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a b s t r a c t 

OpenFlow-based networks simplify network management and improve network programmability by cen- 

tralized network control. Existing OpenFlow networks employ packet-granularity mismatched packet 

buffer management to reduce the switch-controller communication overhead. However, the impact of 

packet buffer management granularity on network performance has not been well investigated yet. In this 

paper, we propose a novel design of flow-granularity mismatched packet buffer management model for 

OpenFlow networks, which outperforms the existing packet-granularity buffer management approaches 

with less communication overhead between switches and controllers. By designing the flow action pre- 

processing mechanism, we prevent per-flow packet disorder with less packet drop ratio. We evaluate 

the performance of the proposed flow-granularity mismatched packet buffer management scheme by 

building prototypes on both software and hardware switches. Experimental results reveal that our pro- 

posed method can effectively reduce the switches-controllers communication overhead, as well as pre- 

serve packet order for multi-flow OpenFlow networks. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Software Defined Networking (SDN) is a transforming network-

ng design that simplifies network management and improves pro-

rammability of network. It separates the control plane from the

ata plane by moving the network intelligence to the logically cen-

ralized controller. Thus, SDN provides new abilities to enhance the

ow scheduling, automatic network configuration, load balancing

nd network virtualization. It has been widely studied [1–3] and

eployed in many scenarios such as datacenter networks [4,5] .

penFlow is the standard southbound interface in SDN, which real-

zes packet forwarding based on network flows [6] . As a dumb and

nintelligent network device, the OpenFlow switch invokes all flow

ules from the intelligent controller. Although SDN brings greater

etwork resource utilization and quality of service guarantees, the

ogically centralized controller becomes the bottleneck of the net-

ork performance. 

In order to avoid the centralized controller become the per-

ormance bottleneck of the network, many works have been con-

ucted to improve the capability and scalability of OpenFlow con-

rollers [2,7–11] . Along with their effort s, buffering packet s in

penFlow switches is becoming a promising solution to reduce
∗ Corresponding author. 

E-mail address: nudtbill@nudt.edu.cn (B. Han). 
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he communication overhead between switches and controllers.

s pointed out by OpenFlow Specification 1.4 [6] , when there is

 buffer in the OpenFlow switch, instead of sending the whole

acket to the controller to request for a forwarding rule, it only

eeds to send the digest of packet with the buffer address where

he packet stores. Thus, the buffer reduces the size of Packet-

n messages, thereby decreasing the communication overhead in

penFlow channel. 

However, as far as we know, current OpenFlow switches em-

loy packet-granularity model for the mismatched packet buffer

esign [12,13] . Under this model, due to the communication de-

ay between controllers and switches during a flow setup, a large

umber of packets belonged to a same flow will be sent to the

ontroller as Packet-in messages, which will significantly degrade

he network performance. In this paper, we consider a more ef-

cient and coarse-grained mismatched packet buffer management

esign for OpenFlow networks. We focus on the problem of re-

ucing the communication overhead between OpenFlow switches

nd controllers, either for UDP or TCP traffic, thus to improve

he scalability of the centralized OpenFlow controllers. Connec-

ionless UDP flows may induce burst Packet-in messages to con-

rollers, which has been pointed out in [14] . On the other hand,

or connection-oriented TCP flows, as forwarding rules have been

nstalled in the flow table during the three-way handshake pro-

ess, TCP traffic will not induce burst Packet-in messages to con-

rollers. However, in networks with large dynamic traffic such as

http://dx.doi.org/10.1016/j.comnet.2016.09.016
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Table 1 

Notations used in this paper. 

n Number of switches along the forwarding path 

B w Bandwidth of flow 

M Max length(in Bytes) of a packet in datacenter network 

M pi Length(in Bytes) of a Packet-in message with Buffer_id and packet 

digest 

t flow Duration time of flow 

d A → S 1 Packet transmission delay from A to S1 

d S 1 → C Delay for generating Packet-in from S1 to C 

d C Delay for processing packet in controller 

d C → Si Delay for rule install in Si from C,i = 2,3,...,n 

d S 1 → Si Packet transmission delay from S1 to Si ,i = 2,3,...,n 

D 1 d S1 → C + d C + d C→ S1 
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datacenters, the rules in switches for already built TCP connections

may be replaced frequently, which will lead to significant flow ta-

ble look-up miss for a large number of TCP packets [15] . Therefore,

connection-oriented TCP flows may also generate extra workloads

from OpenFlow switches to controllers, which is similar as UDP.

We will discuss the details of the packet-granularity buffer model

in Section 2.2 . 

Besides, in order to prevent generating more Packet-in messages

during the flow setup process, current OpenFlow switches installs

flow rules first and then releases the mismatched packets in the

buffer, which leads to per-flow packet disordering. When arriving

at receiver, those out-of-order packets have to be reordered before

they are sent to the application layer, which brings extra overhead

for transmission. Especially for TCP flows, packet disordering would

significantly decrease the performance of communication [16] . In

this paper, to further reduce the transmission workload in Open-

Flow channel and to achieve order-preserving transmission during

flow setup, we propose an efficient flow-granularity mismatched

packet buffer model with packet order-preserving design, named

FPB, which is an enhancement to the OpenFlow control plane. In

FPB, we buffer the mismatched packets in flow-granularity while

only the first one of them is sent to the OpenFlow controller. By

designing the flow action pre-processing mechanism, we prevent

per-flow packet disorder with less packet drop ratio. We validate

the efficiency of the proposed model by building prototypes on a

software switch OFSoftSwtich [12] and a hardware switch based on

NetMagic platform [17] , which provide a potential reference design

for the future OpenFlow networks. 

