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a b s t r a c t 

Measurement on the Border Gateway Protocol (BGP) system is important for understanding the Internet. 

Many attempts have been made to detect anomalous Internet events through dissecting BGP updates and 

tables. We notice that most works in this field either deploy/use few monitors or analyze aggregated 

statistics. Such practices may result in overestimating the impact of monitor-local events, which can be 

viewed by only a small area. 

We propose Large-scale BGP Event (LBE), which affects many IP prefixes (high impact) and is widely 

observable (non-local). To detect LBE, we propose the Update Visibility Matrix (UVM) to record the pre- 

fix and monitor related to each update. We formulate the problem of identifying LBE in UVM, which is 

NP-hard. Then we propose a heuristic algorithm to solve it. We apply the scheme to 2.18 TB of BGP up- 

dates and find that the identified LBEs are highly correlated with many well-known disruptive incidents. 

Besides, we identify 101 LBEs that have never been investigated before. By conducting case studies, we 

find that the LBEs have high impact and are caused by various reasons. Our work can assist in net- 

work/Internet management tasks such as problem prevention, diagnosis, and recovery. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Border Gateway Protocol (BGP) is the de facto inter-domain

outing protocol. It is a path vector protocol, enabling the exchange

f routing and reachability information among tens of thousands of

utonomous Systems (ASs, one or more networks under the con-

rol of a single administrative entity) on the Internet. The stability

nd robustness of the BGP system is always an important topic.

ith decades of effort, the BGP system is robust under most cir-

umstances. However, big disruptive events can still seriously af-

ect the connectivity and performance of the system. Therefore, a

ealth of measurement works on detecting anomalous BGP dy-

amics have been proposed, e.g., [1–4] . Fast detection of disrup-

ive events helps network operators to make timely and effective

eactions, such as reconfiguring routing policies and enabling back-

p links; it also helps diagnosing and debugging network problems

nd helps network protocol enhancement and improvement. 

We find that most of the works on BGP measurement leverage

ggregated data from BGP monitors (i.e., BGP routers that provide

oute information), instead of investigating data from each monitor
∗ Corresponding author. 
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eparately. Examples of aggregated data are total update quantity

5] , overall update patterns [1] , and the feature traces extracted

rom all updates [4] . Using aggregated data save much time in

ata-processing. However, it may lead to misunderstanding BGP in-

tabilities, e.g., over-evaluating the impact of monitor-local events,

hich are visible to only a rather limited area of the Internet. Ac-

ording to Feldmann et al., ‘BGP indeed provides significant isola-

ion against routing updates’ [6] . 

Primarily due to the incremental characteristic of BGP, local

vents are prevalent in the Internet. Specifically, after the initial ex-

hange of the complete routing information, a pair of BGP routers

xchange only the changes to that information. This characteristic

argely restricts the propagation scale of updating information: it

oes not propagate far unless it changes the best routes at most

f the BGP routers it traverses. In addition, route export policy

lso restrains the propagation scale of BGP updates. For exam-

le, a transit Internet Service Provider (ISP) usually does not ex-

ort routes learnt from peers and providers to other peers and

roviders, hence it does not send the updates for these routes in

hese directions. 

On the other hand, an event being widely observable does not

ecessarily mean it has high impact. For instance, individual new

P prefix announcement and individual IP prefix withdrawal by

heir origin ASs do not impair the BGP system. Such events affect

http://dx.doi.org/10.1016/j.comnet.2016.09.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.09.018&domain=pdf
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a small number of IP prefixes. Although some of these events can

be rather disruptive, such as the hijacking of an important prefix,

most of the time the impact of them is supposed to be trivial. 

This paper focuses on detecting large-scale high-impact BGP

event, i.e., the event that a) impacts a large quantity of prefixes,

and b) can be observed by a large portion of (many) route moni-

tors, within a given time period. We call such an event Large-scale

BGP Event (LBE) . Essentially, an LBE indicates extraordinarily active

changes in either the origin ASs of these prefixes or in a critical

transit AS through which these prefixes are reachable. 

LBE is anomalous and disruptive. Firstly, the large number of

prefixes being updated is far beyond normal network operations.

Secondly, the widely-observable characteristic means Internet-level

inter-domain instability; in other words, the impact of LBE is non-

local. Thirdly, the large numbers of monitors and prefixes imply an

extremely high quantity of updates being propagated in the Inter-

net, which not only deteriorate performance and connectivity on a

large scale, but also is a potential threat to the processing capabil-

ity of the routing facilities in the Internet. 

In order to depict and detect LBE, we raise the concept of Up-

date Visibility Matrix (UVM) , a binary matrix in which data from

each monitor and for each prefix are recorded separately. We for-

mulate the problem of identifying LBE in an UVM; basically, our

target is to find a submatrix in the UVM so that it is dense and

large. We prove the problem is NP-hard, and propose a heuristic

algorithm, i.e., the Greedy Deletion Addition (GDA) algorithm, to

solve it. 

After setting the parameters, we apply the method to 2.18 TB

data, including: a) the updates around twelve famous disruptive

incidents, and b) the updates within ten months in 2013. The total

BGP monitors exceed 400. After LBE identification, we analyze the

features of the LBEs and conduct case studies to unveil the impact

and cause of the LBEs. 

Our major observations are concluded as follows. 

1. There is a significant correlation between the well-known in-

cidents and the identified LBEs, which highlights the effective-

ness of our basic idea and method. 

2. LBEs do exist even during ‘innocent period’. LBEs are not fre-

quent and are quite unevenly distributed. 

3. An LBE usually captures the majority of the updates within the

time slot. Besides, The (prefix, monitor) pairs within an LBE

show higher instability than those outside the LBE. Moreover,

we find that our method is able to capture the complete proce-

dure of most of the underlying incidents of the LBEs. 

4. A single underlying incident could cause multiple LBEs (as

many as 18) that are widely scattered in time (as long as two

months). 

5. In the case studies, we find that the impact of the underlying

incidents is significant, and the major cause of them could be

of various types, e.g, large scale rerouting, configuration error,

and route leakage (or path spoofing). 

The rest of the paper is organized as follows. Section 2 de-

scribes the related works. Section 3 elaborates on our method.

Section 4 is dedicated to the measurement setup, including data

collection, pre-processing, and parameter settings. In Section 5 , we

illustrate the identified LBEs for the two data sets. In Section 6 , we

conduct case studies on 23 LBEs in the 2013 data set. Finally in

Section 7 , we conclude the paper. 

2. Related work 

Measuring anomalous BGP events through analyzing BGP dy-

namics has remained an active area of research. In this section, we

discuss the most relevant publications in this domain. 
The closest work to ours is conducted by Comarela et al., who

onstructed a binary tensor to represent next-hop changes [3] . By

dentifying dense ‘cubes’ in the tensor, they detected large-scale

oordinated rerouting events, which involve many ASs. Their data

ource is daily-collected routing tables, confining the analysis gran-

larity to be daily. In comparison, we analyze BGP updates, which

rovide finer granularity so that we can detect abrupt short-term

vents. Besides, while they identified events that affect only tens

f prefixes, we focus on events that affect at least thousands of

refixes. Thirdly, while their method focuses on only re-routing

vents, we detect various types of disruptive events. 

Time interval methods. One of the pioneering works on detect-

ng BGP events is conducted by Rexford et al. [7] , who assumed

hat if two successive updates from the same peer for the same

refix are within an interval of 45 seconds, they belong to one

vent. Similarly, Wu et al. defined a BGP event as a sequence of

GP updates for the same prefix from a border router where the

nter-arrival time is less than 70 seconds [8] . Sapegin and Uhlig

roposed a similar approach to correlate BGP updates spikes into

vents [9] ; specifically, if two spikes are close in time and have

 large common prefix set, they are considered to be correlated.

ompared with their methods, we define BGP events from the per-

pective of update propagation, and we focus on monitor partici-

ation and affected prefixes; our method can explicitly omit events

ith local impact. 

