
Computer Networks 110 (2016) 18–30

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

FLOWER, an innovative Fuzzy Lower-than-Best-Effort transport

protocol �

Si Quoc Viet Trang

a , b , Emmanuel Lochin

a , b , ∗

a Université de Toulouse ISAE-SUPAERO Toulouse, France
b TéSA, Toulouse, France

a r t i c l e i n f o

Article history:

Received 18 November 2015

Revised 26 July 2016

Accepted 13 September 2016

Available online 21 September 2016

Keywords:

Congestion control

Lower-than-Best-Effort

LEDBAT

Fuzzy logic

a b s t r a c t

We present a new delay-based transport protocol named FLOWER, that aims at providing a Lower-than-

Best-Effort (LBE) service. The objective is to propose an alternative to the Low Extra Delay Background

Transport (LEDBAT) widely deployed within the official BitTorrent client. Indeed, besides its intra-fairness

problem, known as latecomer unfairness, LEDBAT can be too aggressive against TCP, making it ill suited

for providing LBE services over certain networks such as constrained wireless networks. By using a fuzzy

controller to modulate the sending rate, FLOWER aims to solve LEDBAT issues while fulfilling the role

of a LBE protocol. FLOWER operates to a modification of the standard LEDBAT protocol implementation

by replacing its proportional controller by a fuzzy controller. Thanks to this modification, our simula-

tion results show that FLOWER can carry LBE traffic in network scenarios where LEDBAT cannot while

solving the latecomer unfairness problem. The presented algorithm is simple to implement and does not

require complex computation that would prevent its deployment. Finally, we show that FLOWER remains

compliant when used over an AQM-based network and remains LBE while not increasing the bufferbloat.

© 2016 Elsevier B.V. All rights reserved.

p

b

i

v

m

t

(

i

b

L

n

T

u

p

t
1. Introduction

While standard TCP and its variants endeavor to achieve a fair

share of the network bottleneck capacity between flows, the ser-

vice provided by the network remains best-effort. There exists an-

other service named Lower-than-Best-Effort (LBE) which aims at

providing a second priority class inside the network traffic. The ra-

tionale is to propose a service for background traffic (e.g. peer-to-

peer file transfers, data backup, software updates, ...) or non de-

lay sensitive signaling traffic. This kind of traffic might tolerate a

high latency and should not disturb the traffic carried out by the

best-effort service it self or other services that would propose ad-

vanced QoS architecture for time-constrained application such as

DiffServ [1] . Today, the LBE service, also called “scavenger” service,

is perceived as a potential solution to fetch the unused, sometimes

wasted capacity in public network. One of the objective is, for in-

stance, to provide a free Internet access based on this LBE princi-
� Part of these results has been presented at IEEE LCN 2015.
∗ Corresponding author at: ISAE-SUPAERO, 10 avenue Edouard Belin, BP 54032,

31055 Toulouse Cedex 5, France.

E-mail addresses: si-quoc-viet.trang@isae.fr (S.Q.V. Trang),

emmanuel.lochin@isae.fr (E. Lochin).

c

b

A

t

http://dx.doi.org/10.1016/j.comnet.2016.09.008

1389-1286/© 2016 Elsevier B.V. All rights reserved.
le, as illustrated by the objectives of GAIA

1 or PAWS 2 project. Last

ut not least, the LBE service should not exacerbate the bufferbloat

ssue [2] .

Among the different transport protocols providing a LBE ser-

ice [3] , Low Extra Delay Background Transport (LEDBAT) [4] is the

ost used. LEDBAT is a delay-based congestion control protocol

hat has been standardized by the Internet Engineering Task Force

IETF). LEDBAT aims to exploit the remaining capacity while lim-

ting the queuing delay around a predefined target τ , which may

e set up to τ = 100 ms according to RFC 6817 [4] . Consequently,

EDBAT flows limits the amount of queuing delay introduced in the

etwork and thus lower their impact on best-effort flows such as

CP. As an example of application, the official BitTorrent client is

sing LEDBAT for data transfer [4] .