The contributions of this paper can be summarized as follows: 

• We propose a novel design of flow-granularity mismatched

packet buffer management model for Openflow-based net-

works, which outperforms the existing packet-granularity

buffer management approaches with less communication over-

head between switches and controllers. 

• By designing the mechanism of flow action pre-processing, we

prevent per-flow packet disorder while reducing packet drop-

ping in Openflow-based networks by handling the mismatched

packet buffer. 

• We evaluate the efficiency and performance of the proposed

model by building prototypes on both software switch and

hardware switches. The experimental results reveal that our

proposed method can reduce the communication overhead be-

tween switches and controllers, as well as preserve packet or-

der for multiple flows in Openflow-based networks. 

The remainder of the paper is organized as follows. We describe

the problem of buffering mismatched packet under the environ-

ment of datacenter networks in Section 2 . In Section 3 , we de-

scribe the processing procedure of our proposed buffer design and

the comparison with other ways. In Section 4 , we describe detailed

design inside our buffer. In Section 5 , we build prototypes both on

software switch and hardware switch. Evaluation results show less

workload on switches and controllers with our proposed FPB. Re-

lated works are introduced in Section 6 . We conclude the paper

and point out future work in Section 7 . 

2. Problem description 

2.1. Reactive and proactive path setup mode 

In OpenFlow networks, the controller adopts two approaches to

build forwarding paths among hosts: proactive and reactive [18] .

Time sensitive UDP flows are treated under the proactive mode

in Openflow-enabled networks, in which the forwarding rules are

pre-installed in the switches before the packets arrive. Therefore,

it is efficient to greatly reduce the forwarding delay, even if it is
uffering lar ge packet drop ratio. In this paper, we mainly focus on

he reactive mode in Openflow-enabled networks with burst mis-

atched packets, e.g., Openflow-based datacenter networks, where

he traffic fluctuates much more frequently than other Openflow-

ased networks. Although installing rules reactively can harm the

erformance for OpenFlow networks, it is necessary and essential

or network security policy and management. OpenFlow-based dat-

center networks adopt the reactive way of “One-way Flow-setup”

o set up the forwarding paths passively for some new flows [1–

] . As shown in Fig. 1 , the source host A sends a new packet flow

o the destination B after forwarding along n-hops of OpenFlow

witches, which are noted as S1, S2,...,Sn. The process of reactive

ne-way Flow-setup mode is described as follows: 

Step 1: When arriving at the first-hop OpenFlow switch, the

rst packet (P1) of the new flow encounters a flow-table miss.

hen the control plane of the OpenFlow switch encapsulates the

ismatched packet into a P kt − in message and sends it to the

entralized controller through the established OpenFlow channel

etween the controller and the switch. 

Step 2: After processing the Packet-in message, the controller

ets up a bidirectional forwarding path between A and B by

ending Flow-mod messages ( F low − mod1 , F low − mod2 , !‘, F low −
odn ) to install rules to corresponding switches (S1, S2,...,Sn) along

he path. 

Step 3: To avoid packet loss of P1, the controller sends a P kt −
ut message to S1 to forward P1 to the next-hop switch. Then P1

ransmits along the already built forwarding path to B. 

In this way, a flow only invokes the controller once at the

dge of datacenter network (namely the first-hop switch) to in-

tall all rules for the flow. It minimizes the cost of flow setup to

he centralized controller. Given this benefit of “One-way Flow-

etup”, many existing SDN controllers (e.g., Floodlight, POX) use

his way by default to build forwarding paths for flows currently.

esides, the Retransmit Time Out (RTO) in Linux OS is 200 ms by

efault, While the median latency for invoking a rule is approxi-

ate 3.95 ms [19] , which is two orders less than RTO. Therefore,

his added delay seldom cause packet retransmission in the reac-

ive flow setup situations. 

However, due to different delays between the controller and

witches, the packet may not matched the flow table in latter

witches. As described by Canini et al. [20] , when P1 arrives at

2, the rule within F low − mod2 has not been installed into S2.

o P1 would be sent to the controller again to trigger rules. The

ontroller that implicitly expects to see just one packet during the

ow setup may behave incorrectly when multiple arrive. It leads

o inconsistency of control logic for the flow, which should be

voided. 

For analyzing the condition of “One-way Flow-setup”, we de-

ne the notation in Table 1 . In order to guarantee that P1 would

ot miss the flow tables in subsequent switches after leaving the

rst-hop switch, the related transmission time should satisfy the
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Fig. 1. Reactive One-way Flow-setup mode in a sample OpenFlow network. 
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nequation as follows: 

 C→ S1 + d S1 → Si > d C→ Si , i = 2 , 3 , ..., n. (1)

To meet the inequation, the centralized controller installs rules

y sending Flow-mod messages to switches in the path reversely

20] . More precisely, the controller reverse the order by allowing

witch Sn to install its rule first, followed by switch Sn −1, and the

ast to S1. Most current studies about OpenFlow-based datacenter

etworks implicitly ground on this inequation, which reduces the

verhead of flow setup. Therefore, in this paper, we only analyze

he problem of flow buffer for mismatched packets at the first-hop

penFlow switch, which simplify the model to the edge of net-

orks. As described above, there is a time delay between the first

acket mismatching the rules and the edge switch installing the

orresponding rule, so many subsequent packets in the same flow

re also sent to the controller as Packet-in messages. As a result,

he controller becomes overloaded and unstable. 

