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a b s t r a c t 

Large-scale Internet applications provide service to end users by routing service requests to geograph- 

ically distributed data centers. Two concerns exist in service provisioning by the data centers. One is 

that users require to experience low latency while accessing data from data centers. The other is to re- 

duce the energy consumed by network transport and the servers in the data centers. In this paper, we 

tackle the problem of green data placement in data centers to strike a tradeoff among access latency, 

energy consumption of data centers and network transport. We propose two request-routing algorithms, 

GLDP-NS (Green Latency-aware Data Placement - No consideration of the current data placement Status 

of the server) and GLDP-WS (Green Latency-aware Data Placement - With consideration of the current 

data placement Status of the server). We show that the green latency-aware data placement problem 

is N P -complete and algorithm GLDP-NS is a 3-approximation algorithm for the data placement prob- 

lem without considering the data placement status of the server. We evaluate the performance of the 

proposed algorithms through simulations, and the simulation results demonstrate that the proposed al- 

gorithms can achieve good integrated cost performance of the latency, the energy consumption of data 

centers and network transport. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Large-scale Internet applications, such as social networks, video

distribution networks and content distribution networks, provide

services to hundreds of millions of end users. The applications

achieve enormous scalability and reduce access latency, by rout-

ing service requests to a set of geographically distributed data cen-

ters. For example, Google has more than 30 data centers in at least

15 countries with an estimated 900 K servers [1] and Akamai (the

biggest CDN corporation) has more than 95,0 0 0 servers in nearly

1,900 networks in 71 countries [2] . 

The issue of energy consumption in information technology

equipment has been receiving increasing attention in recent years

and there is an obvious need to reduce the greenhouse impact of

the ICT sector [3–5] . The Energy Consumption Rating (ECR) Ini-

tiatives has published a specification on the energy assessment

of networks and telecom equipments [6] . IEEE has ratified the

IEEE P802.3az Energy-Efficient Ethernet (EEE) standard to address

proactive reduction in energy consumption for networked devices

[7] . It is expected that cloud computing will make significant con-
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ributions to reduce the energy consumption and carbon emissions

ffectively. However, [8] indicates that cloud services mainly focus

n the performance of storage, processing and network transporta-

ion of data transmission between data centers and end users, with

ittle consideration of the energy efficiency. The large-scale data

enters hosting a large amount of servers are big consumers of

lectricity, which is used for servers and cooling system [9] . At the

ame time, the fast-expansion of Internet demand is also consum-

ng increasingly more energy. 

The surge of the usage of the cloud computing services makes

any data centers be deployed all around the world. According to

.S. Environmental Protection Agency ENERGY STAR Program re-

ort, the data centers in USA consume 100 Billion kWh or 7.4 Bil-

ion dollars annually [10] . Currently, the data centers that power

nternet-scale applications consume about 1.3% of the worldwide

lectricity supply [11] . The need to reduce energy consumption

s driven by the engineering challenges and the cost of manag-

ng the energy consumption of large data centers and associated

ooling [12] . Various approaches of energy saving of data centers

ave been proposed, such as dynamic voltage and frequency scal-

ng (DVFS) control approaches [13–17] , virtualization technologies

18–22] , green resource reservation and allocation [23–28] . The

VFS scheme adjusts the CPU power (performance level) accord-

ng to the offered load. Virtualization technology is based on load-

ng more than one virtual machine (VM) on a physical server and,
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hereby reducing the amount of hardware in use and improving

he utilization of resources. In contrast, the scheme of green re-

ource reservation and allocation can save more energy by power-

ng down the components of computing servers. 

Network transport is required to transmit data between users

nd data centers. The transmission and switching network equip-

ents consume approximately 14.8% of the total ICT energy con-

umption, which will increase to 21.8% by 2020 [29] . The ever-

rowing size and number of network equipments also increase the

nergy consumption of the network [30] in both of the optical

evices [31] and the electronic equipment [4,32] [33,34] . are the

rst to come up with the novel idea towards green networking.

ther research has been conducted on green networks since then,

ealing with the energy consumption of network components

33,35–37] , link data rate [7,38,39] , and network design [40] . Some

etwork components may be put into sleep mode during idle time

o reducing energy consumption. The operators can adapt the link

ate of network operation to the offered workload, reducing the

nergy consumed when actively processing packets. 

For the cloud service users, latency is an important concern.

he high access latency has been shown to have a negative eco-

omic impact [41] , since both users and applications require low

etwork latency. Some applications even require stringent latency

uarantees in the order of nanoseconds [42] . Low latency will sim-

lify application development and increase web application scala-

ility [43] . The access latency between the users and data centers

re related to the data center locations and Internet routing be-

ween the data centers and the users [44] . Recently, several pro-

osals are put forward to reduce the network latency, which in-

ludes the rise of the data centers and the next generation of Eth-

rnet switching chips [43] . Data centers can be built close to their

sers. New switching chips can promise to make their bandwidth

lentiful and cheap. 

There has been some work on reducing the electricity con-

umption and carbon emissions of the data centers and the net-

orks in recent years. A request-routing scheme to minimize the

lectricity bill of multi-datacenter systems is proposed in [45] .

46] improves the algorithms in [45] on multi-region electricity

arkets to better capture the fluctuating electricity price to re-

uce electricity cost. [47] proposes a resource management frame-

ork allowing cloud providers to provision resources across a geo-

istributed infrastructure with the aim to reduce operational costs

nd green SLA violation penalties, under the constraint that car-

on emissions generated by the leased resources should not ex-

eed a fixed bound. For the operational cost minimization prob-

em in a distributed cloud computing environment that not only

onsiders fair request rate allocations among web portals but also

eets various Service Level Agreements (SLAs) between users and

he cloud service provider [48] , proposes an adaptive operational

ost optimization framework incorporating time-varying electricity 

rices and dynamic user request rates, and devises an approxima-

ion algorithm to maximize the number of user requests admitted

49] . considers the joint optimization problem of minimizing car-

on emission and electricity cost. [50] proposes an algorithm to

eographically balance load while taking carbon emission into ac-

ount. [51] adjusts the number of servers running in data centers

or a tradeoff between latency and carbon emissions [8] . provides

 method to calculate the energy consumption of the network,

hich can estimate the energy consumption required to transport

ne bit from a data center to a user through the Internet [52] .

ointly considers the electricity cost, service level agreement (SLA)

equirement, and emission reduction budget by exploiting the spa-

ial and temporal variabilities of the electricity carbon footprint.

