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a b s t r a c t 

The Internet of Things (IoT) describes a future world of interconnected physical objects, with several ap- 

plications in the areas of smart environments. To implement the IoT concept, the research in the areas 

of power controlled circuits, embedded systems design, network protocols and control theory should be 

required. With the much advancement in these areas, the realization of IoT is becoming increasingly prob- 

able. In this paper, we propose a novel adaptive power control scheme for IoT systems. Based on the cog- 

nitive hierarchy thinking mechanism, our proposed scheme is designed as a new behavioral game model 

to adaptively control the power level. To effectively solve the power control problem in IoT systems, game 

theory is well-suited and an effective tool. The experimental result illustrates that our game-based ap- 

proach can get an effective transmission power, which can make the communication rate maximal. Under 

dynamic IoT system environments, it is highly desirable property. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid development of network technologies over the

ast decade, Internet of Things (IoT) becomes an emerging tech-

ology for critical services and applications. IoT is a rapidly grow-

ng system of physical sensors and connected devices, enabling an

dvanced information gathering, interpretation and monitoring. In

he near future, everything is connected to a common network by

n IoT platform while improving human communications and con-

eniences. Recent research shows more potential applications of

oT in information intensive industrial sectors, and IoT will bring

ndless opportunities and impact every corner of our world. How-

ver, while IoT offers numerous exciting potentials and opportuni-

ies, it remains challenging to effectively manage the various het-

rogeneous components that compose an IoT application in order

o achieve seamless integration of the physical world and the vir-

ual one [1–3] . 

Power control has always been recognized as an important is-

ue for multiuser wireless communications. With the appearance

f new paradigms such as IoT systems, effective power control al-

orithms play a critical role in determining overall IoT system per-

ormance. According to the adaptively decided power levels, we

an reduce the interference while effectively improve the system

apacity and communication quality. Therefore, the research on

ower control algorithm in IoT systems is considered an attractive
∗ Fax: + 82 2 704 8273. 
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nd important topic. However, it is a complex and difficult work

nder a dynamically changing IoT environment [4–6] . 

Usually, there are two different power control algorithms; cen-

ralized and distributed power control algorithms. In general, due

o heavy control and implementation overheads, centralized con-

rol approach is an impractical method. But, a distributed mecha-

ism can transfer the computational burden from a central system

o the distributed devices. Therefore, in real world system opera-

ions, this distributed power control approach is suitable for ulti-

ate practical implementation. In distributed power control algo-

ithms, individual devices locally make control decisions to max-

mize their profits. This situation can be seen as a game theory

roblem [7] . 

Game theory is the study of decision making of competing

gents in some conflict situation. It consists of a set of analytical

ools that predict the outcome of complex interactions among ra-

ional entities, where rationality demands a strict adherence to a

trategy based on perceived or measured results [7] . In classical

ame theory, players are assumed to be fully rational, and the rules

f the game, payoff functions and rationality of the players are

aken as common knowledge. However, in recent decades, there

ad been many conceptual and empirical critiques toward this jus-

ification. Empirical and experimental evidences show that game

layers are not perfectly rational in many circumstances. These re-

ults call for relaxing the strong assumptions of classical game the-

ry about full rationality of players [8] . 

In particular, network devices make control decisions based

n less-than perfect information under dynamic IoT environments.

http://dx.doi.org/10.1016/j.comnet.2016.09.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.09.020&domain=pdf
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Therefore, to develop a practical power control mechanism, devices

should be modeled with bounded intelligence, and learn the cur-

rent system situation to approximate an optimal solution. To sat-

isfy this goal, the power control algorithm for the IoT system must

be designed as an iterative process in which each iteration involves

three key steps performed by each device, i) observing the current

IoT environment, ii) estimating the prospective payoff, and iii) se-

lecting a strategy to reach a certain desired outcome. 

In 1997, a game theorist C. Camerer had introduced a new con-

cept of game model, called behavioral game theory, which aimed

to predict how game players actually behave by incorporating psy-

chological elements and learning into game theory [9] . Usually, be-

havioral game theory combines theory and experimental evidence

to develop the understanding of strategic behavior needed to ana-

lyze economic, political, and social interactions. By using an index

of bounded rationality measuring levels of thinking, the behavioral

game theory can explain why players behave differently when they

are matched together repeatedly [10–12] . 

