose the most suitable parameter values. For

he P-model we chose a = 3 , for Q-model the value was q = 1 . 5 .

hen H-sensors are used, we observe that the P-model presents

lightly higher coverage only when the number of H-sensors is

mall, for instance, 20 and 30. This occurs because the P-model

ends to concentrate more nodes in the first corona around the

-sensors. When there are more H-sensors, more nodes will be

laced around them, and fewer nodes will be left to cover the rest

f the sensor area. The Q-model scales better than the P-model

ith the number of H-sensors, since the transition is smoother and

he network diameter decreases. 

The main goal of these deployment models is to alleviate the

nergy hole problem without compromising the coverage. Thus,

n the next section we present the energy balancing properties of

ach model to guide us in the choice of the most suitable model. 
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Fig. 4. Coverage for the homogeneous scenarios as a function of the number of nodes for each deployment model. 

Fig. 5. Coverage model comparison for the homogeneous and heterogeneous scenarios with respect to the number nodes. 
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4.2. Energy balancing 

The lifetime of an individual sensor is defined by the total time

it can receive and transmit data until it runs out of energy. The

entire network lifetime is a more sophisticated subject, and it is

beyond the scope of this work; we refer to [4] for further details.

The transmission and reception of data dominate the energy con-

sumption of each sensor and, thus, we disregard any other energy

spent in tasks as sensing, processing and sensor idleness [35] . In

these simulations, we are trying to evaluate the extent to which

the relay task on each assessed topology is fairly distributed. For

this analysis, we used the results presented in Section 3.1 , as we
c  
oncluded that SBet is able to characterize the relay task, and can

herefore characterize the energy depletion of this task. 

Fig. 6 presents the SBet metric for the Q- and P-models for

omogeneous networks as a function of the distance to the sink

ode, in hops. The curves show the behavior of each parameter of

he deployment model. Along with the coverage results, we also

se the results shown in Fig. 6 to guide the choice of parameter

or each deployment model. Fig. 6 (a) shows the results for the Q-

odel: when q = 5 , SBet reaches the smallest values. We also no-

ice that this value leads to the lowest coverage. Therefore, we use

he same criteria that was used to evaluate the coverage to choose

 = 1 , because although it leads to the highest SBet, it meets our

overage requirements. In Fig. 6 (b), we observe that the P-model is
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Fig. 6. SBet for the homogeneous scenarios as a function of the number of the distance to the sink. 
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W  
apable of alleviating the energy hole problem in the first corona

y increasing parameter a . When a = 15 , the average SBet value

f the first corona is three times lower than the second corona.

his occurs because, because all other coronas are unaffected, even

hough the expected number of nodes in the first corona increases.

n our scenarios, the total number of nodes is enough to cover

he sensor field, even with the most attractive parameter value.

his may change in severely sparse networks, affecting the cover-

ge. We adopt a = 5 as the most suitable value, because it meets

he coverage requirements while decreasing the SBet of the first

orona to low values. Observe that the SBet values of the Q-model

re much lower than when the P-model is used. The implications

f this fact are the Q-model is better indicated to alleviate the en-

rgy hole in homogeneous networks, while preserving coverage. It

s worth noticing that with q = 1 , we expect the same number of

odes per corona. 

Fig. 7 shows the SBet values for nodes in the homogeneous and

eterogeneous scenarios as a function of the distance to the sink

ode. We now want to compare the evaluated models. Similarly

o the coverage evaluation, we conducted an assessment to choose

he parameter values. Fig. 7 (a) shows the SBet as a function of the

istance to the sink node for 10 0 0, 20 0 0 and 30 0 0 nodes and the

omogeneous scenario. Observe that, as expected, the URP model

resents the highest SBet, and the use of the Q- and P-models de-

reases it. We observe that the Q-model presents the best results

mong the models herein evaluated, as it presents the lowest Sbet

alues. The P-model is only capable of decreasing the SBet of the

rst corona; the remaining coronas are similar to the URP model.

bserve that the pattern showed in Fig. 7 (a) resembles Fig. 3 (b).

his similarity means that both SBet and the analytic approach

resented in Section 3.2.3 , are able to describe energy consump-

ion in these networks, besides, we observe that the simulations

onfirm the analytic approach. 

Fig. 7 (b) shows the SBet in heterogeneous networks with 20, 30,

nd 40 H-sensors as functions of the distance to the sink. Observe

hat an increase in the number of H-sensors leads to just a slight

ecrease of the SBet, and that an increase in the total number of

odes does not considerably change the SBet values. 
t  
Notice that the adoption of the H-sensor approach leads to a

ubstantial decrease of the SBet, when compared to the homoge-

eous scenario. For instance, twenty H-sensors lead to SBet values

bout ten times smaller than in the homogeneous case. Among all

eployment models, the P-model is the one that leads to the high-

st decrease of the SBet for heterogeneous networks, closely fol-

owed by the Q-model. As the mere presence of H-sensors helps

lleviate the energy hole problem, the deployment model is re-

ponsible for fine tuning. We observe that with forty H-sensors,

ven the URP model presents SBet values close to the others. Since

he main goal is to use the lowest possible number of H-sensors,

he adoption of a heterogeneous network with twenty H-sensors

nd the P-model decreases the SBet fifty times when compared to

omogeneous networks with the URP model, and four times when

ompared to heterogeneous networks with the URP model. 

.3. Clustering coefficient and average path length 

Fig. 8 shows the clustering coefficient as a function of the num-

er of nodes for homogeneous and heterogeneous networks with

he same aforementioned parameters. Fig. 8 (a) shows the homo-

eneous case. Observe that the P-model leads to the highest clus-

ering coefficient. We observe a similar behavior when a heteroge-

eous network is adopted, as shown in Fig. 8 (b). Overall, the clus-

er coefficient of heterogeneous networks is slightly higher than in

omogeneous networks. The clustering coefficient is only slightly

ffected by the presence of H-sensors. These results show that the

-model is most likely to favor fault-tolerance strategies. 