9] proposes a request-routing scheme, FORTE, allowing operators

o strike a tradeoff among electricity costs, access latency, and car-

on emissions. The carbon emissions of servers in the data centers
 t  
re closely related with the amount of electricity consumed and

he resources used to produce the electricity. 

To the best of our knowledge, there is little information avail-

ble in literature about considering the three factors of the latency,

he energy consumption of the servers and the network transport

hen placing data in the data centers. In this paper, we tackle the

roblem of energy-efficient data placement in the data centers us-

ng an objective function that incorporates the three factors above.

The main contributions of this paper are as follows. We inves-

igate the data placement problem to enable the tradeoff among

he access latency, the energy consumption of the servers in the

ata centers, and the energy consumed by the network trans-

ort. Data placement cost calculation incorporates the three fac-

ors above, and propose two request-routing algorithms, GLDP-WS

Green Latency-aware Data Placement - With consideration of the

urrent data placement Status of the server) and GLDP-NS (Green

atency-aware Data Placement - No consideration of the current

ata placement Status of the server) based on the proposed place-

ent metric. We also conduct experiments through simulations to

valuate the performance of the proposed algorithms. Experimen-

al results demonstrate the proposed algorithms are very promis-

ng. 

The rest of the paper is organized as follows. The problem un-

er study is formally defined in Section 2 . The algorithms GLDP-NS

nd GLDP-WS are presented in Section 3 . Section 4 reports the per-

ormance evaluation. The paper concludes in Section 5 . 

. Problem formulation 

Data centers serve users by providing the data required by the

sers. Each data chunk, i.e. each piece of data, required by the

sers must be placed in a server in a data center. A data chunk

ay be accessed by all the users. The data centers retrieve the data

rom the servers and transmit the data to the users through Inter-

et when the users require the data. For example, a video-sharing

ebsite may place the videos in the data center servers, and the

sers worldwide can watch the videos retrieved by the website. 

While placing a data chunk in a data center, we consider three

actors: (1) the access latency of the data, (2) the energy consump-

ion of the network transport for data transmission between the

sers and the data centers, and (3) the energy consumed by the

ervers in the data centers. 

The network model for the data transmission between the data

enters and the users through Internet is shown in Fig. 1 , which

s similar to the one in [8] . The access network is modeled as a

ON [53] . The energy consumption of the access network is largely

ndependent of traffic volume [54] . Therefore, the access network

oes not influence the result as it is a fixed value. The energy e I ( u i ,

c j ) required to transport one bit from a data center to a user

hrough the Internet is estimated via Eq. (1) similar to similar to

8] . 

 I ( u i , d c j ) = 6 

(
3 

P es 

C es 
+ 

P bg 

C bg 

+ 

P g 

C g 
+ 2 

P pe 

C pe 

)

+2 

P c 

C c 
h c ( u i , d c j ) + 

P w 

2 C w 

h c ( u i , d c j ) (1) 

here P es , P bg , P g , P pe , P c and P w 

are the power consumed by the

thernet switches, broadband gateway routers, data center gate-

ay routers, provider edge routers, core routers, and WDM trans-

ort equipment, respectively. C es , C bg , C g , C pe , C c and C w 

are the

apacities of the corresponding equipment in bits per second. The

actor of six accounts for the power requirements for redundancy

factor of 2), cooling and other overheads (factor of 1.5), and the

act that current network typically operate at under 50% utiliza-

ion [55] while still consuming almost 100% of maximum power
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Fig. 1. Schematic of networks connecting users to a data centers and the data center infrastructure. 
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[56] (factor of 2). We assume the power usage effectiveness (PUE)

of the Internet is 1.5, where PUE is a measure of how efficiently a

data center delivers power to the computing equipment. The factor

of three for Ethernet switches is to include the Ethernet switches

in the metro network as well as the Ethernet switches in the core

inside the data center. The factor of two for edge routers is to in-

clude the edge router in the edge network and the gateway router

in the data center. The factor of two for core routers allows for the

fact that core routers are usually provisioned for future growth of

double the current demand [57] . The factor of h c ( u i , dc j ) accounts

for the number of hops during the data transmission in the core

network. In general, the distance between user u i and data center

dc j provides h c ( u i , dc j ) step increases. 

We assume a server will consume the full-system power when

the server is on, because (1) it is an estimator accurate enough to

determine the relative rank in energy consumption; (2) no general

analytical model of server energy consumption is available for var-

ious server models at different work loads [58,59] . 

Some notations used in this paper are listed as follows: 

• p ( u i | d k ) is the probability that a given request is asking for data

d k and it comes from user u i ; 

• s ( d k ) is the size of data d k ; 

• l ( u i , dc j , d k ) is the average latency between user u i and data

center dc j for data d k ; 

• rep ( dc j , s m 

, d k ) is 1 if data d k is placed in server s m 

in data cen-

ter dc j ; otherwise, it is 0; 

• rep ( dc j , s m 

) is 1 if server s m 

in data center dc j has been placed

some data chunks; otherwise, it is 0; 

• e S ( s m 

, dc j ) is the average energy consumption of server s m 

in

data center dc j ; 

• PUE ( dc j ) is the PUE of data center dc j ; 

• P 
dc j 
s m is the average working power of sever s m 

in data center

dc j ; 

• C ( s m 

, dc j ) is the storage capacity of server s m 

in data center dc j .

In this paper we aim to find a proper placement location for

each data chunk, with the objective to strike a tradeoff among the

data access latency, the energy consumption of the severs and the

network transport for data access. The problem is formulated as

follows. 