.2. Problem of existing packet buffer models 

Here we present the methods of existing buffer model, includ-

ng no-buffer model and packet-granularity Packet-in buffer model,

or burst mismatched packets and point out their limitations. After

he controller establishes the OpenFlow Channel with the switch, it

ends an OFPT_FEATURES_REQUEST message to get the buffer ca-

ability of the switch. We first consider the switch with no buffer.

he procedure of flow setup is shown in Fig. 2 (a). P1, P2, P3 and P4

re in the same new flow sent from A to B. When the first packet

1 arrives at the switch, the switch has no rules for the packet

nd generates a Packet-in message including the whole packet. The

ontroller responds the request with one Flow-mod message and

ne Packet-out message. The Flow-mod message contains the for-

arding rule R A −B for the flow, which consists of the match field

atch A −B and the action field Action A −B . The Flow-mod message

ontains the whole packet and the action Action A −B . After the rule

s installed to the flow table of the switch, packets in the flow will

it the rule and be executed with corresponding actions. However,

ue to the delay between the Packet-in sent and the rule installa-

ion, subsequent packets of the flow are also forwarded to the con-

rollers, as P2 and P3 in the Fig. 2 (a). Assuming that the controller

s optimized, it identifies that P2 and P3 are in the same flow with

1 and does not send Flow-mod messages anymore. To avoid the

acket loss, the controller also sends Packet-out messages includ-

ng P2 and P3 respectively. To the common case with the notation

n Table 1 , the request number of Packet-in messages in a new flow

etup with bandwidth B w 

is as follows. 

 nobu f fer = � B w 

D 1 /M � . (2) 

In addition, as for large size of packets, the Packet-in message

an easily exceed the size of Maximum Transmission Unit(MTU)
hen encapsulates the whole packet into it. Thus, the switch has

o split them, which adds extra work to the weak CPU in the

witch control plane. 

Then we describe the procedure of flow setup with the

acket-granularity Packet-in buffer (we call it generalbuffer

elow) in the existing switch. Responding the message of

FPT_FEATURES_REQUEST, the switch notifies the controller the

aximum number of packets it can buffer. After that, the con-

roller sends an OFPT_SET_CONFIG message to configure the max-

mum size of bytes of the original packet to be carried in the

acket-in (We name those bytes as the digest of the packet). As

escribed in OpenFlow Specification, it is 128 bytes by default. The

ow setup with buffered switch is shown in Fig. 2 (b). In this case,

ismatched packets (P1, P2, P3) are buffered in the switch with

uffer_id1, Buffer_id2 and Buffer_id3 respectively. So the switch

enerates Packet-in only with the digest and Buffer_id (32 bits).

he controller acts almost the same as previous. But the difference

s that Buffer_id, not the whole packet, is included in all Open-

low messages. The switch receives the Flow-mod message includ-

ng Buffer_id1. In order to reduce the number of mismatched sub-

equent packets for the flow, it firstly installs the rule R A −B to the

ow table, and then release the packet stored in the buffer with

uffer_id1. Other Packet-out messages are processed sequentially

y taking out the packet from corresponding Buffer_id and execut-

ng actions. As the ratio of packet size between a Packet-in mes-

age with Buffer_id and an MTU packet is M pi : M (in Table 1 ), the

oad comparison between these two kinds of switches is M pi : M .

owever, the request number of Packet-in messages to the con-

roller is the same, which is as follows: 

 generalbu f fer = R nobu f fer = � B w 

D 1 /M � . (3) 

Although the buffered switch can significantly reduce the load

n the OpenFlow channel, it still exists the out-of-order prob-

em and can be further improved. Still considering the example

n Fig. 2 (b), packets of a new flow arrive the switch as the se-

uence of P1-P2-P3-P4. P1 is used to generate Packet-in to the

ontroller for the rule. P2 and P3 are also sent due to the de-

ay of the rule. Assuming the rule is installed before P4 looks-up

he flow table, so P4 hits the rule and be forwarded. But at the

ame time, the Packet-out messages for P2 and P3 have not ar-

ived or executed by the control plane of the switch. Therefore, a

ikely output sequence of the new flow is P1-P4-P2-P3. The prob-

em of out-of-order packets also happens in the OpenFlow switch

ith no buffer, as shown in Fig. 2 (a). Blanton et al. [16] points out

hat the reassemble caused by out-of-order packets of TCP flows

ccounts for large buffers at host and decreases the throughput of

onnections. Although out-of-order packets have less negative ef-

ect on connectionless UDP flows, applications in end hosts still

eed to waste CPU cycles in reassembling out-of-order packets,

hich slows down the performance of communication. 
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Fig. 2. Comparison of working pattern between different switch designs. 
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2.3. Our motivation 

Mismatched Buffers are needed not only for UDP flows, but also

for TCP flows in OpenFlow networks. It is well-known that TCP

flows starts up the connection with three-way handshake before

transmitting data packets. The SYN and SYN/ACK segments invoke

the controller to install rules along the path on all the concerned

switches. As a result, all data packets of TCP flows forward based

on installed rules. However, it may not be the case in datacenter

networks. Benson et al. measured that new flows can arrive at a

given switch within 10 μ s of each other, which means the switch

sees 100 thousand flows per second [15] . Thus the number of ac-

tive flows existing instantaneously is larger than the limited num-

ber of entries of flow table in switch hardware. Besides, Benson
lso found flows in datacenters have characteristics of ON/OFF. As

 result, the rules in switches for already connected TCP flows may

asily be replaced in the OFF time of flows. 