Motivated by the above discussion, we design a new power

control scheme for IoT systems. Under for real world IoT environ-

ments, system conditions are changeable spatially and temporally.

Therefore, system devices can not make control decisions with the

perfect information. From the realistic viewpoint, they can only act

with bounded rationality. To formulate practically a power control

problem, we adopt a non-cooperative behavioral game model. Ad-

ditionally, the key idea of cognitive hierarchy thinking mechanism

is used to improve upon the accuracy of predictions made by stan-

dard analytic methods, which can deviate considerably from actual

experimental outcomes. Based on the game player’s cognitive ca-

pability, we concentrate on modeling the learning behavior in iter-

ative games, and adjust the current power level of each IoT device

as efficiently as possible. 

Under dynamic IoT changing situations, our approach can to-

ward an effective system performance in an acceptable time con-

straint. The main contributions of our work are: i) ability to obtain

a well-balanced system performance, ii) adaptability with consid-

ering real time system information, iii) a distributed fashion for

practical implementation, and iv) dynamic interactive process to

approximate an efficient system equilibrium. The important novel-

ties of our proposed scheme are obtained from the key principles

of behavioral game approach. 

1.1. Related work 

Recently, related work on game based power control schemes

has been conducted in [5–6,18–23] . The scheme in [18] addressed

the congestion problem between child and parent nodes in IPv6

routing protocol for low power and lossy networks, which typi-

cally consisted of low power and resource constraint devices. This

scheme used the game theory strategy to design a parent-change

procedure which decided how nodes changing their next-hop node

toward sink to mitigate the effect of network congestion [18] . 

Zhao Junhui et al solved the power control problem of cognitive

radio networks under transmission power and interference tem-

perature constraints [19] . First, they proposed an interference con-

straint which ensured the quality of service standards for primary

users. Second, a new non-cooperative game power control model

was considered. In this game model, they developed a logical util-

ity function and a new control algorithm for the cognitive radio

network power control problem. Finally, the existence and unique-

ness of the Nash equilibrium was proved by the principle of game

theory [19] . 

The scheme in [20] was an uplink power control scheme based

on the game theory. In particular, this scheme was designed for

Uplink/Downlink (UL/DL) split users in the small cell dense deploy-

ment scenario. UL/DL split users were connected with macro cells
nd small cells simultaneously. In the scheme, the convex pricing

unction was an exponential pricing function of users’ transmis-

ion power and reflected the interference that macro users were

uffering from UL/DL split users. It was ensured that UL/DL split

sers would be penalized when they caused serious interference

o macro users. In addition, a new dynamic power adjustment al-

orithm was added to this scheme in order to mitigate interference

n uplink and to speed up the convergence process [20] . 

For cognitive radio networks, Xue Qin et al integrated game

lements into power control algorithm while adopting Goodman

ame power model [21] . In addition, a novel cost function was

roposed based on the cost idea of non-cooperative power control

ame approach. And then, the existence and uniqueness of Nash

quilibrium solution was proved. Simultaneously, the system fair-

ess was also considered in some degree. Finally, they showed that

he performance for sensing users were improved, and it had pro-

uced better results and gained higher efficiency [21] . 

The scheme in [22] described how various interactions in wire-

ess ad hoc networks could be modeled as a game. This scheme

as a distributed joint power and rate control scheme, which tried

o maximize users’ own utility function. This scheme used a game-

heoretic approach to specify how to efficiently use locally transmit

ower and assigned optimally the transmission rate. The criterion

f optimality was the stability of the underlying communications

rotocols. Finally, game theory was proved as an appropriate tool

or the tradeoff between system throughput and energy efficiency

22] . 

In [23] , the game theory was applied to solve the minimum en-

rgy broadcast tree construction problem. By using a power con-

rol mechanism, this problem was formulated as a non-cooperative

ame. In particular, the energy-efficient broadcast tree problem

as formulated as a non-cooperative cost-sharing game between

he nodes in the network applying two different cost-sharing rules:

he Marginal contribution and the Shapley value sharing rule. The

eveloped game-based broadcast protocol in [ ∗6] was decentral-

zed while providing better performance than other known decen-

ralized algorithms [23] . 