Minimize: 

λ1 

∑ 

u i ,dc j , s m , d k 

rep(d c j , s m 

, d k ) p( u i | d k ) l( u i , d c j , d k ) 

+ λ2 

∑ 

dc j , s m 

rep(d c j , s m 

) e S (d c j , s m 

) 

+ λ3 

∑ 

u i ,dc j , s m , d k 

s ( d k ) rep(d c j , s m 

, d k ) p( u i | d k ) e I ( u i , d c j ) (2)

Subject to:
ep(dc j , s m 

) = min 

( 

1 , 
∑ 

d k 

rep(d c j , s m 

, d k ) 

) 

, ∀ dc j , s m 

(3)

∑ 

c j , s m 

rep(d c j , s m 

, d k ) = 1 , ∀ d k (4)

 

u i 

p( u i | d k ) = 1 , ∀ d k (5)

 S (d c j , s m 

) = P 
d c j 
s m ∗ P UE(dc j ) (6)

 

d k 

rep(d c j , s m 

, d k ) s ( d k ) ≤ C( s m 

, d c j ) , ∀ dc j , s m 

(7)

λ1 , λ2 , and λ3 in Eq. (2) are constant normalized weights used

or weighting among the three sub-objectives of the latency, the

nergy consumption of the servers in the data centers and the en-

rgy consumed by the network transport. Eq. (3) mandates the

ata placement incurs access delay and energy consumption. Eq.

4) requires each data chunk to be placed in a data center. Eq.

5) determines the request for a data chunk comes from one of the

sers. Eq. (6) defines that the energy consumption of the servers

hould take into account the PUE of the data center. Eq. (7) dictates

he size of the data stored in a server cannot exceed the capacity

f the server. 

. Green latency-aware data placement algorithms 

Note that the data placement status of the servers may be dif-

erent when a data chunk is to be placed. Depending on how to

alculate the energy consumption cost of the server, we divide the

ata placement problem into two sub-problems: (1) Data Place-

ent problem with No consideration of the current data place-

ent Status of the server ( DPNS ), where the server energy con-

umption cost of accommodating a data chunk is closely related to

he power of the server; (2) Data Placement problem With consid-

ration of the current data placement Status of the server ( DPWS ),

here the server energy consumption cost of a server is only in-

urred when the server has to accommodate some data without

egard to the number of data placed in the server. 

xample 1. In Fig. 2 , data d k needs to be placed, and both server

 a in data center dc 1 and server s b in data center dc 2 have enough

torage capacities to accommodate data d k . The average working

ower of servers s a and s b is 10 0 0 W and 90 0 W , respectively. Data

enters dc 1 and dc 2 have the same PUE. The distances from each

ser to data centers dc 1 and dc 2 are also the same. Server s a has

een placed some data, while server s b has not. In problem DPWS,

ata d k will be placed in server s a , since the server energy con-

umption cost is viewed as 0. In contrast, data d k will be placed

n server s b in problem DPNS, since the power of server s b is less

han that of server s a . 
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Fig. 2. Example of data placement for DPWS and DPNS. 
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heorem 1. Data placement problem DPNS is N P -complete. 

roof. We show that the Generalized Assignment Problem (GAP) , a

ell-known N P -complete problem, can be reduced to the data

lacement problem DPNS [60] . The GAP problem is defined as fol-

ows: A pair ( B, S ) where B is a set of M bins (knapsacks) and S is

 set of N items. Each bin C m 

′ ∈ B has capacity c [ m 

′ ], and for each

tem k and bin C m 

′ we are given a size s [ k, m 

′ ] and a profit p ( k, m 

′ ).
he objective is to find a subset U ⊆ S of items that has a feasible

acking in B , such that the profit is maximized. 

The server set consisting of all the servers in all the

ata centers in the data placement problem DPNS is S ′ =
 s ′ 

1 
, s ′ 

2 
, s ′ 

3 
, . . . , s ′ 

m 

′ , . . . } , where each server s m 

in each data center

c j corresponds to a server s ′ 
m 

′ in S ′ . The capacity of server s ′ 
m 

′ 
s denoted as C(s ′ 

m 

′ ) . The polynomial-time reduction from one in-

tance of the GAP problem to one instance of the data placement

roblem DPNS is as follows. B, S, c [ m 

′ ] and s [ k, m 

′ ] in the GAP

roblem are equivalent to the set of servers S ′ , the set of data

hunks { d 1 , d 2 , d 3 , . . . } , the capacity of each server C(s ′ 
m 

′ ) , and the

ize of each data s ( d k ) in the data placement problem, respectively.

ssuming the maximum cost of data placement in the DPNS prob-

em is maxcost , the profit of placing data d k in server s m 

in data

enter dc j is maxcost − cost( d k , d c j , s m 

) . The profit p ( k, m 

′ ) in the

AP problem is essentially the same as the profit of placing a spe-

ific data chunk d k in a specific server s m 

′ in the data placement

roblem DPNS. By this reduction, we can easily see that there is

 solution to one instance of the data placement problem DPNS if

nd only if there is a solution to one instance of the GAP problem.

ence, the data placement problem DPNS is N P -complete. �

For data placement problem DPWS, the cost to place data d k 
n server s m 

in data center dc j is dynamic depending on whether

erver s m 

has been accommodating some data, which is more com-

lex than the data placement problem with DPNS. Therefore, the

ata placement problem DPWS is also N P -complete. 

We propose two algorithms GLDP-NS and GLDP-WS for the

wo data placement sub-problems DPNS and DPWS, respectively. If

erver s m 

has not accommodated any data before placing data d k ,

oth algorithms GLDP-NS and GLDP-WS calculate the data place-

ent cost with Eq. (8) . Otherwise, the placement cost is computed

ia Eq. (9) with GLDP-WS, while the placement cost is calculated

ia Eq. (8) with GLDP-NS. That is, the data placement will not incur

ny additional server energy consumption if the server is accom-

odating some other data. 

ost( d k , d c j , s m 

) = λ1 

∑ 

u i 

l( u i , d c j ) p( u i | d k ) + λ2 e S (d c j , s m 

) 

+ λ3 

∑ 

u i 

s ( d k ) e I ( u i , d c j ) p ( u i | d k ) (8) 

ost ′ ( d k , d c j , s m 

) = λ1 

∑ 

u i 

l( u i , d c j ) p( u i | d k ) 

+ λ3 

∑ 

s ( d k ) e I ( u i , d c j ) p ( u i | d k ) (9) 

u i 

a

.1. GLDP-NS Algorithm 

Assuming M and N are the number of data center servers and

he number of data chunks, respectively. The proposed algorithm

LDP-NS is described in Algorithm 1 , which places the data in the

ata center servers. Specifically, the algorithm proceeds iteratively.

ithin each iteration, a single server is filled up with data. This

rocedure continues until all data are placed. 