As for the example in Fig. 2 , end host A and B have built TCP

onnection with each other and the forwarding rules has also been

nstalled. But the rules R A −B in the switch may be substituted due

o limited rules’ space. Then a burst of TCP data packets in the

onnection arrives, these packets fail to hit the flow table and are

ent to the controller, which is the same as connectionless UDP

ows. Therefore, buffers are also useful to prevent TCP flows from

verloading the switches and the controller in the environment of

atacenter. 

As described above, buffers in switches mitigate the commu-

ication load between controllers and switches during the flow
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Fig. 3. Flow setup with FPB-based OpenFlow switch. 
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Table 2 

Comparisons of nobuffer, generalbuffer and FPB. 

Nobuffer Generalbuffer FPB 

Workload usage B w D 1 B w D 1 M pi / M 1 Packet-in message 

Number of Packet-in B w D 1 / M B w D 1 / M 1 

Out-of-order Yes Yes No 
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c  
etup. But it increases the complexity of switch design and the

hallenge in buffer management. Currently, for considering the cost

nd simplicity, many commodity off-the-shelf OpenFlow switches

dopt nobuffer design. However, Lu et al. proposed to enhance the

apability of commodity hardware switch by adding the combina-

ion of CPU and DRAM to the switch control plane [21] . Further-

ore, many deployed OpenFlow-based datacenters overlay onto

he physical network by leveraging software virtual switch which

esides in the server as the first-hop switch (e.g., Open vSwitch

22] ). It is relatively easy to add a new buffer module to the soft-

are switch and the buffer space is sufficient inside the server. As

 result, we think it is feasible to introduce a well-managed buffer

o OpenFlow switches in SDN deployment. 

. The proposed FPB scheme 

We consider an SDN datacenter network where a centralized

DN controller computes the forwarding table and installs rules

atisfying the inequation (1) . 

In order to overcome the defects of buffer management in ex-

sting OpenFlow switches, we propose a novel model of flow buffer

anagement under the traffic environment of datacenters, named

PB(short for Flow-granularity Packet-in Buffer). As there is a la-

ency between the switch generating the Packet-in message for a

ismatched packet and installing a rule for the packet, some sub-

equent packets would also get mismatched and be sent to the

ontroller too. With FPB, the OpenFlow switch only sends the first

acket of a flow, while other mismatched packets in the same flow

re buffered in flow-granularity. Thus it can further reduce the

ommunication load between the control plane and data plane. Be-

ides, FPB leverages flow actions pretreatment to solve the problem

f packet out-ordering in a flow, which is caused by the sequence

f packet processing with the model of current buffers. 

Fig. 3 illustrates the sequence of main operations with the FPB-

ased OpenFlow switch. We add two components to the control

lane of switches: Buffer Management and Flow Action Pretreat-

ent. FPB does not change the OpenFlow pipeline, which achieves

he functions of parsing packet headers, looking up flow tables

nd executing flow actions. It modifies the processing of mis-
atched packets and the installation of flow rules. Thus, FPB only

edefines the processing of three kinds of OpenFlow messages in

witches (namely Packet-in messages, Flow-mod messages con-

aining Buffer_id, Packet-out messages containing Buffer_id), while

eaves the processing of other OpenFlow messages remaining the

ame. The workflow of FPB is described as follows. 

Step 1: When a new flow arrives at the switch, as no matched

ule exists in the flow table, the first packet of the flow and some

ubsequent packets are buffered in flow-granularity. So Buffer

anagement only allocates one Buffer_id and one buffer to those

uffered packets. The buffer, which is a First-In-First-Out(FIFO) for

ach flow, stores subsequent mismatched packets by orders. 

Step 2: Then the control plane of switch generates one Packet-

n message to the controller carrying the Buffer_id and the digest

f P1. 

Step 3: The controller responds it with a Flow-mod message

ncluding the Buffer_id and the rule for the flow. The Flow Action

retreatment receives the Flow-mod message. 

Step 4: It takes out all packets in the buffer with Buffer_id1 and

eleases them to the OpenFlow pipeline sequentially. 

Step 5: Flow Action Pretreatment installs the new rule to the

ow table. As a result, the output sequence of the new flow is P1-

2-P3-P4, which is the same as input. In the above processing of

he FPB model, a new flow’s setup just generates only one Packet-

n message and one Flow-mod message to the OpenFlow channel.

he comparisons of above three different switch designs (nobuffer,

eneralbuffer and FPB) are shown in Table 2 . 

The row “Workload usage” of the table indicates the workload

n OpenFlow channel in the duration of D 1, which is generated

y mismatched packets of a new flow. As Packet-in and Packet-out

ome in pairs, the workload only consists of Packet-in messages
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here, and encapsulation of OpenFlow message is ignored. Accord-

ing to the comparisons in Table 2 , FPB can significantly reduce the

workload caused by burst mismatched packets and keep packets

sequential in OpenFlow networks. 