Update pattern methods. Labovitz et al. raised a set of up-

ate patterns to measure the healthiness and stableness of the

GP system [10] . These patterns are essentially based on the con-

ent of successive BGP updates. For example, duplicate announce-

ents for the same prefix indicate pathological behavior. Li et al.

nhanced the pattern categorization method [11] and investigated

he evolvement of the BGP system; they found that the BGP system

ad become much stabler. Moreover, Li and Brooks used the new

et of pattern to identify the impact of famous Internet disruptive

vents [1] . In their work, patterns are organized into a vector to

resent the status of the Internet, and the deviation of a vector

rom a ‘normal range’ indicates anomaly. However, each element

n the vector is the total sum of a pattern from all monitors, hence

onitor-local events could potentially affect the result. In another

ork, Zhang et al. utilized a set of fixed patterns to search and

dentify routing anomalies [12] . They adopted five metrics to learn

xpected behaviors; the metrics are BGP update arrival frequency,

umber of AS paths in a period, updates type, AS path occurrence

requency, and AS path difference. Although per-monitor data are

nalyzed, the number of used monitors is lower than 10, providing

 rather limited view of the Internet. 

Statistics and machine-learning methods. Mai et al. raised a

wo-phase anomaly detection method [5] , which basically applies

avelet analysis on a simple count of BGP updates. These updates

re separated by the origin AS of IP prefix instead of by monitor. In

his way, BGP withdrawals (no AS-path information) are excluded

rom analysis. Menon and Pottenger proposed a general frame-

ork, i.e., a higher order collective classifier, to detect and classify

etwork events [13] . However, like many other works in this field,

he impact of monitor-local events is not eliminated. Oliveira et al.

dopted a simple count of total update to determine Highly Active

refix [14] , which is an important indicator of BGP anomalies. In

heir work, detailed distribution of the updates (which could be

ighly unbalanced) for the HAPs is not considered. Teoh et al. in-

egrated visual and automated data mining to discover and inves-

igate anomalies in Internet routing [15] . 

The scheme proposed by Deshpande et al. is based on adap-

ive segmentation of feature traces extracted from BGP update

essages; it exploits the temporal and spatial correlations in the

races for robust detection of the instability events [4] . However,

nly four BGP monitors are used; so potential artifact (i.e., mis-
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nterpretation of measurement results) due to monitor-local dy-

amics could be strong. In contrast, we use more than 400 BGP

onitors (among which > 100 are suitable), and we believe these

onitors are capable of detecting Internet-scale events. Liang and

hang proposed a statistical technique based on pattern-matching

o identify and locate familiar BGP routing instabilities [16] . Only

0 monitors were used, and data from these monitors were ag-

regated before applying the technique. We speculate there are

hree reasons for not using more monitors. First, to ease the effort

eeded to download, process, and store the data. Second, certain

ata source itself is small in scale. For example, BGPmon [17] pro-

ides real-time data, but the number of monitor is limited [18] .

hird, the number of available monitors is small in early days [10] .

Detection of individual event types . Mahajan et al. speculated

GP misconfiguration by observing short-time policy changes [19] .

hey varified their method by directly sending emails to ISP opera-

ors. Lad et al. analyzed the changes in the number and character-

stics of BGP updates during the Slammer Worm attack [20] , and

iscussed the impact of this incident. Dainotti et al. used multiple

ources of data (both on the data-plane and control-plane) to study

ow the political turmoils in North Africa impair Internet connec-

ivity [21] . Liu et al. proposed the metric ‘betweenness central-

ty’ to study the rerouting procedure after the 2011 Japan Tsunami

22] . Zou et al. focused on early detection of worms by developing

 ‘trend detection’ model that fits the scenario well [23] . Siddiqui

t al. leveraged both control-plane and data-plane observations to

etect route leaks [24] . They established a theoretical framework to

odel route leakage and proposed three methods to detect it. By

achine-learning the path change patterns, the scheme proposed

y Ganiz et al. is able to classify two types of disruptive events,

.e., worm and blackout [25] . Unlike these works, we raise a uni-

ed method capable of identifying a wide scope of disruptions. 

Summary . In terms of approach, in spite of a common ‘theme’,

amely, the desire to detect high impact routing events, this paper

iffers from most previous works on multiple accounts. The major

ifference is the separation of the data from each monitor and for

ach prefix. In this way, we can effectively detect Internet-scale in-

idents. Secondly, we use data from a large number of monitors so

hat the results are not affected by the events local to a small area.

hirdly, our method has fine granularity and does not require the

ontent of updates. Finally, our method is systematic and does not

arget a specific event type. 

In terms of measurement results, a large portion of the previ-

us works focus on testing their proposed detection methods on

nown incidents, and no new event is detected, e.g., [1,4,13,16] .

ome works find new events that conform to specific criteria, e.g.

5,12] ; but the nature and cause of the new events are not fully

nveiled. Besides, some works both find new events and con-

uct detailed analysis on these events, e.g., [3,8] . Compared with

ost previous works, the measurement results of this paper is

ore comprehensive: in addition to testing our method on known

vents, we also detect new events and conduct in-depth analysis

n them. 

Simulation is important for studying giant and complex systems

uch as the BGP system. To integrate our method with BGP simula-

ion tools (e.g., [26] ), one needs to set up a special BGP router that

eers with other BGP routers for the purpose of gathering updates.

he major advantage of working with simulation tools, according

o our understanding, is that each BGP router in a simulation tool

ould work as a monitor. 

This paper is an extension of our previous works [27,28] . The

ajor improvement in this paper is three-fold. First, we provide

n in-depth analysis on the detected LBEs. We propose methods

o infer the cause and analyze the impact of the LBEs. The large

mount of new results significantly advance our understanding of

BE. Second, we also provide more materials and details, and some
f the major new materials as follows: a) we add a comprehensive

nalysis on the heuristic algorithm; b) we investigate more famous

ncidents; c) we analyze the time pattern of the identified LBEs; d)

e provide more details of the collectors; e) we provide an anal-

sis of the clustering method to the parameter setting; f) we add

n architecture figure to illustrate the whole measurement system.

hird, this paper is of overall higher quality; we re-plot some fig-

res and re-write much text content. 

. UVM-based LBE identification 

In this section, we define UVM in Section 3.1 , formulate the LBE

dentification problem in Section 3.2 , and describe our heuristic al-

orithm in Section 3.3 . We denote scalars by lower-case letters ( a ),

ets by upper-case letters ( I ), vectors by lower-case bold-face let-

ers ( v ), and matrices by upper-case bold-face letters ( X ). 

.1. Update visibility matrix 

efinition 1. Within a given time period, an Update Visibility Ma-

rix (UVM) is a binary matrix X ; its rows represent prefixes, and its

olumns represent monitors. Let x ij be an element of X ; x i j = 1 if

onitor j observes any BGP update for prefix i ; otherwise x i j = 0 . 

Let P be the total prefix set and M be the total monitor set, and

et I ⊆ P and J ⊆ M be subsets of prefixes and monitors, the pair

 I, J ) specifies a submatrix X IJ in X . Next, we define the attributes

f X IJ . 

efinition 2. Given an UVM X , and a submatrix X IJ in it, we define

he following attributes. 

The size of X IJ is 

ize (X IJ ) = | I| × | J| (1)

The height and width of X IJ are 

ei (X IJ ) = | I| (2)

 id(X IJ ) = | J| (3)

The weight of X IJ is the quantity of element ‘1’: 

 ei (X IJ ) = 

∑ 

i, j 
x i j (4)

The density of X IJ is the proportion of element ‘1’: 

en (X IJ ) = 

W ei (X IJ ) 

Size (X IJ ) 
(5) 

For simplicity, we assume that an UVM does not contain any

mpty (i.e., all ‘0’) row or column. Note that the rows (and

olumns) of an UVM are not sequenced hence are interchangeable.

.2. Problem formulation 

efinition 3 (( θ s , θw 

, θh , θd ) -Event). Given an UVM X , three non-

egative integers θ s , θw 

, θh and a real θd (0 ≤ θd ≤ 1), A ( θ s ,

w 

, θh , θd )-Event is a submatrix X IJ in X such that Size ( X IJ ) ≥ θ s ,

id ( X IJ ) ≥ θw 

, Hei ( X IJ ) ≥ θh , and Den ( X IJ ) ≥ θd . 