Despite being a widely deployed protocol, the two main LEDBAT

arameters (i.e., target and gain) have been revealed to be complex

o determine [5,6] as their tuning highly depends on the network

onditions and not dynamically configurable. Indeed, LEDBAT may

ecome more aggressive than TCP in case of misconfiguration [5,6] .

s an illustration, in a recent study, the authors of [7] conclude

hat the LEDBAT target parameter should not be higher than 5 ms
1 Global Access to the Internet for All (https://sites.google.com/site/irtfgaia).
2 Public Access WiFi Service (http://publicaccesswifi.org).

http://dx.doi.org/10.1016/j.comnet.2016.09.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.09.008&domain=pdf
mailto:si-quoc-viet.trang@isae.fr
mailto:emmanuel.lochin@isae.fr
https://sites.google.com/site/irtfgaia
http://publicaccesswifi.org
http://dx.doi.org/10.1016/j.comnet.2016.09.008

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 19

i

t

t

p

c

m

L

p

l

f

b

f

w

p

F

i

g

s

L

S

2

c

h

f

t

2

(

t

i

b

i

c

r

T

d

l

l

q

P

t

k

�

c

w

2

2

fi

b

c

g

t

l

m

o

t

I

d

c

S

a

t

t

2

s

8

t

s

m

w

2

f

c

l

c

c

t

1

1

t

2

L

c

d

q

c

t

t

m

a

v

L

l

s

p

s

m

m

n a large bandwidth-delay product (BDP) network. At last, the au-

hors of [8] show that LEDBAT can greatly increase the network la-

ency making its impact on the network not transparent anymore.

Our protocol, FLOWER (F uzzy LOW er-than-Best- E ffo R t Trans-

ort Protocol), is a promising alternative to LEDBAT. FLOWER over-

omes LEDBAT shortcomings and provides an LBE service that is

ore transparent to the network. The principal difference with

EDBAT is that FLOWER replaces the linear P-type controller (pro-

ortional controller) of LEDBAT by a fuzzy controller to modu-

ate the congestion window. Compared to a recent solution named

LEDBAT [9] that proposes to solve the latecomer issue and to the

est of our knowledge, there is no universal scheme allowing intra-

air LEDBAT flows to remain LBE compliant, that is, non-aggressive

hen competing with TCP flows.

We first review in Section 2 the LEDBAT algorithm and its

roblems that motivate our work. Section 3 details the design of

LOWER, while Section 4 clearly explains its core component, that

s the fuzzy controller. Section 5 evaluates our new protocol and

ives a side-by-side comparison with LEDBAT using the network

imulator ns-2.35. We also demonstrated that FLOWER is more

BE-compliant than LEDBAT in the presence of AQM schemes in

ection 6 . We finally conclude our work in Section 7 .

. Contextual background and motivation

While many transport protocols that have been designed to

arry LBE traffic, such as NICE [10] or TCP-LP [11] , only LEDBAT

as been reported to be actually deployed [12] . Our work there-

ore focus on LEDBAT and its design issues that are described in

his section.

.1. LEDBAT in a nutshell

LEDBAT congestion control is based on queuing delay variations

i.e., the queuing delay is used as a primary congestion notifica-

ion). LEDBAT is characterized by several parameters: target queu-

ng delay τ , gain γ , minimum one-way delay owd min (also called

ase delay), and current one-way delay owd ack . The target queu-

ng delay τ embodies the maximum queuing time that a LEDBAT

onnection is allowed to introduce in the network. The gain γ cor-

esponds to the reactivity of LEDBAT to queuing delay variations.

he bigger γ is, the faster LEDBAT congestion control increases or

ecreases its congestion window. LEDBAT infers the queuing de-

ay q by calculating (owd ack − owd min) obtained from one-way de-

ays measured by exploiting the ongoing data transfer. To keep the

ueuing delay around the predefined target, LEDBAT uses a linear

-type controller to modulate the congestion window according to

he derived queuing delay. For each ACK received at discrete time

 , the new congestion window size cwnd is updated as follows:

cwnd(k) =

γ (τ − (owd ack (k) − owd min (k)))

c wnd(k − 1)
(1)

wnd(k) = cwnd(k − 1) + �cwnd(k) (2)

here �cwnd (k) is the change of the congestion window size.