Besides, there are two problems that should be considered in

the design of FPB. The first one is the buffer policy for FPB. General

buffer stores each mismatched packet and has no policy for buffer.

But as the buffer resource is limited and expansive, the buffer pol-

icy is necessary. Benson et al. [15] measured the distribution of

packet sizes, which exhibits a bimodal pattern. Most packet sizes

are around either 20 0 Bytes or 140 0 Bytes, while 20 0-Bytes pack-

ets are keep-alive messages of applications or TCP acknowledg-

ments, and 1400-Bytes packets are critical data packets. We may

develop a policy based on the size of packets, as small packets are

individual usually and have no need to occupy the buffer resource.

The second concern is the capability of switch of handling

the buffered packets. FPB realizes installing rules after releasing

buffered packets, which creates a great challenge to the process-

ing speed of switch. Assuming the processing speed for releasing

the buffer is P s , the total time for releasing is t s . If the complete

time of the flow t flow 

is larger than D 1 , namely t f low 

> d S1 → C +
d C + d C→ S1 , the processing speed should satisfy the following

inequation: 

P s ≥ B w 

(D 1 + t s ) 

t s 
, (i f, t f low 

> D 1 ) , (4)

If the processing speed of releasing the buffer is not fast enough,

it will cause mismatched packet buffer overflow and serious

packet loss. Therefore, Eq. (4) specifies the requirement for the

processing speed of releasing the buffer, which is the capabil-

ity of switch to handle the buffered packets. Otherwise, it may

cause mismatched packet buffer overflow and serious packet

loss. 

Since FPB protects the controller from being overloaded by

burst mismatched packets, the workload of controller is relatively

less compared to previous models. Therefore the controller pro-

cesses Packet-in message and installs rules with less response

time, which decreases the completion time for each reactive flow.

The cost of FPB is the buffer resource and complicated buffer de-

sign. Although buffer size is not of concern in software implemen-

tation, commodity hardware switch’s buffer size is usually small

in order to reduce cost. We denote the Profit as the benefit by in-

troducing buffer resources to OpenFlow switches, as shown in Eq.

(5) . There are m flows coexisting in the network. The reduction

of flow completion time is tc flow 

, while the buffer size for flow is

buffersize flow 

. Therefore Profit can be quantified as: 

Profit ≡
m ∑ 

i =1 

tc f lo w i 
/ 

m ∑ 

i =1 

bu f f ersiz e f lo w i 
. (5)

4. Detailed design of FPB 

We now present the detailed design of FPB, which is an en-

hancement to the control planes of OpenFlow switches. Based on

the basic OpenFlow pipeline, we redefine the buffer operation for

mismatched packets and the processing of OpenFlow messages

containing Buffer_id, which are described in Sections 4.2 and 4.3 . 

Fig. 4 shows a conceptual diagram of the overview of our pro-

posed FPB. It mainly consists of two modules: Buffer Management

and Flow Action Pretreatment. Due to space limitation, other com-

mon OpenFlow related modules (e.g. OpenFlow messages encapsu-

lation/decapsulation) in switch control planes are omitted in the

figure. 

Buffer Manager . This module buffers mismatched packets in

flow-granularity. It contains four components: buffer creator, buffer

releaser, Packet-in Buffer Table(PiBT) and buffer area. PiBT is the
ore component of our proposed model, which would be described

ater. The buffer creator is responsible for deciding whether to

tore the first mismatched packet based on the buffer policy and

pace. If such condition is met, it inserts a new entry to PiBT

or the new flow. Then it generates a Packet-in message with al-

ocated Buffer_id to the controller. The buffer releaser takes the

uffer_id and flow actions as inputs, takes out packets from buffer

rea according to the Buffer_id and sends those packets to Open-

low pipeline. 

Flow Action Pretreatment . This module is responsible for the

retreatment of OpenFlow messages carrying Buffer_id. It con-

ains two components: action parser and rule installer. The ac-

ion parser only processes the Flow-mod and Packet-out mes-

ages with Buffer_id, and then it informs Buffer Manager releas-

ng the packets according to the Buffer_id. The rule installer in-

erts flow rules to flow table. When processing Flow-mod mes-

ages, the module enforces switch to install rules to flow table

nly after receiving the processing state of buffer empty for the

uffer_id. 

.1. Packet-in Buffer Table 

Each entry of PiBT records the buffer information of a flow,

hich includes the match field, start index, current index, packet

ount and timeout, as shown in Fig. 5 . 

The match field is the identifier of a flow, namely flow_key . It

s a subset of the packet digest and is defined according to differ-

nt demands. For example, the following five tuple is commonly

sed, which consists of IP source address, IP destination address,

P protocol type, TCP/UDP source port and TCP/UDP destination

ort. Each mismatched packet looks up the PiBT by comparing the

ow_key . According to the result, the PiBT decides to whether cre-

te a new entry or add the packet to the corresponding entry’s

uffer area. The start index and current index are used to indicate

he places where the first packet and the latest packet from a mis-

atched flow store respectively. The start index points to a packet

nd current index is NULL when the entry is created and initial-

zed, while the start index equals to current index if the entry’s

uffer area is empty, which means that the buffered packets have

lready been released. The index represents different meanings for

ifferent implementations. It means the hardware address when

he buffer is realized in hardware, while it means the pointer of

he buffer when realized in software. The packet count records the

umber of packets stored in the buffer for a flow. The timeout is

he live time of the entry. If FPB does not get the respond message

ithin the timeout for a Packet-in message about a buffered flow,

t will delete the entry, set free the buffer space of the flow and

rop all packets of the flow. 