For brevity, we denote ( θ s , θw 

, θh , θd )-Event as θ-Event. Given

roper values of the thresholds, i.e., θ s , θw 

, θh , and θd , a θ-Event

s considered as a Large-scale BGP Event (LBE). We discuss the de-

ision of the thresholds’ values in Section 4.2 . For an LBE, the four

hresholds put restrictions in four aspects: θ s decides the mini-

um size of an LBE; θw 

and θh prevent the detection of local or

ow-impact events; θd determines how much noise could be toler-

ted. 
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Algorithm 1 Greedy Deletion Addition Algorithm. 

Input: UVM X ; thresholds θh , θw 

, θs , and θd 

1: U ← X , den ← Get-Density ( U ) 

2: while den < θd do 

3: r a ← Get-Candi-AddRow ( X , U ), c a ← Get-Candi- 

AddCol ( X , U ) 

4: if not Addition ( U , r a , c a ) then 

5: r d ← Get-Candi-DelRow ( U , θh ), c d ← Get-Candi- 

DelCol ( U , θw 

) 

6: if r d � = NULL and c d == NULL then 

7: U .Remove (r d ) 

8: else if c d � = NULL and r d == NULL then 

9: U .Remove (c d ) 

10: else if r d � = NULL and c d � = NULL then 

11: U .Remove ( Larger-IncDen-Per-DelSize ( r d , c d )) 

12: else 

13: Return NULL 

14: den ← Get-Density ( U ) 

15: 

16: r a ← Get-Candi-AddRow ( X , U ), c a ← Get-Candi-AddCol ( X , U ) 

17: while r a � = NULL or c a � = NULL do 

18: Addition ( U , r a , c a ) 

19: r a ← Get-Candi-AddRow ( X , U ), c a ← Get-Candi- 

AddCol ( X , U ) 

20: 

21: den ← Get-Density ( U ) 

22: while True do 

23: r a ← Get-Candi-AddRow ( X , U ), c a ← Get-Candi- 

AddCol ( X , U ) 

24: r a ← Check-Feasibility ( r a , θd ), c a ← Check-Feasibility ( c a , 

θd ) 

25: if r a == NULL and c a == NULL then 

26: break 

27: U .Add ( Larger-IncSize-Per-DecDen ( r a , c a )) 

28: 

29: if Size (U ) ≥ θs then 

30: Return U 

31: else 

32: Return NULL 

Algorithm 2 Function: Addition ( U, r a , c a ). 

Input: Submatrix U ; Candidate row r a and column c a for addition 

1: if r a � = NULL and c a == NULL then 

2: U .Add (r a ) 

3: else if c a � = NULL and r a == NULL then 

4: U .Add (c a ) 

5: else if r a � = NULL and c a � = NULL then 

6: U .Add ( Larger-Weight ( r a , c a )) 

7: else 

8: Return False 

9: Return True 
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Definition 4 (Large-scale BGP Event Identification Problem) . Given

an UVM X , three non-negative integers θ s , θh , θw 

, and a real θd (0

≤ θd ≤ 1), identify a submatrix X IJ in X such that: 

i) X IJ is a ( θ s , θw 

, θh , θd )-Event; and 

ii) size ( X IJ ) is maximized. 

The maximized size is for capturing the impact of the incident

as completely as possible. Note that we assume at most one LBE

within an analysis period. This is based on the following consid-

erations. a) LBEs are supposed to be rare in the Internet; b) We

do not assume an one-to-one mapping from an identified LBE to

only one underlying incident. Considering the scale and complex-

ity of the BGP system, we assume an LBE to be the superposition

of multiple underlying incidents, and there is a major incident that

is responsible for the majority of the instabilities. c) The length of

each time slot is relatively short in our experiment, and we can

get fine-granularity measurement result. We discuss the problem

of detecting multiple LBEs in Section 3.3.3 . 

Theorem 1. The large-scale BGP event identification problem is NP-

hard. 

Proof. First, we set the thresholds θ s , θw 

, and θh to 0, and set the

threshold θd to 1. Next, we expand the input UVM X into a square

matrix by adding 0s (to fill in the expanded area). Now we get

a more-specific problem of the Large-scale BGP Event Identifica-

tion Problem. For the more-specific problem, θd = 1 means an LBE

contains only element ‘1’, so the identified LBEs before and after

the expansion of X will be identical. Because the Maximum Clique

Problem (MCP) [29] requires a symmetric matrix as input and a

square and all-‘1’ submatrix as output, the more-specific problem

we constructed (which does not put constraints on the input ma-

trix) is equivalent to a more-general problem of the MCP. The MCP

is NP-complete, so the more-specific problem we constructed is

NP-hard, therefore the Large-scale BGP Event Identification Prob-

lem is NP-hard. �

To solve the LBE identification problem, we devise the following

heuristic algorithm. 

3.3. The greedy deletion addition (GDA) algorithm 

The basic idea of the GDA algorithm has been presented in our

previous work [28] . In this paper, we re-write some parts of the

pseudo-code for clearer logic. Besides, the description of the algo-

rithm is more comprehensive, and at the end of this subsection we

provide a discussion of the algorithm. 

The idea of the algorithm is as follows. Given the thresholds

and an UVM X , we conduct multiple steps of row/column deletion

(mostly) or addition to get a submatrix X IJ with a density greater

than θd . The deletion action is for removing the row or column

with the lowest density in order to increase density. The addition

action is to add a previously-deleted row or column if its density

becomes larger than that of the current submatrix, or adding it

does not violate θd . When the algorithm terminates, if Size ( X IJ ) ≥
θ s , we record X IJ as an LBE; otherwise no LBE is detected. The

pseudo-code of the GDA algorithm is presented in Algorithm 1 .

Algorithm 2 demonstrates the Addition () function, which is called

in Algorithm 1 . 

3.3.1. Main iteration 

The main iteration is from line 2 to 14. In each iteration, the

action is either addition or deletion. We prefer addition to deletion

because the optimization objective is maximized size. Whenever

an addition does not decrease density, we conduct addition; other-

wise we conduct deletion. The details of the addition and deletion

actions are described below. 
Addition. Among all the rows outside the submatrix U = X IJ ,

.e., x kJ ( k ∈ K, K = P \ I), we get the row with the maximum den-

ity, x μJ . if Den ( x μJ ) ≥ Den ( X IJ ), x μJ is the candidate addition

ow r a . This job is accomplished by function Get-Candi-AddRow() .

imilarly, function Get-Candi-AddCol() gets the candidate addition

olumn c a . These functions return NULL if no feasible candidate is

ound. 

As shown in Algorithm 2 , if both r a and c a are not NULL , we

dd to X IJ whichever has greater weight. This is accomplished by

unction Larger-Weight() in the function Addition() . We adopt

he metric weight (i.e., the quantity of ‘1’) as the criteria because
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Fig. 1. The architecture of the measurement system. 
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e have two concurrent goals: a) the size of U after addition is

aximized, and b) the density of U after addition is maximized so

hat less deletion is conducted in future. Weight is a compromise

f the two goals because it is the product of size and density. 

Deletion. If an addition is conducted, the algorithm goes to the

ext iteration; otherwise the algorithm turns to deletion. We get

he candidate deletion row and column (i.e., r d and c d ) by func-

ions Get-Candi-DelRow() and Get-Candi-DelCol() respectively. 

he scheme is as follows: among all the rows x iJ ( i ∈ I ) in the

ubmatrix U = X IJ , x γ J has the minimum density; if Den ( x γ J ) <

en ( X IJ ), r d = x γ J . Using a similar method, we get c d . 

If both r d and c d are not NULL , we delete from U whichever

aximizes the increased density per deleted size; this is achieved

y function Larger-IncDen-Per-DelSize() . This criterion is due to

) the optimization objective being maximized size, and b) the

eed for higher density increase. Note that if the deletion violates

w 

or θh , the corresponding candidate is set to NULL . 

If both addition and deletion are infeasible, the algorithm ter-

inates (line 13). 

.3.2. Addition in the end 

The main iteration ends when Den ( U ) ≥ θd . Next, we conduct

wo more rounds of addition by different methods to maximize

ize ( U ). Round one starts and ends at line 16 and 19 respectively.

n this round, if further addition does not reduce Den ( U ) (note that

he main iteration terminates as soon as Den ( U ) ≥ θd ), we apply

he same addition scheme as that within the main iteration. Round

wo is from line 21 to 28. In this round, we allow Den ( U ) to de-

rease, as long as Den ( U ) ≥ θd . We check the feasibility of the can-

idates by Check-Feasibility() : if adding a candidate violates θd ,

e set the candidate to NULL . After getting the candidates, we se-

ect the candidate that maximizes the increased size per decreased

ensity, accomplished by function Larger-IncSize-Per-DecDen() . 