Function PDS (Place Data in a Server) shown in Algorithm 2

laces data in a server s ′ 
m 

′ so as to make the placement profit

aximized. That is, PDS tries to maximize the placement profit of

very unit capacity in server s ′ 
m 

′ . The profit density value is in-

roduced to denote the ratio of profit p(k, m 

′ 
) to data size s ( d k ).

DS keeps putting the data in s ′ 
m 

′ in the non-ascending order of

he profit density value, until server s ′ 
m 

′ cannot accommodate any

ther data. Note that server s ′ 
m 

′ may have some free space not

arge enough to accommodate the unplaced data, which reduces

he placement profit of every unit capacity in server s ′ 
m 

′ . There-

ore, if the total profit of the selected data is less than the profit of

he first data d k ′ which cannot be put in s ′ 
m 

′ , PDS removes all the

elected data in server s ′ 
m 

′ and places data d k ′ in server s ′ 
m 

′ . 
In algorithm GLDP-NS, ρ is the profit matrix, where each entry

k,m 

′ in ρ is the profit of placing data d k in server s ′ 
m 

′ . ρm 

′ in-

icates the profit matrix when dealing with server s ′ 
m 

′ . Algorithm

LDP-NS deals with all the servers iteratively with the initial profit

atrix ρ , in which each entry is ρk,m 

′ = p(k, m 

′ ) . After performing

unction PDS for each server s m 

′ using the profit matrix ρm 

′ , GLDP-

S decomposes the profit matrix ρm 

′ into two profit matrices ρ1 
m 

′ 
nd ρ2 

m 

′ . This decomposition implies that ρ1 
m 

′ is identical to ρm 

′ 
ith regard to server s ′ 

m 

′ ; in addition, if data d k ∈ S m 

′ , then the

lacement of d k is assigned the same profit as ρm 

′ [ y, m 

′ ] for all the

ervers in ρ1 
m 

′ . All the other entries in ρ1 
m 

′ are assigned the value

. The data are placed in the servers in descending order of server

ndex. If data d k is placed in server s ′ 
m 

′ , d k is removed from the

elected data set S γ , where 1 ≤ γ ≤ m 

′ − 1 . 

heorem 2. PDS described in Algorithm 2 is a 2-approximation algo-

ithm for placing data in a server. 

roof. A profit p ( k, m 

′ ) can be obtained for each data chunk d k ∈
 d 1 , d 2 , d 3 , . . . } when placed in server s ′ 

m 

′ . Assuming d k ′ is the first

ata chunk which cannot be put in s ′ 
m 

′ , f () is the profit function,

 is the selected data set, K 

∗ is the best solution for placing data

n server s ′ 
m 

′ , and p(θ, m 

′ ) = max { p(1 , m 

′ ) , p(2 , m 

′ ) , p(3 , m 

′ ) , . . . } ,
e can get f (K 

∗) ≤ ∑ k ′ −1 
k =1 

p(k, m 

′ ) + p(θ, m 

′ ) . Note that f (K) =
ax { ∑ k ′ −1 

k =1 
p(k, m 

′ ) , p(θ, m 

′ ) } ≥ 0 . 5( 
∑ k ′ −1 

k =1 
p(k, m 

′ ) + p(θ, m 

′ ) ) ≥
 . 5 f (K 

∗) . Therefore, the approximation ratio of PDS is 2. �

heorem 3. F (), F 1 (), and F 2 () are functions to a problem with a set

f constrains C, and F () = F 1 () + F 2 () . If a is an α-approximate solu-

ion to (C, F 1 ()) and (C, F 2 ()) , it is also an α-approximation solution

o (C, F ()) . 

roof. Assuming a ∗, a ∗
1 

and a ∗
2 

are the optimal solutions for

(C, F ()) , (C, F 1 ()) and (C, F 2 ()) , respectively, F (a ) = F 1 (a ) + F 2 (a ) ≥
∗ F 1 (a ∗

1 
) + α ∗ F 2 (a ∗

2 
) ≥ α ∗ ( F 1 ( a 

∗) + F 2 ( a 
∗)) ≥ α ∗ F ( a ∗) . �

heorem 4. Algorithm GLDP-NS described in Algorithm 1 is 3-

pproximation for the data placement problem DPNS. 

roof. Assume ρ( S ) is the profit gained by data placement S . The

roof is given by induction. 

Base case: When there is only one server, the data place-

ent returned by the algorithm, S M 

= S M 

, is 2-approximation be-

ause S M 

is the result produced by function PDS which is 2-

pproximation. Therefore, S is 3-approximation with ρ( M ). 
M 
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Algorithm 1 GLDP-NS Algorithm 

1: Set ρ1 ← ρ and m 

′ = 1 ; 

2: for m 

′ = 1 , 2 , 3 , . . . , M − 1 do 

3: PDS( m 

′ ) using ρm 

′ as the profit matrix, and let S m 

′ be the set of data selected by PDS( m 

′ ); 
4: Decompose the profit matrix ρm 

′ into two profit matrices ρ1 
m 

′ and ρ2 
m 

′ such that for every x and y , where 1 ≤ x ≤ M and 1 ≤ y ≤ N, 

ρ1 
m 

′ [ y, x ] = 

{
ρm 

′ [ y, m 

′ ] i f (y ∈ S m 

′ ) or (x = m 

′ ) 
0 Otherwise 

and ρ2 
m 

′ = ρm 

′ − ρ1 
m 

′ ; 

5: Set ρm 

′ +1 ← ρ2 
m 

′ ; 
6: Remove the column of server s ′ 

m 

′ from ρm 

′ +1 ; 

7: end for 

8: PDS( M) using ρM 

as the profit matrix; 

9: S M 

= S M 

10: for m 

′ = M − 1 .. 1 do 

11: for each d k ∈ S m 

′ do 

12: if d k ∈ ∪ 

M 

i = m 

′ +1 
S i then 

13: A m 

′ = S m 

′ − d k // A m 

′ is a temporary variable; 

14: end if 

15: S m 

′ = {∪ 

M 

i = m 

′ +1 
S i } + A m 

′ ; 
16: end for 

17: end for 

18: Return S 1 in which m 

′ -th element is the set of data placed on server s m 

′ . 