The buffer area stores the packets in a flow as the singly-linked

ist. When storing a packet of an existing entry, it adds the packet

o the next index of currently last packet of the flow and updates

he current index of the entry. If the buffer is realized in soft-

are, the size of buffer space is allocated dynamically according

o the size of buffered packet. However, it is quite difficult to al-

ocate the right buffer space for the packet in hardware. There-

ore, allocating each packet with a fixed buffer size in advance,

uch as the size of MTU, may be applied in hardware. As men-

ioned before, the distribution of packet size in the datacenter net-

ork presents a bimodal pattern. We can make a buffer policy

ased on the size of packets, which only stores large packets. So

ven the buffer space is allocated earlier, it is not wasted and used

ufficiently. 

The number of PiBT entries indicates the number of mis-

atched flows that the switch can maintain. So more entries

eans that the switch has the capability to adapt to more dynamic
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Fig. 4. The structure of FPB. 

Fig. 5. The structure of Packet-in Buffer Table. 
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ows in the network. But the number is limited by the buffer re-

ource of switches. 

.2. Buffering mismatched packets in flow-granularity 

When FPB receives a mismatched packet from the OpenFlow

ipeline, Buffer Manager firstly decides to whether store the packet

ccording to the buffer policy and buffer usage. The packet is sent

o the controller as a Packet-in message with the whole packet

hen it is conflicting with the buffer policy or the buffer is full.

therwise, Buffer Manager uses the flow_key of the packet, which

omes from OpenFlow pipeline, to look up PiBT. If present, it adds

he packet to the next point of current packet in the buffer area

y access the current index of the matched entry, and updates the

urrent index and count of the entry. Then the packet is buffered

ithout generating Packet-in or getting loss. If the matching fails,

uffer Manager allocates a new buffer space, and inserts a new

ntry to PiBT incrementally with the flow_key . It returns the index

f PiBT as the Buffer_id of the packet. At last, the switch control

lane generates a Packet-in message with the Buffer_id and digest
f the packet. The basic algorithm is described in pseudo-code in

lgorithm 1 . 

lgorithm 1 Buffering mismatched packets in flow-granularity. 

equire: Mismatched Packet with f low _ key . 

nsure: Packet-in Message. 

1: if (Mismatched packet conflicts with buffer policy or buffer is

full ) then 

2: buffer_id = NULL; 

3: Generate Packet-in message with NULL buffer_id ; 

4: else if (Exist an flow entry in PiBT) then 

5: Update PiBT with current packet index; 

6: else 

7: Allocate a buffer for the packet; 

8: Generate a buffer_id for the packet; 

9: Generate Packet-in message with buffer_id ; 

10: end if 
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Fig. 6. Experimental topology with OFSoftSwtich. 
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4.3. Flow Action Pretreatment 

Here we present how FPB interacts inside the model when

the switch receives the Flow-mod /Packet-out message carrying

Buffer_id from the controller. The action parser component in Flow

Action Pretreatment extracts the Buffer_id and flow action from

the OpenFlow message, and sends them to Buffer Manager. After

receiving the Buffer_id and flow action, the buffer releaser com-

ponent of Buffer Manager finds the entry in PiBT based on the

Buffer_id. According to the field of start index in the entry, the

buffer releaser sequentially takes out the packets from the buffer

area and sends each packet along with its action to the Open-

Flow pipeline one by one. When all packets are released, it deletes

the entry with the Buffer_id and sends a complete signal of buffer

packet processing state to Flow Action Pretreatment. If the Open-

Flow message is Flow-mod, the rule installer of Flow Action Pre-

treatment then installs the rule to the flow table. The procedure is

described in pseudo-code in Algorithm 2 . 

Algorithm 2 Processing OpenFlow message with Buffer_id. 

Require: OpenFlow message OFMessage . 

Ensure: Buffered packet, flow action and forwarding rule. 

1: Extract buffer_id from OFMessage ; 

2: if (PiBT exists flow entry with buffer_id ) then 

3: Extract actions from OFMessage ; 

4: while (PiBT exists packets with buffer_id ) do 

5: Extract packets from the buffer; 

6: end while 

7: end if 

8: if ( OFMessage is Flow-mod message) then 

9: Install forwarding rules to flow table; 

10: end if 

5. Performance evaluation 

In the deployment of OpenFlow networks, the OpenFlow switch

is realized in software as well as in hardware. Thus, we validate

our proposed design of buffer both in software and hardware in

this paper. 

5.1. Evaluation in software prototype 

OFSoftSwtich is an open source software switch implemented

in user mode [12] . So it is easy to modify and develop to validate

new functions. We realize the FPB as a module in C and add it to

the software switch. Our target is to compare the performance of

FPB with the existing generalbuffer and nobuffer. 

All experiments are conducted in a computer with Intel Core i5

3.2 GHZ of CPU and 8 GB of memory. We build a simple topol-

ogy in the host, as shown in Fig. 6 . Since our paper is founded on
he assumption of inequation (1) , we only consider the buffer of

ismatched packets at the first-hop switch. So this simple scene

s enough for evaluating the buffer. The controller uses modular

loodlight and runs an application named LearningSwitch [23] in

t, which installs rules for MAC based forwarding. Three virtual ma-

hines noted as VM1, VM2 and VM3 are run in VMware. VM2 and

M3 are regarded as the source and the destination of flows re-

pectively. VM1 runs an instance of OFSoftSwtich and has three

irtual network interface cards (vNIC), which connect to Floodlight,

M2 and VM3 respectively. All three connections are in different

ubnets. Thus only rules installed to the OFSoftSwtich by the con-

roller can VM2 send flows to VM3. 