The Femto-Macro cell Power Control ( FMPC ) scheme in [5] ana-

yzed the non-cooperative power control algorithm based on game

heory. For the two-tier femtocell networks, the FMPC scheme is

 novel power control algorithm, which can guarantee the target

ignal-to-Interference-plus-Noise Ratio ( SINR ) of users. To improve

he efficiency of Nash equilibrium, this scheme combined the user

election and channel re-allocation algorithms. Numerical results

ere presented to illustrate the equilibrium convergence of the

MPC scheme. 

The Distributed Dynamic Power Control ( DDPC ) scheme in [6] has

een proposed as a universal joint base station association and

ower control algorithm for heterogeneous cellular networks. In

he DDPC scheme, the transmit power level of each user is ex-

ressed as a function of the power in the previous iteration, and it-

ratively updated. By using non-cooperative game theory, the DDPC

cheme can support the SINR requirements of all users whenever

ossible while exploiting multiuser diversity to improve the system

hroughput [6] . 

In this study, we develop another power control scheme, named

he Bayesian Inference based Power Control ( BIPC ) scheme. The BIPC

cheme adopts the Bayesian inference rule instead of the cogni-

ive hierarchy thinking mechanism. Without the inference mecha-

ism, the other process in the BIPC scheme goes along the lines

f our proposed scheme. All the earlier work has attracted a lot

f attention and introduced unique challenges to efficiently solve

he power control problems. Compared to these schemes [5,6] , the

roposed scheme attains better system performance. 

The remainder of this paper is organized as follows: We de-

cribe the proposed power control algorithm in Section II. Numer-
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cal results are presented in Section III, followed by the conclusion

n Section IV. 

. Power control algorithm in IoT systems 

In this section, we describe our proposed strategic power con-

rol algorithms in detail. Under dynamically changing environ-

ents, our approach can be concluded to be an effective solution

or the power control problem in IoT systems. 

.1. Game model for power control algorithm 

In this work, we consider a general distributed IoT system, for

xample, with multiple source–destination node pairs. Each source

ode has only one target destination, but generates radio signal in-

erference to all other destination nodes that are not its target des-

ination node. With N source nodes, there are N destinations paired

o these sources. In any time slot t = 1 , . . .,T , the source node i, i

 N = {1 ,…,N }, transmits packets concurrently with other sources.

hus, there are N −1 interfering signal packets at each destina-

ion node for all t , and there are N ( N −1) interfering signals across

he IoT system. In the target destination node j , the SINR over the

ransmitted packet at time slot t is given as follows [13] . 

j ( t ) = 

P j ( t ) × h 

j 
j ( t ) ∑ N 

i =1 , i � = j 
(
P i ( t ) × h 

j 
i ( t ) 

)
+ σ j 

(1) 

here P i ( t ) is the transmit power of source node i at time t and

 

j 
i 
(t) is the average channel gain from the source node i to the des-

ination node j . σ j is the power of the background noise at the re-

eiver. In this paper, we follow the assumption in [13,15,16,17] ; de-

ice transmitters use variable-rate M-QAM, with a bounded prob-

bility of symbol error and trellis coding with a nominal coding

ain. According to any packet size and data rate, the packet deliv-

ry ratio of destination node j ( PDR j ) can be expressed as a com-

ressed exponential function of the inverse SINR 1 / γ . 

 D R j ( P i , P −i ) = exp 

(
−
(

1 

γ j × η

)� )
(2) 

here γ j is the node j ’s SINR. η and ϱ are constant parameters

ith respect to particular packet sizes and data rates, respectively

13] . 

In this work, we develop a new distributed power control

cheme for IoT systems. The main goal of power control prob-

em is to decide how the co-channel link is shared among dif-

erent devices while maximizing the total system performance.

o effectively solve this problem, we adopt the behavioral game

odel. To design the behavioral game model, game form ( G )

an be formulated with four parameters: players ( N ), a strategy

et ( S ) for each player, payoffs ( U ) of the strategies and think-

ng level ( K ) of players. Mathematically, G can be defined as G =
 N , { S i } i ∈N , { U i } i ∈N , K } at each time stage t of gameplay. 