Algorithm 2 PDS Algorithm (m’) 

Input: Data Request from users Probability Matrix P (u i | d k ) 
Input: Network Latency Cost Matrix L (u i , dc j ) 

Input: Network Power Cost Matrix E I (u i , dc j ) 

Input: Servers Power Cost Matrix E S (u i , dc j ) 

Input: Data Size Matrix S(d k ) 

Output: Rep(m 

′ , d k ) 
1: Calculate the profit of placing each data d k in server s ′ 

m 

′ ; 
2: Sort d k by the non-ascending order of the profit density value 

p(k,m 

′ 
) 

s (d k ) 
and put each data chunk in queue; 

3: while server s ′ 
m 

′ has enough capacity to accommodate data d k 
do 

4: Select data d k and put d k in server s ′ 
m 

′ ; 
5: C(s ′ 

m 

′ ) = C(s ′ 
m 

′ ) − s (d k ) ; 

6: end while 

7: if the total profit of the selected data in s ′ 
m 

′ < the profit of the 

first data d k ′ which cannot be put in s ′ 
m 

′ then 

8: Remove all the selected data in s ′ 
m 

′ and place d k ′ in s ′ 
m 

′ ; 
9: end if 

10: Return Rep(m 

′ , d k ) . 
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Induction step: Suppose that S m 

′ +1 is a 3-approximation with

respect to ρm 

′ +1 , and we prove that S m 

′ is also a 3-approximation

with respect to ρm 

′ . There are three parts in profit matrix ρ1 
m 

′ : (1)

the column for server s ′ 
m 

′ , which is the same as the one in ρm 

′ ;
(2) the rows for data in S m 

′ , which is selected by PDS( m 

′ ); and

(3) all the other entries with value 0. Note that the first two parts

in ρ1 
m 

′ can contribute to the data placement, while the third part

cannot. The best result for the first part is 2 ρ1 
m 

′ ( S m 

′ ) , because S ′ m 

is the result produced by function PDS. The optimal result for the

second part is at most ρ1 
m 

′ ( S m 

′ ) , because the placement of data in

S m 

′ in ρ1 
m 

′ is assigned the same profit for all the servers. Therefore,

S m 

′ is a (1 + 2) -approximation, 3-approximation, with ρ1 
m 

′ . Accord-

ing to algorithm GLDP-NS, S m 

′ , the set of data selected for server

s ′ 
m 

′ is a subset of S m 

′ . Therefore ρ( S m 

′ ) ≥ ρ( S m 

′ ) , and S m 

′ is a 3-

approximation solution with ρ1 
m 

′ . 
Profit matrix ρ2 

m 

′ is basically the same as ρm 

′ +1 , except that ρ2 
m 

′ 
contains an extra 0-value column which is the column for server
 m 

′ . S m 

′ +1 is 2-approximation with ρm 

′ +1 , and obviously S m 

′ +1 is

-approximation with ρ2 
m 

′ . Therefore, S m 

′ is also 3-approximation

ith ρ2 
m 

′ because S m 

′ contains the data in S m 

′ +1 . Note that ρm 

′ =
1 
m 

′ + ρ2 
m 

′ and S m 

′ is 3-approximation with ρ1 
m 

′ and ρ2 
m 

′ . According

o Theorem 3 , S m 

′ is a 3-approximation with ρm 

′ . 
Conclusion: By the principle of induction, algorithm GLDP-NS

escribed in Algorithm 1 is 3-approximation for the data place-

ent problem DPNS. �

The sort of data set takes O ( Nlog ( N )) time, and the processing

f each data chunk runs in time O ( N ). Therefore, function PDS can

e performed in O ( Nlog ( N )) time, and the time complexity of algo-

ithm GLDP-NS is O ( MNlog ( N )). 

.2. GLDP-WS Algorithm 

The proposed heuristic algorithm GLDP-WS for the data place-

ent problem DPWS is described in Algorithm 3 . Algorithm GLDP-

S solves the multiple constrained optimization problem of data

lacement taking into account the latency, and the energy con-

umption of the servers and the network transport. The algorithm

roceeds iteratively. Within each iteration, a single data chunk is

laced. This procedure continues until all data are placed. GLDP-

S sorts and processes the data in non-ascending order of data

ize, since a data chunk with a larger data size incurs more en-

rgy consumption. When processing each data chunk d k , GLDP-WS

earches the servers in all data centers with the least cost to place

ata d k . The data placement cost for each server is calculated if

ata d k is accommodated by the server. The cost of placing data

 k in server s m 

in data center dc j incorporates the three factors of

he latency, the energy consumed by the servers and the network

ransport, which is calculated via Eqs. (8) or (9) . In this way, the

ata are inclined to be aggregated on a subset of the servers so

hat the number of servers used is reduced and the servers that

re not needed can be turned off. In general, the access latency of

 data chunk increases with the increase of the distance between

he user and the data center accommodating the data. The energy

onsumed by the network transport for the data is estimated via

q. (1) . 

The sort of S ( d k ) in GLDP-WS can be performed in O ( Nlog ( N ))

ime, and the processing of each data chunk d is executed within
k 
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Algorithm 3 GLDP-WS Algorithm 

Input: Data Request from users Probability Matrix P (u i | d k ) 
Input: Network Latency Cost Matrix L (u i , dc j ) 

Input: Network Power Cost Matrix E I (u i , dc j ) 

Input: Servers Power Cost Matrix E S (u i , dc j ) 

Input: Data Size Matrix S(d k ) 

Output: Rep(dc j , s m 

, d k ) 

1: Sort S(d k ) by non-ascending order of data size and put each 

data chunk in queue. 