.2. Two main LEDBAT issues

.2.1. Aggressiveness of LEDBAT

RFC 6817 [4] states that, if a compromised target is set to in-

nity, “the algorithm is fundamentally limited in the worst case to

e as aggressive as standard TCP”. Actually, it corresponds to the

ase where the buffer size is too small in comparison to the tar-

et. Thus, the queuing delay sensed by LEDBAT never reaches the

arget. Therefore, LEDBAT always increases its sending rate until a

oss event is reported.
However, there are circumstances “worse than the worst case

entioned in RFC6817” in which hostile LEDBAT makes TCP back

ff, even in an unfavorable situation for LEDBAT when it starts af-

er TCP. The issue occurs when the buffer size is around the target.

n this case, LEDBAT does not have enough time to react to queuing

elay before TCP causes a buffer overflow. After that, TCP halves its

ongestion window, resulting in a reduction of the queuing delay.

ince the queuing delay is now below the target, LEDBAT raises

gain its congestion window conjointly with TCP. Consequently, af-

er several cycles, LEDBAT exploits more capacity than TCP.

To illustrate why the problem is important and the impact of

he aggressiveness of LEDBAT on TCP flows, Fig. 1 a shows an ns-

 simulation of 5 TCP NewReno and 5 LEDBAT flows sharing the

ame bottleneck with a capacity of 10 Mb/s. The buffer size is

4 packets (about 100 ms of delay) and the LEDBAT target is set

o 100 ms. The result is unequivocal and demonstrates the aggres-

iveness of LEDBAT flows against TCP flows. Although we present

easurements with TCP NewReno, the problem remains the same

ith Cubic as shown later in the paper.

.2.2. Latecomer unfairness

When LEDBAT flows start at different times, they may suffer

rom the latecomer unfairness problem. This problem arises be-

ause latecomer flows may sense different minimum one-way de-

ays. In the worst case, when the buffer size is large enough, late-

omer flows can starve ongoing flows.

Fig. 1 b demonstrates the latecomer unfairness problem. In this

ase, three LEDBAT flows start consecutively every 50 s and share

he same bottleneck with a capacity of 10 Mb/s. The buffer size is

67 packets (about 200 ms of delay). The LEDBAT target is set to

00 ms. As can be observed in Fig. 1 b, latecomer flows gradually

ake all the capacity of ongoing flows.

.3. Motivation of FLOWER

Up to this point, we have recalled and illustrated two important

EDBAT issues. We now present our motivation to develop the new

ongestion control named FLOWER.

Both LEDBAT key parameters — target and gain — are fixed and

o not cope with the diversity of network configurations. Conse-

uently, LEDBAT becomes more aggressive than TCP under some

ircumstances. One possible solution is to adapt the target/gain

o the change of network conditions [7,13] . However, such adap-

ive control scheme requires a fine-grained mathematical network

odel. To prevent the use of such too complex model, we design

 new congestion protocol based on the fuzzy logic. Two main ad-

antages of this approach are:

1. a fuzzy control system is a solution that prevents the use of a

mathematical model. Such approach is particularly interesting

when the model is not trivial, difficult to derive or too complex

to be implemented;

2. the fuzzy logic allows to incorporate our heuristic knowledge

about how to control the system. In other words, we can use

our previous findings [6] as an entry for the fuzzy controller.

An in-depth analysis [6] gives us an insight to overcome the

EDBAT problems, or more specifically, to control the queuing de-

ay. Hence, by means of the fuzzy logic, we integrate our under-

tanding gathered into the fuzzy controller of FLOWER. We also

oint out that, by using a fuzzy control system, we seek a generic

olution that works in several and various network conditions. It

eans that we are seeking an average use-case and not the “opti-

al” one.

20 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

Fig. 1. LEDBAT problems.

Fig. 2. Block diagram of FLOWER and LEDBAT as feedback control systems.

t

m

f

B

n

p

t

3

B

f

l

m

a

t

t

i
3. Design and implementation

3.1. FLOWER overview

FLOWER is a novel delay-based transport protocol which aims

at providing an effective LBE service. So, as a potential LEDBAT al-

ternative, FLOWER must tackle its issues while keeping the same

goals in terms of LBE service as listed in [4] :

1. to utilize end-to-end available bandwidth and to maintain low

queuing delay when no other traffic is present;

2. to add limited queuing delay to that induced by concurrent

flows, and;

3. to yield quickly to standard TCP flows that share the same bot-

tleneck link.