• N is the finite set of players, which are mobile nodes in the IoT

systems 

• S i is the set of strategies with the player i . We consider that

strategies are power levels (i.e., P i ∈ S i ) and the range of pos-

sible transmit power levels can only take a restricted number

of discrete values in the range [ P min 
i 

,…, P max 
i 

] where P max 
i 

and

P min 
i 

are the pre-defined maximum and minimum power levels,

respectively. 

• The U i is the payoff received by the player i . 

• The K is a thinking level of players. 

The behavioral game G is repeated t ∈ T < ∞ time periods with

mperfect information. Therefore, the source node i ’s decisions are
ade without the knowledge of opponent players’ (i.e., − i ) deci-

ions. The utility function ( U 

t 
i 
( P i ) ) of the source node i at time

 is defined as follows; the first term on the right side of the

q. (3) represents cost, which is caused by power consumption,

nd the second term means an outcome, which is received packet

mount through wireless communications. 

 

t 
i ( P i , P −i ) = −

[
κi ×

P i ( t ) 

P max 
i 

]
+ 

[ 
θi ×

(
P D R j ( P i , P −i ) 

)ξi 

] 
, 

s . t ., κi , θi , ξi > 0 (3) 

here κ i , θ i and ξ i are weighting factors for the node i. The bigger

alues of κ indicate that power saving is more important than the

acket delivery ratio, and the relatively smaller κ values to θ and ξ
re vice versa. P i is within the strategy space of player i . To max-

mize individually payoffs, the transmit power should be decided

epending on other players’ power levels in the system. 

.2. Cognitive hierarchy thinking mechanism 

Traditional game theory is a mathematical system for analyz-

ng and predicting how game players behave in strategic situations.

t assumes that all players form beliefs based on an analysis of

hat others might do, and choose the best response given those

eliefs. However, this assumption is obviously not satisfied under

he real world environment; experiments have shown that players

o not always act rationally. To redeem this major shortcoming,

he behavioral game theory offers a more realistic model for play-

rs with bounded rationality. The primary goal of behavioral game

heory is to make accurate predictions [10–11] . To satisfy this goal,

he Cognitive Hierarchy (CH) mechanism was developed to provide

nitial conditions for models of learning while predicting behaviors

n non-cooperative games [12] . For the player i , strategy attractions

re mapped into probabilities; the selection probability for the l th

trategy ( P rob l 
i 
( t + 1 ) ) for the game round t + 1 is defined as fol-

ows. 

 rob l i (t + 1) = 

exp( λ × A 

l 
i 
(t) ) ∑ 

k ∈ S i 
exp (λ × A 

k 
i 
(t)) 

, s . t ., l ∈ S i (4)

here λ is the response sensitivity, and A 

k 
i 
(t) is the player i ’s at-

raction to choose the strategy k at time t . We assume that the

layers adjust their attractions for each strategy during the game

rocess. If the λ is infinite, a player gets greedy learning, in which

nly the action with the highest propensity is taken. If λ approxi-

ates zero, all strategies have equal probability. Therefore, the key

hallenge is to find an adaptive value of λ that achieves a rea-

onable trade-off [8] . In this work, λ is decided according to the

layer’s thinking level. 

To compute a strategy attraction ( A ( • )), we should know the

ther players’ decisions. Reasoning about other players might also

e limited, because players are not certain about other players’ ra-

ionality. In the CH mechanism, the thinking mechanism is mod-

led by characterizing the number of levels of iterated thinking

hat subjects do, and their decision rules. If some players are zero-

evel thinkers, they do not reason strategically at all, and ran-

omize equally over all strategies [8–11] . Players, who do one-

evel of thinking, do reason strategically and believe others are

ll zero-level thinkers. Proceeding inductively, players who are

 -level thinkers assume that all other players use zero to K -1

evel thinking. The key issue in CH thinking mechanism is to de-

ide the frequencies ( f ( K )) of K -level thinkers. From a common-

ense standpoint, f ( K )/ f ( K −1) should be declining in K ; in general

 ( K )/ f ( K −1) ∝ 1/ K . It turns out to imply that f ( K ) has a Poisson dis-

ribution with mean and standard deviation τ . Therefore, the fre-

uency of level K types is f (K) = 

e −τ ×τK 

K! where τ is an index of

he degree of bounded rationality in the population [8,11] . 
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Fig. 1. System model for our proposed scheme. 
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Given this consideration, the player i using K -level thinking