.3.3. Discussion 

Time complexity. The number of iterations in the main-

teration part is O (| P | + | M| ) , given the prefix set and monitor set

f X being P and M respectively. Note that addition in the main

terations is rare, orders of magnitudes less than deletion. This is

ue to the stringent condition for addition: while a row is deleted

ecause it has the smallest density, it is added because its den-

ity becomes larger than Den ( U ); but the value of Den ( U ) keeps

ncreasing. 

Within an iteration, it takes O (| M |) to get the candidate addi-

ion and deletion columns by simply scanning all the columns. By

dopting a ‘value to index mapping’ data structure, it also takes

 (| M |) to get the row candidates, because the rows in and out of

 have O (| M |) different weight values. So the time complexity of

he GDA algorithm is O (| M| (| P | + | M| )) . Note that we assume the

umber of prefixes is (much) larger than that of monitor; other-

ise one ought to replace the former M with P . 

UVM pre-processing. In practice, the input UVM X could be

ather sparse, and there could be a large quantity of rows and

olumns with rather few ‘1’s, e.g., one or two ‘1’s. Deleting those

ows before running the GDA algorithm would significantly reduce

he scale of the problem. Since we are mainly interested in the

ows and columns with high density, the pre-processing does not

mpair the correctness of our method. Only in extreme situations,

.g., when the number of prefixes is small and the deleted ele-

ents could be components of an already-dense submatrix, may

he pre-processing affect the outcome of the algorithm. 

Half-way termination. The computation time could be further

educed by terminating the algorithm and returning NULL (i.e., no

etection) as soon as Size ( U ) becomes smaller than a predefined

hreshold, e.g., 0.8 θ s , in the main iterations. Since addition actions

re rare compared with deletion actions, if Size ( U ) is ‘sufficiently
mall’ it is unlikely that Size ( U ) would increase to a value larger

han θ s on a later stage. 

Detecting multiple LBEs. If under special circumstances one

eeds to detect multiple LBEs within a single time period, running

he GDA algorithm multiple times achieves this goal. Specifically,

hen each GDA run terminates, one should set the identified LBE

 to ‘0’s in the original UVM X , and use the new UVM as the input

nd run the GDA algorithm again. The entire procedure terminates

f no LBE is identified in a complete GDA job. 

. Measurement setup 

The architecture of the measurement system is plotted in Fig. 1 .

n this section, we describe data collection, preprocessing, and pa-

ameter settings. 

.1. Data collection and preprocessing 

We download BGP updates from RouteViews [30] and RIPE NCC

31] (Réseaux IP Européens is the French for ”European IP Net-

orks”; NCC stands for Network Coordination Centre). The Route-

iews project and the Routing Information Service (RIS) project

f RIPE NCC operate multiple route collectors. Each route collec-

or has BGP sessions with multiple BGP-speaking routers (i.e., the

GP monitors) in the Internet. RIS publicizes BGP updates every

 minutes, and RouteViews publicizes BGP updates every 15 min-

tes; both of them publicize routing tables every eight hours. 

We use totally 17 collectors, which provide data from 452

onitors (on January 1st, 2013). The six RouteViews collectors

re: route-views2, route-views4, route-views.eqix, route-views.isc, 

oute-views.linx, and route-views.wide. The eleven RIS collectors

re: rrc00, rrc01, rrc03, rrc04, rrc05, rrc10, rrc11, rrc12, rrc13, rrc14,

nd rrc15. The total update data add up to 2.18 TB. 

.1.1. Monitor winnowing 

Some of the 452 monitors are unsuitable for our experiment

hus are omitted in our analysis. a) Partial view. A monitor has

 partial view means it can see only a limited number of IP pre-

xes. If a monitor has only a partial view of the Internet, it may

iss some Internet-level BGP events. So we select only the moni-

ors with global view. To achieve this goal, we set a benchmark as

he quantity of prefixes in the routing table of a core router [32] .

 global-view monitor should see at least 90% of the benchmark.

his criterion removes 269 monitors. b) Duplicate sessions. Some

onitors have sessions with more than one collector, hence are
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Fig. 2. Cumulative distribution of θ-Event size. (We set θs = 0 and run the GDA 

algorithm to get the complete size distribution of each month.) 
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interpreted as multiple monitors, and this may lead to the impact

observed by those routers being incorrectly amplified. To deal with

the issue, we select only one session among the multiple ones with

the same router. This step removes 52 monitors. c) Unbalanced

distribution. Some ASs own multiple monitors, which may result

in the impact of events local to these ASs being overstated. So we

select only one monitor in each AS. This step further removes 8

monitors. In summary, among the 452 monitors, 123 are suitable

for our measurement. 

4.1.2. About the selected monitor ASs 

Tier. It is a common practice to categorize ASs into tiers to in-

dicate their importance to the interconnection of the Internet. We

get the tier of the selected monitor ASs by the method proposed

by Oliveira et al. [33] , who adopted the size of customer cone as

the metric. An AS’s customer cone is the ASs that are reachable

through AS-level provider-to-customer links. The size of customer

cone indicates the influence of an AS. The method is: the ASs with

less than 5 downstream customers are stubs; the ASs with be-

tween 5 and 50 downstream customers are small ISPs (tier-3); the

remaining non-tier-1 ASs are large ISPs (tier-2); the list of tier-1

ISPs are obtained in the same way as [33] . We get customer cone

data from a public repository [34] , which is maintained by RIPE

RIS. The result for the 123 monitors is, tier-1: 8, tier-2: 37, tier-3:

43, stub: 35. 

Geographical location. Next, we map the ASs to coun-

tries/regions by using the geographic data from a website [35] . For

a tier-1 AS, we record its region as ‘Global’. We find that the 123

monitors are spread across 26 countries/regions in the world. 

To summarize, the monitors are widely spread in the Internet.

After setting a proper width threshold, our method is capable of

detecting events that have Internet-scale impact. 

4.1.3. Eliminating the effect of BGP session reset 

Sometimes the BGP session between a route collector and a

route monitor is re-established. In this situation, the complete BGP

table of the monitor is sent to the collector in the form of a large

amount of updates. While these updates occupy notable computing

and storage resource, they provide little information about global

Internet status. In fact, BGP session reset is a special type of lo-

cal event. Therefore, we delete the updates caused by BGP session

reset through applying the method raised by Cheng et al. [36] . 

4.2. Parameter settings 

Because the quantities of working monitors and total prefixes

are not constant, we set θw 

and θ s according to the quantity of

monitor and that of total prefix at the measurement time t , i.e.,

| M t | and | P t |. Specifically, θw 

is a ratio of | M t |, and θ s is a ratio of

| M t | × | P t |. For brevity, in the following of this paper, we directly

use the ratios to represent width and size, and call them relative

width and relative size respectively. 

4.2.1. Length of time slot 

We divide a time period into a series of time slots to carry

out the analysis. Based on the following considerations, we set the

length of time slot to 20 minutes. First, we try to decrease the pos-

sibility that the impact of an underlying incident is divided into

separate slots; this requires large slot length. Second, we try to de-

crease the number of concurrent underlying incidents within a sin-

gle slot; this requires small slot length. While the BGP convergence

delay depends on topology and BGP configurations [37,38] , previ-

ous research has established that it usually takes several minutes

or less time for a re-routing event to converge, and it is quite rare

that the convergence time is longer than 10 minutes [39] , or one

hour [40] . Therefore, we believe 10, 20, and 30 minutes are among
he reasonable decisions. We use 20 minutes in this paper, and an-

lyze the impact of varying this parameter in Section 5.4 . 

.2.2. Density threshold 

Our goal is to detect a ‘dense’ submatrix in an UVM, so we can-

ot set θd to a small value; otherwise the identified LBE becomes

ess interesting because of its sparsity. On the other hand, we can-

ot set θd to 1, because a full-‘1’ submatrix is unlikely to have a

arge size considering the noise and the non-full visibility of the

refixes and monitors in UVM. In our measurement, we set θd to

.8. We show the effect of varying this threshold in Section 5.4 . 