Fig. 9 shows the average path length for both homogeneous

nd heterogeneous networks as a function of the number of nodes,

hen the two deployment models and the URP are used with the

ame aforementioned parameter values. Although the adoption of

eterogeneous network design does not offer a high impact on the

ehavior of the cluster coefficient, the average path length of the

eterogeneous networks is consistently lower than in the homoge-

eous case. We can explain this behavior by observing that het-

rogeneous networks add shortcuts that decrease the path lengths.

e also observe that increasing the number of H-sensors decreases

he average path length. The Q-model leads to the lowest average
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Fig. 7. SBet model comparison for the homogeneous and heterogeneous scenarios as a function of the distance to the sink. 

Fig. 8. Clustering coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

path length in the homogeneous case, as well as in the heteroge-

neous case. 

4.4. A guide to a stochastic planned deployment 

This section discusses the parameters for the M 

2 P 2 process that

were used in our simulation, and how such parameters should be

chosen for the description of real world situations. 

The M 

2 P 2 ( m, n, a, r c , r ch , r i ) process on W has the following

parameters: 

• The area W , where the process takes place; the user should de-

scribe the actual geometry of interest. Only connected windows

make sense. 
• The distance measure among sensors. For the sake of simplicity,

we used the UDG model, but other models could be used. The

communication radii should be carefully specified as a function

of the communication channel; this distance specifies r c and r ch .

More general distances can be used, such as those that take ob-

stacles into account. 

• Number ( n ) and types of sensors required for precise, lasting

and economic data acquisition and delivery; the most expen-

sive m H-sensors, aim to improve network performance, while

the n − m L-sensors are primarily devoted to data collection and

first-level data relay. 

• The inhibition parameter r i specifies the minimum distance at

which H-sensors are allowed to lie. Overlapping H-sensors is
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Fig. 9. Average path length. 
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redundant and wastes resources, so the repulsive placement we

proposed enhances network performance in an economic man-

ner. 

• The intensity parameter, for instance s, a , and i , which describes

the expected proportion of L-sensors around an H-sensor; out-

side this area. 

As previously mentioned, the inhibition radius r i grants that the

reas of influence of H-sensors do not overlap and, at the same

ime, allows the placement of all the m H-sensors on W . The first

ondition, which grants that the areas of influence do not overlap,

equires r i ≥ r ch , while the last condition, which assures the place-

ent of all H-sensors, imposes 2 r i < � / m 

1/2 , where � is the side of

he square circumscribed inside of the sensor field. The most re-

ulsive process, namely the one with 2 r i ≈ � / m 

1/2 , yields H-sensors

eployed in an almost regular grid. Observe that the knowledge of

he exact location of neither H- nor L-sensors is required for the

eployment. The stochastic point process we provide is a descrip-

ion of a physical inexpensive procedure for node deployment, not

n a priori specification. 

The intensity parameter s, a or i specifies the expected number

f L-sensors around each H-sensor (assuming non-overlapping ar-

as of influence); it can be chosen, among other criteria, using our

imulation results. 

. Final remarks 

We proposed a novel modeling solution capable of represent-

ng a wide variety of scenarios, from totally random to planned

tochastic node deployment, in heterogeneous sensor networks.

his model can represent WSNs with characteristics of small-world

etworks, and can address the energy hole problem. 

We showed that by using only about 2% of H-sensors (20 out

f 10 0 0) and deploying nodes by using the P- and Q-models to

istribute the L-sensors around the H-sensors deployed with a re-

ulsive model, we observe important characteristics of the net-

ork topology, such as low average path length and high cluster-

ng coefficient. Observing the results for coverage, SBet and small

orld parameters for the two models evaluated herein, we no-

ice that the Q-model is the most suitable for addressing the en-
rgy hole in homogeneous networks, while the P-model achieves

he highest coverage and overcomes all other models for heteroge-

eous networks. The P-model acts only in the first corona, while

he Q-model acts in all coronas. Regarding the small world proper-

ies, the P-model leads to higher cluster coefficient, while Q-model

eads to lower average path length, characteristics that are desir-

ble for WSNs. 

Moreover, we showed that the SBet is a suitable metric for char-

cterizing the relay task of a node. This metric’s ability, in contrast

o the relative insensitivity of the classical Betweenness, suggests

ther possibilities. SBet can be used in a wide variety of applica-

ions, both in the design and operation of WSNs. For instance, the

esigner can assess the best deployment strategy in order to cre-

te graphs with a more appropriate SBet distribution. Such an as-

essment should improve the understanding and management of

he network lifetime, since the energy consumption becomes more

venly distributed among the nodes. Studies in that direction re-

uire only spatial point process generators (in order to model the

eployment models), and tools for graph analysis; therefore there

s no need for either complex discrete event simulators or network

odels. Both are provided by R , a free, multiplatform software en-

ironment for statistical computing and graphics, which exhibits

xcellent numerical properties [3] . 

We also envision the following research lines: the quantifica-

ion of the relationship between the metrics used herein, such as

he clustering coefficient, the average path length, and the SBet

ith the fault-tolerance properties, latency and network lifetime,

espectively; the introduction of fault-tolerance schemes based

n the proposed model and metric; the use of topology control

chemes, based on the SBet, to diminish the possibility of inter-

erence on nodes that were attractively deployed around the H-

ensors and the sink, and the use of SBet to improve the routing

erformance in WSNs. 
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