2: while Queue of S(d k ) not empty do 

3: for each data center dc j do 

4: for each server s m 

in data center dc j do 

5: if server s m 

has enough capacity to accommodate data d k 
then 

6: Calculate the cost to place data d k on server s m 

in data 

center dc j with Eq. (9) or Eq. (8) ; 

7: end if 

8: end for 

9: end for 

10: Obtain server s m 

in data center dc j that incurs the least cost 

and has enough capacity to accommodate data d k ; 

11: C(s m 

, dc j ) = C(s m 

, dc j ) ) - s (d k ) . 

12: rep(dc j , s m 

, d k ) =true; 

13: end while 

14: Return Rep(dc j , s m 

, d k ) 

Table 1 

Average distance from users to data centers and the PUE of 

the data centers. 

Datacenter dc 1 dc 2 dc 3 dc 4 dc 5 

Average distance 10 0 0 900 800 700 600 

PUE 1 .7 1 .5 1 .6 1 .3 1 .4 
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Table 2 

Number of data with different sizes. 

Data size( GB ) 1–5 5–10 10–20 20–30 30–50 

Quantity(%) 30% 25% 20% 15% 10% 

Table 3 

Number of servers with different power 

and capacities in each data center. 

Power( W ) Capacity(TB) Number 

20 0 0 250 2 

1700 200 4 

1300 150 6 

900 100 8 

500 50 10 

Table 4 

Equipment in the network. 

Equipment Capacity( Gb / s ) Power 

Gateway Router Juniper MX-960 660 [61] 5 .1 kW [61] 

Ethernet Switch Cisco 6509 160 [62] 3 .8 kW [62] 

BNG Juniper E320 60 [61] 3 .3 kW [61] 

Provider Edge Cisco 12816 160 [62] 4 .21 kW [62] 

Core router Cisco CRS-1 640 [62] 10 .9 kW [62] 

WDM Fujitsu 7700 40 [63] 136 W /channel [63] 
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 ( MN ) time. Therefore, the time complexity of algorithm GLDP-WS

s O (MN + Nlog(N)) . 

. Simulation 

.1. Simulation setup 

We evaluate the performance of the proposed algorithms GLDP-

S and GLDP-NS by comparing them with the algorithm FORTE

roposed in [9] which is the most similar to our work. FORTE tries

o strike a tradeoff among the carbon footprint, the electricity costs

f the servers and the latency, without consideration of the en-

rgy consumed by the network transport. The carbon emissions of

he servers in the data centers are closely related to the amount

f electricity consumed in a specific area. The objective of FORTE

ndicates that both the electricity costs and carbon emissions in-

rease with the number of the servers used in the data centers.

ith FORTE, a data chunk may be placed in one or more data cen-

ers, while GLDP-WS and GLDP-NS place each data chunk in a data

enter. Furthermore, GLDP-WS and GLDP-NS aim to strike a trade-

ff among the latency of data access, the energy consumed by the 

etwork transport and the servers in the data centers. 

We use geographical distance as an approximation for latency

imilar to [9] , because (1) it is sufficiently accurate to determine

he relative rank in latency from datacenters to each end-user; (2)

here is no general analytical model available for the delay in the

etwork. Table 1 shows the relationship between the average dis-

ance between all users and a data center and the PUE of the data

enter, given the data center set { dc 1 , dc 2 , ���, dc 5 }. The PUE for

ach data center is randomly generated in the range of [1.3,1.7].

he request for a data chunk from a user is random, and any re-
uest for a data chunk comes from one of the users. Table 2 dic-

ates the quantity of data chunks with various sizes in percent-

ge. Table 3 shows the number of servers with different parame-

ers in the data centers. Table 4 lists the equipment used in the

etwork [4] , which are obtained from manufacturers’ data sheets

61–63] . The energy consumption and capacities of network equip-

ent are also given in Table 4 . The edge routers are presumed to

e located closely and do not require additional wavelength di-

ision multiplexed (WDM) transponder systems. The number of

DM and core routers in the core network is equal to the number

f hops in the core network, which is related to the distance from

he users to the data centers as described in Table 5 . The number

f hops has an upper bound of 16. The simulation is run till 95%

onfidence level is achieved. 

According to the data placement policy of FORTE, a data chunk

ay be placed in multiple data centers. Data d k is placed in data

enter dc j if s ( d k ) is large enough; that is, d k should be among a

op percentile of the large flows across a set of flows. The top per-

entile is defined by a percentile threshold. In our simulation, we

et the percentile threshold as 0 to guarantee that all the data can

e placed in some data center(s). 

We investigate four cases in the simulation. Case 1 only con-

iders the sub-objective of the latency in the objective function

 λ1 = 1 , λ2 = λ3 = 0 ). In case 2, the server energy consumption

n the data centers is the only objective and ignores the latency

nd the energy consumption of the network ( λ2 = 1 , λ1 = λ3 = 0 ).

he latency and the data center energy consumption are the two

actors considered during data placement in case 3 ( λ1 = λ2 = 1 ,

3 = 0 ). Case 4 ( λ1 = λ2 = λ3 = 1 ) tries to strike a three-way trade-

ff among the latency, the energy consumed by the network trans-

ort and the servers in the data centers. Note that both the energy

onsumption of the network and the latency increase with the in-

rease of the distance, and we will achieve the similar results to

ase 1 when the energy consumption of the network is the only

bjective during data placement. Therefore, we skip this case in

he simulation description. 



52 Y. Fan et al. / Computer Networks 110 (2016) 46–57 

Table 5 

Relationship between the distance from a user to a data center and the number of hops in the core network. 

Distance( km ) [0, 300) [30 0, 40 0) [40 0, 50 0) [50 0, 60 0) [60 0, 70 0) [70 0, 80 0) 

hops 1 2 3 4 5 6 

Distance( km ) [80 0, 90 0) [90 0, 10 0 0) [10 0 0, 110 0) [110 0, 120 0) [1200, ∞ ) 

hops 8 10 12 14 16 

Fig. 3. Distance with the algorithms of GLDP-WS, GLDP-NS and FORTE. 
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Fig. 4. Energy consumption of servers with the algorithms of GLDP-WS, GLDP-NS 

and FORTE. 