.2.3. Width threshold 

In this paper, we set θw 

to 0.4 (i.e., θw 

= 40% × | M t | ) consid-

ring that a) an LBE does not necessarily have to be observed

y all of the monitors, and b) θw 

= 0 . 4 effectively avoids that all

f the monitors in an LBE are of the same tier or in the same

ountry/region. For example, for the 123 monitors, the threshold

s 49 monitors; according to the monitor-to-region categorization,

t least 4 nations/regions observe an identified LBE. Besides, the

onitors are from at least two tiers. We discuss the sensitivity of

ur method to θw 

in Section 5.2.1 . 

.2.4. Size threshold 

After setting the length of time slot, density, and width, next

e determine θ s . For each month within from January to October

013, we plot in Fig. 2 the cumulative distribution of the size of

he identified θ-Event when setting θ s to zero. Fig. 2 a shows the

omplete CDFs, and Fig. 2 b shows the part where the ratio is larger

han 0.8. As is evident in the figure, the results for the ten months
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re similar: the vast majority of the θ-Events have small size. We

ssume that the Internet is stable and healthy most of the time, so

s should be large enough so that all the analyzed months contain

mall proportions of LBEs. That is to say, we are interested in cap-

uring the θ-Events in the tails of the curves, and θ s should accom-

odate all the distribution curves. Fig. 2 b illustrates that setting θ s 

o 0.007 catches approximately the top 1% θ-Events in each month.

pecifically, the vertical line at size 0.007 intersects the curves at

atios between 99.2% to 99.8%. Since this value suits our assump-

ion well, we set θ s to 0.007 in our experiment. 

.2.5. About height threshold 

After setting θ s , the height of an LBE is at least θ s / Wid ( X ). Since

n our experiment the quantity of monitor is orders of magnitudes

maller than that of prefix, θ s / Wid ( X ) is supposed to be a large

alue (much larger than θw 

). Therefore, we omit the height thresh-

ld in our experiment. Note that if one uses a much larger set of

onitors than ours, e.g., > 10 0 0, θh must be set to avoid the detec-

ion of low-impact event. 

. Measurement results 

In this section, we apply our method to two sets of update

ata, including a) data around well-known disruptive incidents,

.g., blackout, and b) 10 months’ data in 2013. We illustrate the

dentified LBEs associated with these incidents as well as the new

BEs in 2013; we analyze the patterns and characteristics of these

ew LBEs. Next, we adopt the DBSCAN technique to cluster the

BEs. After that, we demonstrate the impact of the major parame-

ers. At the end of this section, we analyze the performance of our

lgorithm. 

.1. Result for the famous disruptive incidents 

.1.1. Overview 

The identified LBEs for the disruptive incidents are demon-

trated in Fig. 3 . The blue markers indicate LBEs when θs = 0 . 007 ,

nd the red markers indicate additional LBEs when decreasing θ s 

o 0.006. The impact of most of these incidents on the Internet

as been investigated in existent literature. To be Specific, seven

f these incidents, including 3 a–g, are analyzed in [1] . The SEA-

E cable cut ( 3 i) is investigated by Chan et al. [41] . The Japan

sunami is analyzed by Liu et al. [2] . We do not select the inci-

ents that affect a small quantity of prefixes (e.g., individual pre-

x hijacking) or are known to have limited visibility (e.g., attack

gainst a small content provider). 

In the figures, x-axis denotes time, and y-axis denotes relative

ize. The vertical dash line in each figure marks the occurrence of

he underlying incident. There are two special cases: a) The dash

ine in Fig. 3 c denotes the date of the first landfall of the Hurricane.

) The accurate time of the SEA-ME cable cut is still unknown, and

he dash line in Fig. 3 i denotes the beginning of April 14th, 2010

it is known that the cable cut happened on this day). Also note

hat while the occurrence time is a critical reference point, it is not

ecessarily the time at which the incident affects the BGP system.

or example, the 2006 Taiwan earthquake did not immediately cut

ff undersea cables hence impair connection; the aftershocks did

t. 

.1.2. The identified LBEs 

As demonstrated in the figures, the quantity and size of the

BEs increase immediately/shortly after the occurrence of the in-

idents, indicating a high correlation between these LBEs and the

isruptive incidents. The impact pattern of these incidents is dif-

erent. In Fig. 3 d, k and l, the impact is sudden and short-lived.

n contrast, for most of the incidents the impact is persistent; the
ypical examples are shown in Fig. 3 e–h, and j. In particular, we

bserve an impact escalation in Fig. 3 e: the largest LBE occurs af-

er more than 10 hours of the incident’s occurrence. 

Note that the results presented in Fig. 3 a and b have different

haracteristics than the others. a) The number of LBEs is signifi-

antly higher than that in the other figures. b) A large portion of

he LBEs exist before the occurrence of the incidents. c) The im-

act of the incidents is indicated by the sudden rise in the size of

he LBEs. We believe the peculiar phenomena are due to the size

hreshold being too small for these incidents. Firstly, while the in-

idents cover a wide time span, the size threshold θ s is determined

y analyzing only the 2013 data set for the ease of data gather-

ng and processing. Secondly, it is believed that the BGP system

s more unstable in the early days [10,11] . Thirdly, a larger θ s (e.g.,

.015) could both eliminate the LBEs before the dash lines and pre-

erve the LBEs indicating the incidents. 

Also note that if we decrease θ s from 0.007 to 0.006, some LBEs

xist before the dash lines in Fig. 3 c, d and l. In such situations, it

s apparent that the LBEs right after the dash lines are larger in

ize than those before the lines, especially in 3 d and l. Fig. 3 c is

ifferent than the other two figures in that the largest LBE is far

rom the dash line. This is because we cannot decide an accurate

mpact time-point for a Hurricane event. 

In summary, the measurement result of the famous incidents

ighlights the effectiveness of our method and basic idea. Next, we

urn our focus to the performance of our method on an ‘innocent’

pdate set. 

.2. Result for the 2013 data set 

The identified LBEs for the 2013 data set are shown in Fig. 4 ;

he colored dots are clusters, which we describe later. We detect

otally 101 LBEs within the period from January 1st to October

1st, 2013. That is averagely 2.33 LBEs per week. Therefore, gen-

rally speaking, LBEs are rare, which complies with the common

elief that the BGP system is stable most of the time. However,

he time distribution of these LBEs is quite uneven. For example,

hile there are more than 15 LBEs in both April and May, only

 LBEs exist in February. We conduct a detailed analysis of 23 of

hese LBEs in Section 6 . 

Next, we take a closer look at the characteristics of these LBEs. 

.2.1. Width and size 

The width of the 101 LBEs as a function of their size is plot-

ed in Fig. 5 . As is evident from the figure, most of the LBEs have

ather large widths, which are significantly larger than the width

hreshold θw 

. Specifically, only 5 LBEs have width values smaller

han 0.8, and only one LBE has width smaller than 0.5. The result

mplies that LBE identification is not sensitive to the width thresh-

ld. 

In terms of size, only 3 LBEs have size values larger than 0.013;

heir size values are 0.017, 0.02, and 0.032 respectively. On the

ther side, the size values of 85 LBEs are concentrated in the range

0.007, 0.01]. The result implies that the number of identified LBE

s sensitive to the size threshold, which is also implied in Fig. 2 b.

inally, the Pearson’s correlation coefficient between the two vari-

bles is -0.13, which indicates no apparent correlation. 

.2.2. Update ratio 

The ratio of updates contained in an LBE to all the updates ob-

erved in the corresponding time slot is a critical criteria to assess

he reasonableness of the density threshold. If θd is too large, the

dentified LBE would be quite small, hence the updates in the LBE

ill also be small in quantity; in this way, our method cannot cap-

ure the major instabilities reflected in the UVM. However, if θ is
d 
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Fig. 3. Identified LBEs for the famous incidents. The dash lines mark the occurrence of these incidents. The blue markers indicate the LBEs when θs = 0 . 007 , and the red 

markers indicate the additional LBEs when decreasing θ s to 0.006. 

Fig. 4. Identified LBEs for the 2013 data set. 
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too small, the ratio could be very large, e.g., close to one. Further-

more, this ratio also shows the capability of an LBE in capturing

instabilities. 