computes his attraction ( A 

l 
i 
( K| t + 1 ) ) for the strategy l at the time

t + 1 like as 

A 

l 
i ( K| t + 1 ) = 

∑ 

h ∈ S −i 

( 

U i 

(
s l i , s h −i 

)
×

[ 

K−1 ∑ 

c=0 

(
f ( c ) ∑ K−1 

c=0 f ( c ) 

× P rob h −i ( c| t ) 
) ] ) 

s . t . P rob h −i ( c| t ) = 

exp ( λc × A 

h 
i 
(c| t)) ∑ 

e ∈ S −i 
exp 

(
λc × A 

e 
i ( c| t ) 

) and 

λc = 

1 

1 + ω × e −ε×t 
(5)

where P rob h −i 
(c| t) is the predicted probability of the lower level

thinkers, and λc is obtained according to the thinking levels ( c ) of

players. h is a strategy for players without the player i ( S − i ). ω and

ε are the control parameters for responsive sensitivity. 

At each stage of behavioral game, players seek to play the best

response with the combined effect of all other players’ actions (i.e.,

s h −i 
). According to beliefs about what others will do, players are

mutually consistent; that is, each player’s belief is consistent with

what the other players actually do. Therefore, instead of finding a

static equilibrium point, players try to maximize their satisfactions

through a cognitive thinking process. All the take together, we in-

troduce a new solution concept, called Mutually Consistent Behavior

Equilibrium ( MCBE ). The MCBE is a set of strategies with receiving

feedbacks. When a set of strategies has chosen by all players and

the change of all players’ payoffs are within a pre-defined mini-

mum bound ( �), this set of strategies constitute the MCBE . That is

formally defined as follows. 

MCBE = 

{{
P t 1 × · · · × P t i × · · · × P t N 

}
| max 

i 

{(
P t i − P t−1 

i 

)| 1 ≤ i ≤ N 

}
< �

}
(6)

where N is the total number of players. The MCBE is a near-Nash

equilibrium. In the MCBE , players have no incentives to deviate

their beliefs and strategies. Therefore, the MCBE can capture the

idea that a player will have to take into account the impact of his

current strategy on the future strategy of other players 
.3. The main steps of proposed algorithm 

Recently developed behavioral game theory has forced a re-

valuation of the conventional concept of perfect-rationality used

n classical game theory. Therefore, behavioral game models try

o determine how players actually behave in strategic situations

y using experimental settings, and have led to advancements in

he modeling and identification of bounded rationality in decision

aking [14] . A general figure of our system model is shown in

ig. 1. 

Usually, optimal solutions have exponential time complexity.

herefore, they are impractical in real-time process [24–25] . In

his study, we do not focus on trying to get an optimal solution

ased on the traditional approach. Our solution concept based on

he behavioral game model only needs polynomial time complex-

ty to capture the adaptation of players and to reach the equilib-

ium over time. In particular, we investigate some of the reasons

nd probable lines for justifying bounded rationality, and develop

 new interactive behavioral game model to solve the power con-

rol problem in IoT systems. Under dynamic changing situations,

ur approach can provide an effective MCBE solution in an accept-

ble time constraint. Even though, it does not guarantee the perfor-

ance optimization, our MCBE concept can make this equilibrium

ossible in the real world operations. The main steps of the pro-

osed algorithm are given next and described as a flow diagram in

ig. 2. 

tep 1: At the initial behavioral game iteration ( t = 1), all attrac-

tions ( A ( ·)) for strategies are assumed to be equal. This

starting guess guarantees that each strategy (i.e., power

level) enjoys the same benefit at the beginning of the

game. 