Fig. 5. Energy consumed by transport with the algorithms of GLDP-WS, GLDP-NS 

and FORTE. 
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4.2. Performance evaluation of the proposed algorithms 

4.2.1. Impact of the number of data chunks 

We first evaluate the performance of different algorithms GLDP-

S, GLDP-NS and FORTE by varying the number of data chunks,

assuming the number of users is 10 0 0. 

Fig. 3 demonstrates that in general the distance increases with

the growth of the number of data, which is also shown in Eqs.

(2) , (8) and (9) . FORTE results in the least distance, because FORTE

places each data chunk in one or more data centers and each user

can access the data from the data center located closest to the

user. GLDP-WS and GLDP-NS achieve the same result in both case 1

and case 2, since the data placement status of the servers in the

data centers does not affect the cost calculation during the data

placement in these two cases. Among the four cases, GLDP-WS and

GLDP-NS perform the best in case 1, as distance is the only fac-

tor affecting the data placement decision process. Case 2 results in

the worst performance, since case 2 only considers the energy con-

sumption of the data centers and ignores the distance, which po-

tentially makes the users access the data from a data center far

away. GLDP-WS and GLDP-NS achieve better results in case 3 than

in case 4. Case 4 tries to strike a three-way tradeoff among the dis-

tance, the energy consumed by the network transport and the data

centers, and the decrease of the distance from the users to the data

centers incurs less energy consumed by the networks. 

Fig. 4 illustrates that the energy consumption of the servers in

the data centers increases with the growth of the number of data,

because we need more servers to accommodate the data. FORTE

consumes the most energy, since FORTE places each data chunk

in one or more data centers, while each data chunk is placed in

a data center with GLDP-WS and GLDP-NS. GLDP-WS and GLDP-

NS achieve the same performance in both case 1 and case 2, since

the data placement status of the servers in the data centers has no

impact on the data placement cost evaluation in these two cases.

GLDP-WS and GLDP-NS perform the best in case 2, because data

center energy consumption is the only factor affecting the data

placement. Case 1 cares only about the distance, and hence the

data may be accommodated by a data center close to the users

which has a big PUE or uses the servers with high power. GLDP-

S and GLDP-NS obtain better results in case 4 than in case 3.
ase 3 considers two factors of the distance and the data center en-

rgy consumption, while case 4 has to achieve the tradeoff among

ll the three factors and the increase of the distance also leads

o more energy consumption in network transport. In case 3 and

ase 4, we observe GLDP-WS outperforms GLDP-NS. GLDP-WS con-

iders the data placement status of the servers before placing data,

nd thereby the data are potentially accommodated by a subset of

he servers. 

Fig. 5 shows that the energy consumed by network transport

ncreases with the growing number of data, since more data trans-

er incurs more energy consumption in the networks. FORTE re-

ults in the least energy consumed by network transport. With

ORTE, the data go through shorter distances between the data

enters and the users than with GLDP-WS and GLDP-NS, which po-

entially reduces the number of network devices needed for data

ransmission as shown in Eq. (1) . GLDP-WS and GLDP-NS achieve

he same results in both case 1 and case 2, since the data place-

ent status of the servers in the data centers is ignored in these

wo cases. Among the four cases of GLDP-WS and GLDP-NS, case 1

chieves the best performance. The distance is the only factor con-

idered during data placement, while the shorter distances for data

ccess lead to less network equipments required for data access. In

ontrast, case 2 consumes the most energy, as case 2 only considers
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Fig. 6. Distance and energy consumption of servers with the algorithms of GLDP- 

WS, GLDP-NS and FORTE. 

Fig. 7. Integrated cost with the algorithms of GLDP-WS, GLDP-NS and FORTE. 
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Fig. 8. Latency with the algorithms of GLDP-WS, GLDP-NS and FORTE as the in- 

creasing number of users. 

Fig. 9. Energy consumption of servers with the algorithms of GLDP-WS, GLDP-NS 

and FORTE as the increasing number of users. 
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he energy consumption of the data centers and ignores the energy

onsumed by the networks, which may increase the data transmis-

ion distances between the users and the data centers. GLDP-WS

nd GLDP-NS perform better in case 3 than in case 4. Case 4 con-

iders all the three factors, and the distance from the users to the

ata centers has a negative impact on the energy consumed by the

etworks. 

The performance of the cost incorporating the distance and the

nergy consumption of the data centers is given in Fig. 6 . GLDP-

S and GLDP-NS outperform FORTE in all cases, and GLDP-WS in

ase 4 achieves the best performance. Both GLDP-NS and GLDP-WS

ith case 1 outperforms FORTE up to 12.3%, while the results of

LDP-WS with case 4 are better than those of FORTE from 26% to

0%. A data chunk with FORTE may be placed in one or more data

enters, which reduces the distance at the cost of incurring more

nergy consumption of the data centers. The simulation results of

LDP-WS and GLDP-NS are the same in both case 1 and case 2. In

ase 3 and case 4, GLDP-WS obtains better results than GLDP-NS, as

LDP-WS considers the data placement status of the servers in the

ata centers. The data are inclined to be aggregated on a subset of

he servers so that the number of servers used is reduced and the

ervers that are not needed can be turned off. 

The performance in terms of the integrated cost of the distance,

he energy consumed by the data center servers and the network

ransport is depicted in Fig. 7 . GLDP-WS and GLDP-NS achieve bet-

er results than FORTE in case 3 and case 4. GLDP-WS in case 4 in-

urs the least integrated cost, which improves the performance

f FORTE from 7.5% to 29%, while GLDP-NS in case 4 outperforms

ORTE from 4% to 22%. However, FORTE requires slightly less in-

egrated cost than our proposed algorithms in case 1 and case 2.

LDP-WS and GLDP-NS care about only one of the two factors of

he distance and the data center energy consumption in these two

ases, and each data chunk is placed in a data center, which po-
entially increases the distance and the energy consumed by the

etwork transport. GLDP-WS and GLDP-NS obtain the same results

n both case 1 and case 2. The consideration of the placement sta-

us of the data center servers enables GLDP-WS to obtain better

erformance than GLDP-NS, due to the aggregation of data on a

ubset of servers. 

.2.2. Impact of the number of users 

We then study the impact of the number of users on the per-

ormance of different algorithms, assuming the number of data

hunks is set at 50 0 0. 