To achieve these goals, FLOWER implements a fuzzy controller

to manage the target queuing delay algorithm instead of the P-type

controller as proposed in [4] . This non-zero target queuing delay

allows FLOWER to fetch the available capacity, and thus to saturate

the bottleneck link, when no other traffic is present. Meanwhile,

the queuing delay needs to be kept as low as possible to make

FLOWER non-intrusive to standard TCP traffic.

We can represent FLOWER congestion control as a feedback

control system depicted in Fig. 2 a. The essential components of

FLOWER are:

1. Fuzzy controller , which is an artificial decision maker that op-

erates based on a set of “If–Then” rules. By using the fuzzy

logic, the fuzzy controller determines the congestion window

size cwnd such that the future estimated queuing delay even-

tually matches the target queuing delay τ . The fuzzy controller

takes two inputs: queuing delay error e and change of queuing

delay error �e ;

2. Queuing delay estimator , which exploits measured one-way de-

lays to estimate the current queuing delay q ;

3. Peak-valley detector , which keeps track of the maximum queu-

ing delay q max observed in the network. This maximum queu-

ing delay is then used to normalize the queuing delay error.

Basically, FLOWER operates as follows: after each round-trip

time (RTT), FLOWER uses the minimum queuing delay observed

during the RTT as the current queuing delay. Queuing delays in

an RTT are obtained using the queuing delay estimator. Then, the

fuzzy controller compares the target queuing delay with the cur-

rent queuing delay. The error is positive when the current queu-

ing delay is below the target. In this case, the fuzzy controller in-

creases the congestion window, and thus the sending rate until
he queuing delay reaches the target. When the error is negative,

eaning that the current queuing delay is beyond the target, the

uzzy controller slows down its sending rate.

In the rest of this section, we give a brief comparison of LED-

AT and FLOWER, then describe the peak-valley detector compo-

ent. Finally, we discuss about the slow-start mechanism which is

art of FLOWER. The main FLOWER component, i.e., the fuzzy con-

roller, is described in detail in Section 4 .

.2. Comparison of FLOWER and LEDBAT

Fig. 2 shows in blue the differences between FLOWER and LED-

AT. Notably in FLOWER, we replace the P-type controller with the

uzzy controller that, besides the queuing delay error e , also uti-

izes the error trend �e . We highlight the fact that while being

ore robust, the implementation of a fuzzy controller is simple

nd adds a little complexity to computation compared to the P-

ype controller of LEDBAT.

Another feature added to FLOWER is the peak-valley detec-

or. This detector determines the maximum queuing delay, which

s important for the operation of the fuzzy controller. Note that

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 21

Fig. 3. Peak-valley detection algorithm.

F

f

3

d

w

a

i

w

m

m

g

{

m

r

c

i

{
T

t

b

p

o

g

b

c

q

w

E

f

3

u

u

o

F

l

a

s

s

c

a

q

s

a

n

fl

t

d

r

4

c

m

4

u

e

a

�

q

t

I

p

w

s

o

t

c

t

t

c

�

c

d

c

c
LOWER uses the same LEDBAT queuing delay estimator, which is

ully described in RFC 6817 [4] .

.3. Peak-valley detection algorithm

To effectively react to congestion events, FLOWER needs to

etermine the maximum queuing delay q max . For this purpose,

e must identify the peaks of queuing delays (local maximum)

nd filter out the maximum queuing delay (global maximum) us-

ng a threshold S , which is computed following an exponentially

eighted moving average (EWMA) of peaks. For the sake of re-

aining as simple as possible and not complexifying our imple-

entation, we develop a simple on-line peak-valley detection al-

orithm as shown in Fig. 3 .