Fig. 6 demonstrates this ratio as a function of the size of the

LBE. It shows that all but one of the LBEs capture more than 50% of

the updates in the corresponding time slot, and as many as 72.3%

of the LBEs capture > 70% of the updates. Besides, the ratios are

not concentrated in a close-to-one range. The result indicates that

setting θd to 0.8 is a reasonable decision. Finally, the Pearson’s cor-
 (  
elation coefficient between the two variables is 0.064, which indi-

ates no apparent correlation. 

.2.3. The number of updates in each ‘1’ element 

In Fig. 7 , we present the average number of updates in each ‘1’

lement inside and outside an LBE. A circle represents an LBE, the

 axis is the average inside the LBE, and the x axis is the average

utside the LBE. The figure shows the ratio of the two averages

in/out) can be as small as 0.314, and as large as 7.962. Although
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Fig. 5. Relative width as a function of relative size. 

Fig. 6. The ratio of updates captured by the LBEs. 

Fig. 7. The average number of updates captured by each ‘1’. 
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Fig. 8. The Number of cluster as a function of ε. 
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he range of the ratio is wide, most of the time slots have larger

verage in the ‘1’s in the LBEs; specifically, as shown in the figure,

3 LBEs are to the left of the line that crosses the figure. The result

ndicates that the unstable (prefix, monitor) pairs, which involve

ore updates than other pairs, tend to be captured by LBE. 

.2.4. Time pattern 

For LBE U t in time slot t , we denote its prefix set and

onitor set as P ut and M ut . In the UVM X t−1 and X t+1 , we

et the density of the submatrix decided by P ut and M ut (if

o corresponding row/column in the UVM, regard the ele-

ents in the row/column as ‘0’), denoted as Den t−1 (P ut , M ut )

nd Den t+1 (P ut , M ut ) . If Den t−1 (P ut , M ut ) ≥ 0 . 4 (0.4 is half of θd ),

e denote U t as p-persistent (p stands for previous), and if
en t+1 (P ut , M ut ) ≥ 0 . 4 , we denote U t as n-persistent (n stands for

ext). 

Since the persistency may be due to LBEs in successive time

lots, we omit such cases in the analysis. In the result, we get 9

nd 12 p-persistent and n-persistent LBEs respectively, and only 2

BEs are in both groups. The result implies that for the majority of

he LBEs, our method can capture their complete/major process. 

In the case studies in Section 6 , we apply the time pattern

cheme to decide the time boundaries of the detailed analysis. 

.3. LBE clustering 

In this part, we cluster the LBEs in the 2013 data set. The pur-

ose of clustering is two-fold: 1) to illustrate whether there are

ultiple LBEs that are likely caused by the same reason; 2) to find

he target LBEs for the case study. The clustering is based on the

refix set of the LBEs because a) for an LBE, its monitor set is or-

ers of magnitudes smaller than its prefix set; b) the majority of

he LBEs have large width, hence the difference is small; c) prefix

et provides rich information about the cause of an LBE, which we

escribe in detail in the case studies. 

We adopt the DBSCAN (Density-Based Spatial Clustering of Ap-

lications with Noise) technique [42] in this part because 1) it does

ot require a priori number of clusters, and 2) it is simple (requires

nly two parameters) and quick. We admit that DBSCAN is not the

nly choice; other clustering techniques, e.g., CURE [43] and KNN

44] , could also work in our scenario. 

For two LBEs A I 1 J 1 
and B I 2 J 2 

, we define the distance between

hem as the Jaccard distance between their prefix sets: 

ist(A I 1 J 1 , B I 2 J 2 ) = 1 − | I 1 ∩ I 2 | 
| I 1 ∪ I 2 | (6)

The distance between two LBEs with identical prefix sets is

ero, and two LBEs with completely different prefix sets have a

istance of one. 

The DBSCAN technique requires two parameters, a) ε: the max-

mum distance to find directly reachable point, b) minPts: the min-

mum number of points to form a dense region. Fig. 8 shows the

umber of cluster as a function of the parameter ε. Note that one

f our main purposes is to find large clusters for the case studies,

o we set minPts to 4. According to the Figure, 0.45 seems to be

oo small, with none cluster found, and 0.8 seems to be too large.

hen ε = 0 . 95 , most LBEs are grouped into only one cluster. In

his part, we set ε to 0.65, which is a moderate value among these

andidates. A distance value of 0.65 means that two LBEs have ap-

roximately half of their prefix sets in common. 

As shown in Fig. 4 , LBEs belonging to different clusters are

arked with different colors; black marks unclustered LBEs. We

nd four clusters, containing 18, 7, 4, and 5 LBEs respectively.

hile some clusters persist for a short time, some span months.
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Fig. 9. Impact of parameters on the LBE detection for the Slammer worm incident. 

Fig. 10. Time consumption as a function of UVM size. 
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The result indicates that some Internet incidents could generate

multiple LBEs, which may be widely scattered in time. To under-

stand the reason for the clusters, we conduct case studies of two

clusters in Section 6 . 

5.4. The impact of the parameters 

To demonstrate how varying the value of the parameters affects

LBE identification, we conduct a case study of the Slammer worm

incident, mainly because it generates a large amount of LBEs so it

is easy to observe the change in trend. The impact of θd and the

length of time slot is shown in Fig. 9 , where we demonstrate the

trend of the identified LBEs in accordance to different parameter

settings. Unless otherwise specified, θd = 0 . 8 , θw 

= 40% , θs = 0 . 7% ,

and the length of time slot is 20 minutes. 

It is evident in the figures that minor changes to θd and the

time slot length do not affect the size trend of identified LBEs. In

other words, despite changes in the parameter values, large LBEs

remain large, small LBEs remain small or become undetected. By

setting a reasonable size threshold according to new θd and slot

length, the outcome of our method would be similar to the current

one. To summarize, while moderate modification to the parameters

slightly affects the quantity and size of identified LBEs, it does not

impair the correctness of our scheme. 

5.5. Algorithm time consumption 

In this part, we investigate the time consumption of the GDA

algorithm. In the pre-processing, we delete the rows and columns

with ‘1’s less than 11 for the purpose of reducing problem scale

(introduced in Section 3.3.3 ). Although we do not adopt a half-way

termination scheme, we ignore the UMVs that have size values less

than 90% of θ s , or have width values less than 90% of θw 

. We run

the program on a laptop, which has a 2.4GHz Intel Core i3 CPU, a

4GB RAM, and has Ubuntu 14 installed. 

Fig. 10 illustrates the time consumption in seconds as a func-

tion of input UVM size. In this figure, 99.5% of the time consump-
ion is less than or equal to 10 seconds. Besides, the distribution

omplies with our previous analysis, i.e., a close-to-linear correla-

ion between the time complexity of GDA algorithm and the size

f the input UVM, as indicated by the straight red line. 

. Case studies 

In this section, we conduct case studies on a) the largest LBE,

) the largest cluster, and c) a persistent incident that lasted for

00 minutes. This section is an important extension to our previ-

us works [27,28] . All of the LBEs are in the 2013 data set. The

urpose of the case studies is two-fold: in addition to illustrating

he high impact of the LBEs, we unveil the cause of the LBEs. 

.1. The largest LBE 

As shown in Fig. 4 , the largest LBE occurs on February 14th,

rom 3:50 to 4:10 (GMT). It contains 16047 prefixes and 114 mon-

tors, and has a relative size of 0.032. 

.1.1. Major element identification 

Method . First of all, we consider a classifier: if a route passes

hrough AS α, the (monitor, prefix) pair of the route will be cap-

ured in an LBE. This is a binary classification and each (monitor,

refix) pair is either labeled as ‘captured’ or ‘not captured’ after

lassification. 

It is a common practice to use recall and precision to evalu-

te the performance of a classifier; we also use them here. We de-

ote the recall and precision of the ‘captured’ label as Recall ( α) and

recision ( α), and the two terms are defined as follows. a) Recall. We

enote the total number of routes that changed and are recorded

n LBE after an incident as n t , and among the n t routes, n α went

hrough AS α before the incident, then Recal l (α) = n α/n t . b) Preci-

ion. We denote the total number of routes that go through AS α
efore an incident as m α , and n α of these routes changed and are

ecorded in LBE after the incident, then P recision (α) = n α/m α . One

an view n t as total true number, n α as true positive number, and

 α as total positive number. 