We first validate that FPB can reduce communication costs be-

ween the controller and OFSoftSwtich. As explained in Section 2.3 ,

ike UDP flows, a large number of data packets in TCP flows may

ismatch the flow table under the condition of traffic character-

stic in datacenter networks. Therefore, we only use UDP flows in

his test. Iperf is used for generating flows, where VM2 is set to

he UDP client and VM3 is set to the UDP server. The bandwidth

f flows is 5 Mbps and the flows all last 60 s in each test. For

omparison, the instance of OFSoftSwtich is configured to nobuffer,

eneralbuffer and FPB. In order to present the bandwidth occupied

y OpenFlow messages in the flow setup, the controller does not

nstall rules in tests. So all packets will fail to hit the flow table and

e processed by the switch and the controller according to differ-

nt configurations. The result is shown in Fig. 7 . 

The bandwidths of “Send” and “Receive” are described in the

oint of view of the switch, which correspond to Packet-in mes-

ages and Packet-out messages respectively. Obviously, the FPB-

ased switch takes the least bandwidth of OpenFlow channel,

hich averages 74 KB/s (Send) and 23 KB/s (Receive). The aver-

ge utilized bandwidth for Generalbuffer is 139 KB /s (Send) and

3 KB/s (Receive). As for nobuffer, the average is 761 KB /s (Send)

nd 719 KB/s (Receive), which almost equals to the bandwidth of

he flow sent from VM2 to VM3 (5 Mbps). The utilized bandwidth

or nobuffer comparing to Generalbuffer is about the ratio of 1:5,

s the length of is M pi is about 300 Byte, while M is 1500 Byte.

hen a switch has a buffer, it sends the Packet-out message only

ontaining a 32-bits Buffer_id, which is one third of the Packet-in

essage. It also satisfies the bandwidth ratio of Send and Receive

ith the buffered-switch observed from the result. Thus FPB can

ignificantly decrease the bandwidth usage of OpenFlow channel. 

Then we present the benefit of bandwidth reduction to the

ontroller and switch, as shown in Fig. 8 . The x-axis shows the

PU utilization of VM1 running OFSoftSwtich by percentage, and

he y-axis shows the result of CDF. When encountering burst of a

ow, instead of sending each mismatched packet (or digest of the

acket) to the controller, FPB only sends the first one and stores

ubsequent packets in flow-granularity. Since it is more costly of

PU to generate and send Packet-in messages than store packets

n the switch, FPB takes about 25% less CPU resources than Gen-
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Fig. 7. The bandwidth utilization in 60 s at the VM running OFSoftSwtich with different buffer designs. 

Fig. 8. A CDF of the CPU utilization in the VM running OFSoftSwtich with different buffer designs. 
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ralbuffer. Can be expected that the controller consume fewer CPU

ycles for one flow setup due to fewer Packet-in messages to the

ontroller. It also reduce the possibility of inconsistency of control

ogic as only one packet of a flow is sent to the controller. The

PU utilizations of nobuffer and generalbuffer are almost the same

s the request number of both models is equal, which validates our

nalysis in Eq. (3) . 
In addition, we also validate that FPB can solve the problem of

ut-of-order packets in a flow. In the test, VM2 sends a sequence

f packets continuously without no pauses. Each packet carries

 sequence ID, which starts from 1 to 100. The sequence ID re-

eived at VM3 is recorded in Fig. 9 . For Generalbuffer, the result

eflects the same appearance of out-of-order packets as analyzed

n Section 2.2 . VM3 receives ID 1 first, and then ID 64 along to 97,
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Fig. 9. The packet sequence number over time received at VM3. 

Table 3 

Resource usage in FPGA. 

Resource Total All modules usage(%) FPB related usage(%) 

ALUTs 36,100 13,528(37 .5%) 627(1 .7%) 

Registers 36,100 15,620(43 .3%) 552(1 .5%) 

Memory bits 2,939,904 1,728,640(58 .8%) 74,496(2 .5%) 
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then ID 2. The out-of-order packets can decrease the bandwidth of

TCP flows extremely. But for FPB, VM3 receives those 100 packets

sequentially from 1 to 100. 

To sum up, when the buffer resource is sufficient in OpenFlow

switches, well-managed buffers can not only prevent large num-

ber of mismatched packets from overloading switches and con-

trollers, thereby decreasing the CPU utilization of both switches

and controllers, but also realize order-preserving transmission for

inner packets of a flow. 

5.2. Evaluation in hardware prototype 

On the other way, we evaluate how buffer changes over time

by realizing the proposed model of buffer management in hard-

ware programmable NetMagic platform [17] . Like the NetFPGA, to

ease the complexity of development, the NetMagic platform pro-

vides a simple and rapid development model, clear module in-

terfaces for hiding basic common packet processing logic in hard-

ware, and several standard reference designs including a simplified

OpenFlow switch [24] . It allows users to focus on the implementa-

tion of self-defined functional modules. We add FPB-related hard-

ware implementation to the existing simplified OpenFlow switch

on NetMagic. The resource usage of FPGA is presented in Table 3 .