Let us consider a time series of estimated queuing delays q =
 q k } where k represents the discrete time in RTT. Basically, an ele-

ent q k is a peak/valley if it is greater/smaller than its neighbors,

espectively. As our algorithm works in an on-line manner, at the

urrent time k , we only need to consider a sliding window consist-

ng of q k −n and its n right neighbors, i.e.,

 q k −n , q k −n +1 , q k −n +2 , . . . , q k −1 , q k } .
he bigger is n , the more robust is the algorithm. We stress that

here is a delay of (n + 1) RTT in the detection process of q max

ecause the algorithm needs to collect enough queuing delay sam-

les.

The algorithm alternatively identifies the peaks and valleys

f queuing delays. Indeed, we have a peak/valley if q k −n is

reater/smaller than the maximum/minimum of its n right neigh-

ors, respectively. Each time a peak is detected, it is then used to

alculate a new threshold to filter out q max . Finally, when a new

 max is found, FLOWER discards the old value.

In our implementation, we let n = 5 to keep a small delay

hile still having a robust maximum queuing delay detection. The

WMA parameter α is set to 1/8, which is the value typically used

or computing the smoothed RTT for TCP.

.4. Slow-start: to do or not to do?

Similarly to LEDBAT, FLOWER might suffer from the latecomer

nfairness problem. During our experiments, we notice that the
se of the slow-start helps to mitigate the latecomer issue (with-

ut solving it for LEDBAT). This has also been noted by [14] .

LOWER uses slow-start as a synchronization signal which also al-

ows to get a first measure of the maximum queuing delay refined

fterwards with the peak-valley algorithm. The purpose of slow-

tart is to create a spike in the queuing delay since in the slow-

tart phase, the congestion window increases exponentially until

ausing a loss event. If other FLOWER connections also experience

 loss, they reset their congestion window. As a consequence, the

ueuing delay is reduced allowing all flows to sense almost the

ame base delay. All flows will then raise again at the same time

nd share the capacity equally. We highlight that slow-start of the

ewcomer flow does not necessarily cause loss to other ongoing

ows. However, in this situation, the congestion detection func-

ionality of the FLOWER fuzzy controller helps ongoing flows to

etect the slow-start signal of the latecomer flow, and hence to

esynchronize all flows.

. FLOWER fuzzy controller

At the core of FLOWER congestion control is the fuzzy controller

omposed by the following modules [15] :

1. A rule base , which contains a set of “If–Then” rules that de-

scribes how to achieve good control;

2. An inference mechanism , which emulates the human expert’s

decision making about how best to control the system based

on the information stored in the rule base;

3. A fuzzification interface , which converts controller inputs, e and

�e , into fuzzy values that the inference mechanism can use for

its fuzzy reasoning process;

4. A defuzzification interface , which converts the conclusions of the

inference mechanism into numerical output �cwnd .

In the remainder of this section, we briefly introduce these

odules and illustrate their operation.

.1. Choosing the controller inputs and output

To make a decision at the sampling instance k , the controller

ses as inputs the queuing delay error:

 (k) = τ − q (k) (3)

nd the change of queuing delay error:

e (k) = −(q (k) − q (k − 1)) = −�q (k) (4)

The queuing delay error is the difference between the target

ueuing delay and the estimated queuing delay. If the error is big,

he control action must be large to quickly drive the error to zero.

n contrast, if the error is small, the control action must be small to

revent oscillation. Therefore, the controller modulates its actions

ith the queuing delay error.

The change of queuing delay error is the error trend. For a

ame degree of error, the control actions should differ depending

n whether the error trend is increasing or decreasing. If the error

rend is increasing, the controller needs to take stronger action to

orrect the error, but when the error trend is decreasing, the con-

roller must reduce the control action to avoid over-reaction. Thus,

he error trend is used to amplify or dampen the actions of the

ontroller.

The controller output is the change of congestion window

cwnd (k), that is, the pace at which the controller must in-

rease/decrease the congestion window to match the queuing

elay to the target queuing delay. The congestion window size

wnd (k) is then calculated by:

wnd(k) = cwnd(k − 1) + �cwnd(k) (5)

22 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

Fig. 4. The rule base of the FLOWER fuzzy controller.