tep 2: Each game iteration, players obtain the current SINR ( γ ( ·))
and packet delivery ratio ( PDR ( ·)). And then, the payoff

( U ( ·)) of each player is estimated individually according to

( 1 ),(2) and ( 3 ). 

tep 3: During the iterative game process, the strategy selection

probability ( Prob ( ·)) for the next game round is calculated

based on the Eq. (4) . The response sensitivity ( λ) is de-

cided according to the player’s thinking level. 

tep 4: Though the CH thinking mechanism, the strategy attrac-

tions ( A ( ·)) for the next game round is given by ( 5 ). 
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Fig. 2. Flow diagram for the proposed algorithm. 
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tep 5: At each stage of the behavioral game, players seek to play

the best response with the combined effect of all other

players’ actions. To adapt the IoT system dynamics, our

power adjustment process is iteratively applied in a step-

by-step manner. 

tep 6: When strategies have been chosen by all players and the

change of all players’ payoffs are within a pre-defined

minimum bound ( �), this set of strategies constitute the

MCBE . We assume that the IoT system reaches to an effi-

cient stable state; the game process is temporarily stop. 

Step 7: Under widely diverse IoT environments, each player is self-

monitoring constantly to estimate the current situation; If

his payoff is changed larger than �, our power control al-

gorithm is re-triggered, and back to the Step 2 to obtain a

new solution. 

. Performance evaluation 

In this section, the effectiveness of the proposed scheme is val-

dated through simulation. Using a simulation model, we com-

are the performance of the proposed scheme with these existing
chemes [5,6] to confirm the superiority of the proposed approach.

or the performance evaluation, we focus on exploring the normal-

ze throughput, payoff, success probability for target SINR and rate

f payoff changes during game plays. 

.1. Simulation results for the simple IoT system 

First, we consider a simple IoT system with small number

f network devices. The assumptions implemented in simulation

odel are as follows. 

• The simulated system consists of 10 network agents (i.e., play-

ers) for the IoT system. 

• In each network agent (i.e., game players), a new service re-

quest is Poisson with rate ρ (services/s), and the range of of-

fered service load was varied from 0 to 3.0. 

• The thinking levels of players are given randomly from 1 to 5. 

• The number of strategies (m) for players is 5 and each strategy

( P ) is P ∈ S= {50,60,70,80,90,100 mW}. 

• The resource of IoT system is wireless bandwidth (bps) and the

total resource amount is 30 Mbps. 
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Table 1 

System parameters used in the simulation experiments. 

Traffic class Message application Bandwidth requirement Connection duration Average/sec 

I delay-related applications 32 Kbps 30 s (0.5 min) 

II event-related applications 32 Kbps 120 s (2 min) 

64 Kbps 180 s (3 min) 

III general applications 128 Kbps 120 s (2 min) 

256 Kbps 180 s (3 min) 

IV multimedia applications 384 Kbps 300 s (5 min) 

512 Kbps 120 s (2 min) 

Parameter Value Description 

N 10 the number of network agents (i.e., players and | N | =10) 

m 5 the number of strategies (i.e., transmission power levels) 

η, ϱ 1, 1 the control parameters for packet delivery ratio 

P min , P max 50 mW,100mW pre-defined minimum and maximum power levels 

K 5 the number of thinking level of players 

θ , ξ 3, 1 relative weighting factors for the packet delivery ratio in utility function 

κ 1 relative weighting factor for the power saving in utility function 

σ 1 × 10 −10 AWGN background noise 

τ 1 .2 an index of the degree of bounded rationality 

� 0 .15 a pre-defined minimum bound 

ω, ε 3, 5 the control parameters for responsive sensitivity 

Table 2 

System parameters used in the simulation experiments. 