Although simplified, it is feasible to realize proposed buffer func-

tions in hardware. In the implementation, for simple calculation,

every mismatched packet is allocated with the size of 2 KB mem-

ory in chip. 

Fig. 10 shows the deployment and steps of the test. There are

three computers, one is Controller and the other two are Source

and Destination respectively. Besides, the NetMagic switch con-

nects these three computers. At start up, there is no rule in the
etMagic switch. Thus, as Source sends sequential packets to the

estination, all packets are buffered in the controller until the con-

roller installs the rule. In the controller, we vary the delay be-

ween sending the rule and receiving the first Packet-in message

rom the switch, namely d C in Table 1 . The delay increases pro-

ressively with 50 ms from 50 ms to 500 ms. After installing the

ule, the controller collects the number of packet count in PiBT.

he experiment of every delay runs 10 times. Results are shown in

ig. 11 . 

We can see that the size of buffer jitters more severely as the

elay increases. It is because that the delay of installing the rule

nside a switch is easily affected both by processing load of the

witch and controller. Longer delay incurs more unstable states in

he switch. Thus, the delay happened in the rule installation has

egative effect on the size of buffer and it should be shortened as

ong as possible. 

Since storage is relative sufficient in software, buffer resource is

ot basically restricted for FPB-enabled OpenFlow software switch.

owever, in hardware switch, the buffer size is a critical fac-

or in the design of OpenFlow hardware switch. In the experi-

ental results, we can observe that estimating the total required

uffer size of switch will be critical for OpenFlow-based hardware

witches. The total required buffer size can be estimated by ana-

yzing the traffic flows and the transmission delay (response time)

rom the controller, which may be significantly affected by real

etwork traffic (traffic flow, traffic model etc.), controller deploy-

ent and controller processing capability, etc. For example, a high-

erformance Openflow controller with specified source-destination

raffics will require lower buffer storage than a low-performance

ontroller with fluctuating traffics in the switch. However, estimat-

ng the total required buffer size in Openflow switches is out of

he scope of this paper. We will consider this interesting issue as

 future work. 

. Related work 

As the network scales out, it is necessary to avoid the central-

zed controller become the bottleneck of the performance of net-

ork. This problem is emergent and critical when deploying SDN
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Fig. 10. Experimental topology with NetMagic. 

Fig. 11. The controller response delay varies over buffer size in NetMagic. 
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n datacenter networks. There are two directions to mitigate the

verload of single-point centralized controller. One is to improve

he processing capability of the SDN control plane. The other is

o reduce the communication workload on OpenFlow channel as

uch as possible by enhancing the function of the SDN data plane.

In the first aspect, the developer of SDN controllers adopts the

echniques of multi-thread, shared queue, batch process and so

n, to design a high-performance controller. As the single-point

ontroller has the upper limit in performance, researchers have

esigned a distributed architecture of SDN control plane. Hyper-

low [7] deploys multiple distributed controllers to share the over-

ead between the control plane and data plane. Each controller

n Hyperflow synchronizes the network-wide view by using pub-

ish/subscribe messaging paradigm. Onix [8] also distributes the

etwork view among multiple controller instances, but it uses the
etwork information base to maintain the consistency of the un-

erlying network state. ONOS [9] is an open source distributed

DN control platform, which gets more attentions recently. All

hese works are complementary to our work. 

In the other aspect of data plane enhancement, the most re-

ated work with ours is the packet-in message filtering mecha-

ism proposed by Kotani et al. [10] . We both aim at protecting

he OpenFlow control channel from too many mismatched packets

hat bring high loads. Similar to FPB, the filtering mechanism also

ecords the values of packet header fields before sending Packet-in

essages. However, the difference is that it filters out the packets

hat have the same values as the recorded ones, while we buffer

hose packets in flow-granularity, which causes less packet loss. In

ddition, DIFANE [11] proposes to pre-distribute rules to author-

ty switches. Consequently, for better performance and scalability,
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it keeps all traffic in the data plane without directing packets to

the controller. Devoflow uses rule clone and local actions for de-

volving control to the switch. It also reduces the need to trans-

fer statistics for boring flows by achieving efficient statistics col-

lection in the switch. Our method is also a means of the SDN

data plane enhancement by leveraging the buffers in OpenFlow

switches. 

As for the problem of out-of-order packets during the flow

setup, previous work have tried to solve the problem through so-

phisticated controlling in the controller [25] . However, we think

the root cause for the packet out-ordering is involving in the

switch. So we design the mechanism of flow action pre-processing

to realize order-preserving forwarding in switches. 

7. Conclusions and future work 

In this paper, we exploit the buffer resource in switches and

propose FPB, a flow-granularity buffer for mismatched packet.

FPB records the flow information of the first packet before send-

ing Packet-in messages and buffers subsequent packets in flow-

granularity. It guarantees the order of packets in the flow by re-

leasing the buffer sequentially. As we expected, our experiment

results show that switches with FPB dramatically reduce the num-

ber of switch-controller interactions, which mitigates the load of

controller. FPB also decreases CPU utilization in the switch control

plane. We believe that FPB can be regarded as a reference in the

design of hardware or software OpenFlow switches to improve the

scalable of OpenFlow networks. 

In the future work, we will estimate the impact of flow traffic

and controller response time on the required total buffer size. 
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