We define the major element of an LBE as an AS (or AS link)

uch that a) most of the routes captured by LBE went through

t, and b) most of the routes went through it are captured by

BE. Condition a) means Recall ( α) is high and condition b) means

recision ( α) is high. In this part we focus mainly on AS, and ana-

yze AS links when necessary. 

Note that the major element of an LBE is not necessarily the

ause of the underlying incident. For example, for a path change,

he cause could be an AS that exists only in the path after the

hange [6] , and it could even be an AS in neither of the paths be-

ore and after the change [45] . So we just use the identified major

lement (if exists) as a starting point to examine the incident. 

Data and result . To obtain recall, we download the routing ta-

les of the Routeviews and RIPE collectors to get the routes before

he incident. Unlike updates, which have accurate time stamps,

outing tables are collected every eight hours. So we get thetables

efore and closest to the LBE in time, in order to obtain a snap-

hot of the routes just before the incident. We omit the tables with

oo small size, i.e., smaller than 90% of the average size within the

onth, even if they are the best in terms of time. 

We extract 1819660 routes from the routing tables with regard

o the monitors and prefixes in the LBE. Note that not all of these

onitors are able to see all of these prefixes. After deleting the

edundant AS numbers in the AS paths of the routes, we get the

ecall value of each involved AS. 

To obtain precision, we get totally 49940122 routes from the

outing tables with regard to the monitors in the LBE. The top ten
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Table 1 

The top 10 ASs with the highest recall values. 

Monitor AS (AS number) Recall Precision 

CenturyLink (209) 0 .8776 0 .8784 

DoD Network Information Center (721) 0 .3942 0 .9971 

DoD Network Information Center (27064) 0 .2703 0 .9989 

Level 3 Communications (3356) 0 .2366 0 .0399 

CenturyTel (22561) 0 .177 0 .9853 

Cogent Communications (174) 0 .1115 0 .0387 

NTT Communications (2914) 0 .0987 0 .0406 

Global Telecom & Technology (3257) 0 .0955 0 .0348 

Level 3 Communications (3549) 0 .0893 0 .03 

TeliaSonera International Carrier (1299) 0 .0871 0 .0387 
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Ss with the highest recall values are listed in Table 1 ; the preci-

ion values of these ASs are also presented. 

Analysis . In the table, seven out of the ten ASs are tier-1 ASs;

he exceptions are AS721, AS27064, and AS22561. CenturyLink has

he highest overall recall and precision. Even though the precision

alues of AS721 and AS2764 are higher than that of CenturyLink

explained later), their recall values are much smaller. 

Through analyzing the topological relationship of these ASs, we

nd that all of the three non-tier-1 ASs are in the customer cone

f CenturyLink. Specifically, AS721 connects to the Internet mainly

hrough CenturyLink; AS27064 connects to the Internet through

he AS721-AS209 link; AS 22561 connects to the Internet through

nly CenturyLink. Note that all of the three non-tier-1 ASs have

ery high precision values. 

Actually, we also observe other ASs with high precision val-

es (not shown in the table), e.g., AS27065 (precision = 0.9991),

S270 6 6 (precision = 0.9815), and AS5972 (precision = 1.0). The ma-

ority of these ASs are in the customer cone of CenturyLink, indi-

ating the critical role of CenturyLink in the incident. 

To further understand the incident, next we analyze the content

f the updates. 

.1.2. Update pattern 

The total update quantity in this LBE is 5864806; to under-

tand the information carried in these updates, we categorize up-

ate pattern into eight types, listed in Table 2 . The quantity of each

ype is shown in Table 3 . 

The result indicates that the main impact of the incident is a

arge number of path and policy changes. Besides, the high amount

f identical updates (AADup1) indicates induced pathological be-

aviors. AADup1 is mainly due to the interaction between iBGP

nd eBGP in the monitor AS [46] , e.g, Next-hop and Cluster-list

hanges in iBGP may lead to identical eBGP updates. Since we

ave no iBGP information, we focus on only AADiff+WADiff and

ADup2+WADup2. 

.1.3. Analysis: path changes 

The total quantity of AADiff and WADiff is 1797396. For each

hanged path, we divide the involved ASs into three segments:

) stable-segment , which remains unchanged; b) before-segment ,

hich changes; c) after-segment , which is the one that a before-

egment changes to. For each participating AS, we record its num-

er of being in each type of segment. According to the result,

S209 is in 1385591 stable segments, which is the highest, indi-

ating that CenturyLink, as the major element, is not the chang-

ng element per se. Furthermore, the ASs in the customer cone of

S209 (e.g., those mentioned in Section 6.1.1 ) are in much more

table segments that in other types of segments. 

Next, we record the number of each (before-segment, after-

egment) pair. Note that since a path change may be due to the

nderlying incident or the BGP convergence process, and tempo-

ary path changes are common in the BGP system, we focus on
nly the most prevalent characteristic of the path changes. We

nd that most of the changing elements are tier-1 ASs. Specifically,

6.88% (i.e., 842633) of the change pairs contain only tier-1 AS in

oth segments, and 79.22% (i.e., 1423943) of the change pairs con-

ain only tier-1 AS in at least one segment. 

The analysis indicates that the peering links between AS209

nd most other tier-1 ASs are very unstable in this incident. Such

nstabilities affect most of the prefixes that are reachable through

S209. 

.1.4. Analysis: BGP Community changes 

The total quantity of AADup2 and WADup2 is 1235528, and

8.58% of them are community changes. We omit the other types

f change, e.g., change of the origin attribute. 

We record the number of each changed community segment

air. We find that the community changes are mostly due to four

ier-1 ASs, i.e., AS3257, AS3356, AS2914, and AS3549. Specifically,

1.8% (i.e., 874420) of the changes are community changes of the

our ASs. 

The semantics of community values for AS3257, AS3356, and

S2914 are publicly available; by checking the semantics, we find

hat the majority of the community changes indicate location

hange. For example, the change ‘3356: 2011 → 3356: 2022’ in-

orms that the location where the route is learned changes from

an Jose to Miami. For AS3257, there are also ‘Private Interconnect

ngress tagging’ changes and ‘Receiving router loopback ip address’

hanges, which yield similar information as location change does.

owever, we are unable to identify any pattern in these changes,

.g., coordinated changes from one location to another. Instead, we

bserve many back-and-forth changes between two locations. We

llustrate the fluctuation characteristic of the incident in the next

art. 

It is well known that tier-1 ASs peer with each other to guar-

ntee connectivity, and a pair of peering tier-1 ASs have BGP ses-

ions at multiple topological or geographical locations to tolerate

ault. The result indicates that the changes are mainly due to the

onnection problem between AS209 and the other tier-1 ASs, and

he observation complies with the one in the path change analy-

is. Note that not all ASs leverage BGP communities to explicitly

nform connection/location changes. 

.1.5. Temporary oscillation or intended route change 

An important question is, whether the instabilities in the links

etween CenturyLink and the other tier-1 ASs are due to tempo-

ary oscillation or intended route change. To answer it, we analyze

he routes before and after the incident. Specifically, for each (pre-

x, monitor) pair in the LBE, we get its route from the routing ta-

les before the incident, and compare it with its last update (if ex-

sts) within the period from 3:50 to 4:30. Note that we append 20

inutes to the end of the LBE in order to capture possible missed

nstabilities in the incident. 

We record four types of change, i.e., a) AS path change, b) com-

unity change, c) prefix-withdrawn, and d) no change of the pre-

ious three types. For each monitor, we get the ratio of prefixes in

ach category, and we omit the prefixes without observed updates.

The result is presented in Fig. 11 ; the x-axis is the monitors or-

ered by the quantity of ‘No change’ type, and the y-axis is the

umber of prefixes in each category. Since not every monitor can

ee all of the affected prefixes in updates, the total number of pre-

xes for each monitor could be different. As is evident in the fig-

re, the routes of most of the updated prefixes recovered to their

riginal state. Specifically, 91 monitors observe more than 80% of

heir updated prefixes recover to their original routes. This result

ndicates that the underlying incident is a temporary oscillation in-

tead of an intended permanent change. 
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Table 2 

Update pattern and description. 

Pattern Description 

AW Withdrawal after announcement to the same IP prefix; could be normal or pathological. 

WWDup Duplicate withdrawals to the same IP prefix; pathological. 