Traffic class Message application Bandwidth requirement Connection duration Average/sec 

I delay-related applications 3.2 ∼ 6.4 Mbps 30 s (0.5 min) 

II event-related applications 3.2 ∼ 6.4 Mbps 120 s (2 min) 

6.4 ∼ 12.8 Mbps 180 s (3 min) 

III general applications 12.8 ∼ 25.6 Mbps 120 s (2 min) 

25.6 ∼ 38.4 Mbps 180 s (3 min) 

IV multimedia applications 38.4 ∼ 51.2 Mbps 300 s (5 min) 

51.2 ∼ 64 Mbps 120 s (2 min) 
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• Network performance measures obtained on the basis of 50

simulation runs are plotted as a function of the offered traffic

load. 

• The IoT performance is estimated in terms of the normalize

throughput, payoff, successful probability for target SIN R and

rate of change payoff during game plays. 

• The service size of each application is exponentially distributed

with different means for different message applications. 

• For simplicity, we assume the absence of physical obstacles in

the experiments. 

Experimental scenarios of the power control problem in IoT sys-

tems depend on a set of parameters that affect both the perfor-

mance of the algorithm, as well as the quality of produced solu-

tion. Our simulation model is a representation of the IoT system

that includes system entities, and the behavior and interactions of

those entities. To facilitate the development and implementation of

our simulator, Table 1 lists the system parameters [16,17] . 

An example of simulation scenario is as follows. There are mul-

tiple smart devices, generally connected to other devices or net-

works via wireless protocol. In order to implement the repeated

game approach, we partition the time-axis into equal intervals of

length (i.e., game iterations t ∈ [1.. T ]). At the initial time ( t = 1), a

smart device (e.g., ATIV Smart Laptop) randomly selects its power

level. Other smart devices also select their power levels. Based on

the other devices’ power levels, the received payoff of each smart

device is decided at t = 2. To get an appropriate performance bal-

ance between contradictory requirements, each device adjust in-

dividually its power level according to ( 4 ). Therefore, the power

level can be chosen based on the individual IoT device’s preference

with bounded rationality. Each device’s power level might affect

the power level of other devices. Through this interaction, control

decisions are coupled with one another; the result of the each de-
ice’s decisions is the input back to the other user’s decision pro-

ess. As time is going, the dynamics of the interactive feedback

echanism can cause cascade interactions of devices and devices

an make their decisions to quickly find the most profitable solu-

ion. Finally, it can lead the IoT system to an efficient stable state. 

As mentioned earlier, the FMPC scheme [5] and the DDPC

cheme [6] have been published recently and introduced unique

hallenges for security problems. To confirm the superiority of

he proposed approach, we compare the performance of the pro-

osed scheme with these two existing schemes [5–6] and the BIPC

cheme. 

Fig. 3 shows the performance comparison for the normalized

hroughput. Usually, throughput is the rate of successful message

elivery over a communication channel. It is usually measured

n bits per second (bit/s or bps). A key observation of Fig. 3 is

hat all the schemes have similar trends. However, the proposed

cheme has an adaptability to consider real time system informa-

ion. Therefore, our cognitive hierarchy thinking mechanism effec-

ively control power levels under various offered load, and could

ead to a higher system throughput. From simulation results, the

ain observation is that the throughput of the proposed scheme

s higher than other existing schemes under various offered loads. 

Fig. 4 presents the performance comparison in terms of the

layer’s payoff; it is normalized for fair comparison. In this work,

t is estimated as the accumulated utility value during the game

rocess. From the viewpoint of players, payoff is a very important

actor to evaluate the system performance. It can be seen that the

ayoff gain increases monotonically with the increase of the of-

ered load. This is intuitively correct. Under widely diverse IoT en-

ironments, our cognitive hierarchy thinking mechanism can make

trategic decisions effectively in a distributed fashion. It could lead

o higher player’s payoff than the FMPC, DDPC and BIPC schemes;

t is highly desirable property. 
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Fig. 3. Normalized Throughput for the simple IoT system. 
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The curves in Fig. 5 show the success probability for target SINR .

f the SINR is below a target level, it is unacceptable. Based on

his consideration, all the players try to maintain the minimum

INR value. To increase the success probability, the proposed game

odel iteratively adjusts the power level in a step-by-step manner.

ccording to the feedback interaction process, our scheme con-

tantly monitors the current system conditions, and efficiently re-

ponse through an adaptive online fashion. From the simulation re-

ult, we can observe that the proposed scheme gains a higher suc-

ess probability for target SINR than the other schemes by adopting

ur behavioral game approach. 