The simulation results in Fig. 8 show that in general the dis-

ance keeps stable with various number of users. When the num-

er of data chunks is fixed, the growth of the number of users

ecreases the probability that each data chunk is accessed by each

ser. As a result of multiple data center placement of data with

ORTE, data are accessed from the data centers close to the users.

herefore, FORTE leads to the least distance. GLDP-WS and GLDP-

S achieve the same results in both case 1 and case 2 because of

he irrelevance of the data placement status of the servers in data

enters. GLDP-WS and GLDP-NS perform the best in case 1, since

he distance is the only objective of the data placement. Case 2 re-

ults in the worst distance performance, since case 2 only considers

he energy consumption of the data centers and ignores the dis-

ance, and potentially places the data in the data centers that may

e far from the users. Case 3 obtains better distance performance

han case 4, since the increase of the distance from the users to

he data centers potentially increases the energy consumed by the

etworks. 

Fig. 9 illustrates the energy consumption of the servers also

eeps steady because of the fixed number of data. FORTE consumes

he most energy, since the multiple data center data placement re-

uires more servers. The simulation results of GLDP-WS and GLDP-

S are the same in both case 1 and case 2, because the data place-
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Fig. 10. Energy consumed by transport with the algorithms of GLDP-WS, GLDP-NS 

and FORTE as the increasing number of users. 

Fig. 11. Latency and energy consumption of servers with the algorithms of GLDP- 

WS, GLDP-NS and FORTE as the increasing number of users. 
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Fig. 12. Integrated cost with the algorithms of GLDP-WS, GLDP-NS and FORTE as 

the increasing number of users. 
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ment status of the servers in the data centers is not considered in

these two cases. Case 2 achieves the best performance among the

four cases, since the objective of case 2 is to reduce the data center

energy consumption. On the contrary, case 1 results in the most en-

ergy consumption of the servers with the objective of minimizing

the distance by placing the data in the data center located close

to the users, while the data center has to place the data on the

servers with high power or the data center has a big PUE. GLDP-

S and GLDP-NS perform better in case 4 than in case 3. Case 3

considers two factors of the distance and the data center energy

consumption, while case 4 has to achieve the tradeoff among all

the three factors. The distance from the users to the data cen-

ters has a negative impact on the energy consumed by the net-

work transport. GLDP-WS outperforms GLDP-NS in both case 3 and

case 4. With GLDP-WS, the data are potentially accommodated by

a subset of the servers, which reduces the server resource used. 

Fig. 10 shows the energy consumed by the network transport

also keeps stable as the number of users increases, since the num-

ber of data chunks is fixed. FORTE results in the least energy

consumed by the network transport, because data may traverse

shorter paths in the network than with GLDP-WS and GLDP-NS.

GLDP-WS and GLDP-NS achieve the same results in case 1 and

case 2. GLDP-WS and GLDP-NS in case 1 achieve the best perfor-

mance, because a shorter data transmission path may require less

network energy consumption. GLDP-WS and GLDP-NS in case 3 ob-

tain better results than case 4, also because the length of a shorter

data transmission path has a positive impact on the network en-

ergy consumption performance. 

The performance of the cost incorporating the distance and the

energy consumption of data centers is depicted in Fig. 11 . GLDP-

S and GLDP-NS achieve better performance than FORTE, and

GLDP-WS in case 4 achieves the best performance. Both GLDP-NS

and GLDP-WS in case 1 outperform FORTE about 16%, while the re-

sults of GLDP-WS in case 4 are better than those of FORTE about

33%. With FORTE, more copies of data require significantly more
nergy to power more working servers. GLDP-WS and GLDP-NS

chieve the same results in case 1 and case 2. Case 1 only considers

he distance and ignores the energy consumption of the servers,

hile case 2 only considers the energy consumption of the servers.

he two cost factors have the same impact on the incorporated

ost performance with GLDP-WS and GLDP-NS in case 1 and case 2.

herefore, the incorporated cost of the two factors is also the same.

LDP-WS performs better than GLDP-NS in case 3 and case 4. With

he consideration of the data placement status of the servers in the

ata centers, the data are aggregated on some of the servers so as

o reduce the number of servers used. 

The performance in terms of the integrated cost of the distance,

he energy consumed by data centers and the network transport is

iven in Fig. 12 . The results of GLDP-WS and GLDP-NS in case 3 and

ase 4 are better than FORTE, since the reduce of the distance and

he network energy consumption with FORTE cannot compensate

he increase of the data center energy consumption. GLDP-WS in

ase 4 obtains the best results which are better than FORTE about

2%, while GLDP-NS in case 4 improves the performance of FORTE

bout 9%. GLDP-WS and GLDP-NS achieve the same results in case 1

nd case 2, because the three cost factors with GLDP-WS and GLDP-

S in case 1 and case 2 are the same. Among the 4 cases, GLDP-WS

n case 1 achieves the worst performance, which is slightly worse

han FORTE about 4.5%. GLDP-WS outperforms GLDP-NS in case 3

nd case 4, as the consideration of the data placement status of

he servers aggregates the data on the servers which are already

ccommodating some other data, thereby reducing the number of

orking servers. 

. Conclusions 

Large-scale Internet applications provide service to end users by

outing service requests to geographically distributed data centers.

urrently, the data centers and the network transport that power

he applications consume significant worldwide electricity supply.

t the same time, latency is an important concern for the end

sers. In this paper, we tackled the problem of green latency-aware

ata placement in the data centers. The objective was to reduce

he energy consumed by network transport and the servers in the

ata centers, while reducing the access latency. We proposed two

equest-routing algorithms, GLDP-WS (Green Latency-aware Data

lacement - With consideration of current data placement Status

f the server) and GLDP-NS (Green Latency-aware Data Placement -

o consideration of current data placement Status of the server), to

trike a tradeoff among the three factors above during data place-

ent. GLDP-NS is a 3-approximation algorithm for the data place-

ent problem without consideration of the server data placement

tatus. We also conducted experiments through simulations. Ex-

erimental results demonstrate that the proposed algorithms can
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chieve good integrated cost performance of the latency, the en-

rgy consumption of data centers and network transport. 
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