WADup1 Duplicate announcement after withdrawal to the same IP prefix; due to transient topological changes or pathological oscillation. 

WADup2 Duplicate announcement after withdrawal to the same IP prefix; due to transient policy changes or pathological oscillation. 

WADiff Announcement (different AS path or next hop) after explicit withdrawal to the same IP prefix. 

AADup1 Duplicate (identical) announcements to the same IP prefix; pathological because BGP is not supposed to send repeated announcements. 

AADup2 Duplicate (same AS path and next hop, but not identical) announcements to the same IP prefix; mainly due to routing policy changes. 

AADiff New-path announcement after announcement to the same IP prefix; implicit withdrawal due to route changes. 

Fig. 11. Comparison between the route in the routing table and that in the last update. 

Table 3 

Quantity of each update pattern. 

Pattern number Pattern number 

AADiff 1565265 AADup2 1157912 

AADup1 605679 AW 409200 

WADiff 232131 WADup2 77616 

WADup1 75988 WW 140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The ratio (mean +- variance) of withdrawn target prefixes. 
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According to the analysis, we speculate the incident is due to

the temporary instability between CenturyLink and the other tier-

1 ASs. Most of the prefixes reachable through CenturyLink are af-

fected, and most tier-1 ASs are involved in the incident. The inci-

dent is caused by CenturyLink; it could be a configuration error, or

temporary failure in certain facilities. The incident does not look

like an intended rerouting because most of the affected routes re-

covered to their original states. 

6.2. The largest cluster 

The largest cluster in the 2013 data set contains 18 LBEs, and

the common prefix set of these LBEs contains 1328 prefixes. In our

previous work [28] , we presented some very preliminary analysis

of these LBEs, lacking both major player identification and a full

picture of their impact. We believe the analysis presented in this

part is much more comprehensive. 

13 of these LBEs are in April (part one) and 5 are in June (part

two). The time span of part one is 1400 minutes (from 10 April

07:30 to 11 April 06:50, GMT), and that of part two is 120 min-

utes (20 June from 17:10 to 19:10, GMT). The time pattern shows

that none of these LBEs is correlated with its previous or next slot,

indicating that the underlying incident is a series of intermittent

sub-incidents instead of a continuous one. 

Like what we’ve done previously, we attempt to get the ma-

jor element of these LBEs. We illustrate the analysis of the first

LBE in part one; the results for the other LBEs are similar. For

this LBE, we cannot identify a major element, which is supposed

to have both high recall and precision. Specifically, the top-3 ASs
ith the highest recall values are AS3356 (recall = 0.2062), AS26496

recall = 0.1551), and AS3549 (recall = 0.1226), and their precision

alues are 0.0054, 0.6608, and 0.0065, respectively. 

Further investigation shows that an important reason for not

dentifying a major element is that we could not get the routes of

s many as 1773 prefixes in the routing tables before the incident.

n the updates, the AS paths of these prefixes end with AS47331.

hrough longest-prefix-matching in the routing tables, we attribute

hese prefixes to more than 100 prefixes owned by AS9121. In

erms of topology, AS47331 connects to the Internet through only

S9121, and the two ASs belong to the same organization. There-

ore, the announcement of the 1773 prefixes is due to AS9121 and

S47331. AS9121, as the only provider of AS47331, fails to filter out

he excessively large amount of announced prefixes that originally

elong to itself. 

Next, we investigate the content of updates to further under-

tand the incident. For the first LBE, we find that almost all of the

forementioned 1773 prefixes are withdrawn in the same time slot.

imilar phenomena occur in other LBEs in the cluster. As shown in

ig. 12 , the x-axis is the series of LBEs in the cluster sequenced by

ime. For each LBE, we select the target prefixes as those originated
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Fig. 13. Examples of update pattern series. 
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g  
y AS47331 (in updates) but are attributed to AS9121 through

ongest-prefix-matching, because the instabilities related to these

refixes are the major impact of the incident. The dots show the

ean ratio of withdrawn target prefixes for all the monitors in the

orresponding LBE, and the error bars (some are very close to the

ots) denote the variance. 

As is evident from the figure, in most of these LBEs we observe

ithdrawals to the vast majority of the target prefixes, except for

he 8th and 14th LBEs. Both of the two LBEs are closely followed

y another LBEs. In such cases, one cannot divide the sub-incidents

y the slot border; it could be that the prefixes are announced in

he former LBE, and are withdrawn in the latter LBE. 

To summarize, the incident is likely due to the configuration er-

or at AS47331 and AS9121. We believe the anomalous behaviour

s not intended, because the resulting instability mainly affects

he connectivity and performance from other part of the Inter-

et to the networks owned by AS9121 and AS47331; in other

ords, AS9121 and AS47331 themselves are the major victims of

he anomaly. 

.3. A persistent incident 

Now we turn to the third largest cluster in the 2013 data set.

his cluster contains four LBEs, and the gaps between these LBEs

re 20, 0, and 60 minutes respectively. The time pattern of these

BEs shows that the underlying incident is continuous during from

8:10 to 11:30 on September 11, 2013; the duration is 200 minutes.

ithin this period, 17191459 updates are observed. The common

refix set of the LBEs contains 1769 prefixes, and we can find the

outes for only 803 of them in the routing tables right before the

ncident. Except for several cases, all of the prefixes are withdrawn

t the end of the incident. Next, we turn to the content of updates

o obtain information about the 1769 prefixes. 

Unlike the largest cluster, we could not identify a dominat-

ng origin AS for these prefixes. Instead, we observe in the cor-

esponding updates two intermediate ASs that exist in almost all

with only several exceptions) the paths to the 1769 prefixes, and

he observation is consistent among the 127 monitors in the com-

on monitor set. Specifically, AS28207 announces these prefixes

o AS3549, which is a tier-1 AS, and there is one or more hops

etween AS28207 and the origin ASs of the prefixes. 

However, among the 803 prefixes having routes in the routing

ables, only 32.5% and 41.62% of their routes pass through AS28207

nd AS3549, respectively. For the other 966 prefixes, we get their

ess-specific prefixes hence the routes by longest-prefix-matching

n the routing tables, and find that only 0.16% and 36.71% of these
outes go through AS28207 and AS3549. Therefore, the incident is

ither AS path spoofing or route leakage by AS28207. 

A question is: why the incident lasts for so long? The answer

s the multiple rounds of announcement-withdrawal cycle of these

refixes. Specifically, the number of the major update patterns

s as follows; AW: 5341608, AADiff: 3458788, AADup2: 2718339,

ADup1: 290773. In a more-detailed analysis of each monitor, we

nd that withdrawals are so frequent that in most cases there are

ew updates between two successive withdrawals. We present two

xamples in Fig. 13 a and b. The x-axis is the number of update

attern, and the y-axis is the prefixes (we omit the prefixes that

ave too many updates thus make the figures unreadable). Due to

ifferent topological locations, while the former monitor observes

ostly AW and WADup2, the latter monitor observes mostly AW

nd WADiff. Both figures show multiple announcement-withdrawal

ycles. 

To summarize, AS28207 incorrectly announces more than 10 0 0

refixes that does not belong to or go through this network. The

uration of the incident is long and the impact of the incident is

ignificant; the incident is either an intended path spoofing or an

nintended route leakage. 

. Conclusion 

Most of the traditional works on detecting and analyzing

nomalies in the BGP system are prone to the artifact related to

onitor-local events. To cope with the issue, we propose the con-

ept of Update Visibility Matrix (UVM) and Large-scale BGP Event

LBE). We formulate the problem of identifying LBE in UVM, then

ropose an algorithm to solve it. Our method explicitly avoids the

etection of monitor-local and low-impact events. We apply the

ethod to the updates related to twelve famous incidents and ob-

erve a strong correlation between the incidents and the identi-

ed LBEs. We also analyze ten months’ data in 2013 and identify

01 LBEs that have never been detected and investigated before.

he analysis of these identified LBEs validates the effectiveness of

ur method and basic idea. Finally, we conduct case studies on

hree incidents in the 2013 data set, which involve 23 LBEs. The

etailed examination shows the high impact and cause of these

ncidents, which further enhance the importance of our work. The

easurement results suggest that our study could be helpful in

etwork/Internet operation, management, and monitoring tasks. 
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