Fig. 6 shows the rate of payoff changes. When a player chooses

 strategy, the current IoT environment can be changed and it
riggers reactions by other players. After making further changes

mong players, dynamic interactive process gradually leads the IoT

ystem into a stable state (i.e., MCBE ) with receiving feedbacks.

t is an important novelty of our proposed scheme. Under vari-

us system traffic load conditions, the proposed scheme can main-

ain an excellent system stability compared with the other existing

chemes. 

Simulation results obtained from Figs. 3 to 6 show that the pro-

osed scheme offers a better system throughput and payoff while

nsuring a higher success probability for target SINR . In addition,

e can facilitate players’ behaviors to reach a stable system equi-

ibrium. These features are highly desirable for multi-user IoT sys-

em managements. 
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Fig. 5. Success Probability for Target SINR for the simple IoT system. 
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3.2. Simulation results for the large and complex IoT system 

In this simulation, we consider a complex IoT system with large

number of network devices; they can have various data rates. To

apply the proposed model in the situation with a large number

of network devices, they must be grouped in a distributed man-

ner. Therefore, each source–destination node pair creates a clus-

ter, which consists of interfering neighbor devices. And then, our

scheme is applied independently for each cluster. The assumptions

implemented in this simulation model and the system parameters

for various data rates are as follows. 

• The simulated system consists of total 300 network agents (i.e.,

players) for the IoT system. 
• The total resource of IoT system is wireless bandwidth (bps)

and the total resource amount is 100 Gbps. 

• Players are clustered based on the current position. They are

randomly distributed. 

• Performance criteria are the same as the simulation for the

simple IoT system model. 

• The other assumptions in this simulation are the same as the

simulation scenario for the simple IoT system model. 

In Figs. 7–10 , we provide simulation results by comparing the

erformance of the proposed scheme with the FMPC, DDPC and

IPC schemes. Simulation criteria are also the normalize through-

ut, payoff, success probability for target SINR and rate of payoff

hanges during game plays. 
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Fig. 7. Normalized Throughput for the large and complex IoT system. 
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Fig. 8. Normalized Payoff for the large and complex IoT system. 
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In summary, simulation results obtained from Figs. 7 to

0 show that the performance trends of all the schemes are very

imilar to the simulation results of simple IoT system. In partic-

lar, our iterative behavioral game approach is implemented in-

ependently and individually while maintaining desirable features.

herefore, the proposed scheme constantly monitors the current

ystem conditions, and can be extended for the large and complex

oT system. As expected, the proposed scheme generally exhibits

uperior performance compared with the other existing schemes

nder the scenario of large and complex IoT system. In addition,

e can obtain a well-balanced system performance, while the

MPC , the DDPC and the BIPC schemes cannot offer such an at-

ractive network performance. Simulation analysis can prove the

ffectiveness of the proposed scheme. 

. Summary and conclusions 

For the last decades, a new game theory research has relaxed a

utual consistency to predict how players are likely to behave in
ne-shot games before they can learn to equilibrate. In this paper,

e have looked at a behavioral game model to explain what hap-

ens in the player’s mind during the course of creative process.

ased on the cognitive hierarchy mechanism, we design a new

ower control scheme for IoT systems. The proposed scheme dy-

amically re-adjusts the current power strategy, and approximates

 new solution in an iterative learning methodology. In the pro-

osed scheme, strategic thinking, best-response, and mutual con-

istency are key modeling principles. Therefore, our approach en-

bles a shift from association-based to causation-based thinking,

hich facilitates the fine-tuning and manifestation of the creative

ork. By analyzing the simulation results, it concludes that the

roposed scheme can effectively deal with the IoT system power

ontrol problem than other existing schemes. Our behavioral game

pproach is not only better for the power control problem, but it is

lso a powerful tool to model a wider range of real life situations,

uch as political science, sociology, psychology, biology, and so on,

here conflict and cooperation exist. 
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Fig. 9. Success Probability for Target SINR for the large and complex IoT system. 
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