4.2. The rule base

The rule base models the relationship between inputs and out-

puts of the system. It serves as a repository to store the available

knowledge about how to solve the problem in the form of linguis-

tic “If–Then” rules. To establish a rule, we use linguistic variables

and their linguistic values [15] .

The linguistic variables describe each of the fuzzy controller in-

puts and outputs, so they usually are the names of inputs and out-

puts. For FLOWER, the linguistic variables are:

• “queuing delay error” or “e (k)”;

• “change of queuing delay error” or “�e (k)”;

• “change of congestion window” or “�cwnd (k)”.

Each linguistic variable assumes different linguistic values to

give informative description about a numerical (real) value . The lin-

guistic variables of FLOWER take on the following linguistic values:

{NVVL, NVL, NL, NM, NS, NVS, Z, PVS, PS, PM, PL, PVL}where the

meaning is: N: negative; P: positive; V: very; Z: zero; S: small; M:

medium; L: large.

Hence, the linguistic value PVS stands for positive very small and

so forth.

To clarify how this controller operates, let’s take for example

the following linguistic rules:

If e (k) is PVL and �e (k) is Z Then �cwnd (k) is PVL

This rule describes the situation where the queuing delay is

very small and does not raise . In consequence, we must increase

the congestion window by a very large value.

If e (k) is NVS and �e (k) is NVS Then �cwnd (k) is NS

This rule describes the situation where the queuing delay is

slightly beyond the target delay and raises very slowly . In conse-

quence, we must decrease the congestion window by a small value

to counteract the movement.

For a system with two inputs and one output like FLOWER, we

can list all rules using tabular representation as shown in Fig. 4 .

Note that in the rule table in Fig. 4 , we use linguistic-numeric val-

ues to shorten the description of linguistic values [15] (e.g., -5 rep-

resents NVS; 0 represents Z; 3 represents PM; ...).

To better understand the fuzzy controller dynamics, we divide

the rule table into six zones as follows:
Zone 1: Rules of this zone maintain the steady-state queu-

ing delay around the target. Both e (k) and �e (k) remains

very close to zero. In consequence, the fuzzy controller must

slightly increase or decrease the congestion window (de-

noted �cwnd in Fig. 4) to rectify small deviations from the

target.

Zone 2: In this zone, e (k) is positive or zero, which means that

the queuing delay is respectively either below or equal to the

target. In addition, since �e (k) is negative or zero, the queu-

ing delay tends to raise and thus moves in the direction of the

target. Therefore, based on the increase trend magnitude of

the queuing delay, the fuzzy controller must either increase

(i.e. �cwnd > 0) or decrease (i.e. �cwnd < 0) the congestion

window to accelerate or decelerate the queuing delay mo-

tion to match the target.

Zone 3: In this zone, since e (k) is negative, the queuing delay

is above the target. On the other hand, �e (k) is negative or

zero, which means that the queuing delay tends to increase

and hence, in this case, moves away from the target. Conse-

quently, the fuzzy controller must decrease the congestion

window to compensate the increase of the queuing delay.

Zone 4: For this zone, e (k) is negative and �e (k) positive, which

corresponds to the situation where the queuing delay is

above and is decreasing towards the target. As a result, to

match the queuing delay to the target, the fuzzy controller

needs to accelerate or decelerate the queuing delay motion

based on the magnitude of its decrease trend.

Zone 5: Rules of this zone represent the situation where the

queuing delay is either below or equal to the target. More-

over, the queuing delay is decreasing away from the target.

Thus, e (k) is either positive or zero and �e (k) is positive. The

fuzzy controller must therefore increase the congestion win-

dow to reverse the decrease trend of the queuing delay.

Zone 6 — Congestion Detection Zone: An important feature

of FLOWER is its capability to react quickly to conges-

tion events caused by TCP. This feature is integrated in the

rule base and can be observed in the last column of the

rule table called the congestion detection zone (see Fig. 4).

Concretely, when FLOWER detects a very large decrease in

the queuing delay (�e (k) is 5 or PVL), it must immedi-

ately reduce to its minimum congestion window (e.g., set to

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 23

Fig. 5. The membership functions of the FLOWER fuzzy controller.

4

v

c

n

E

T

d

a

d

f

w

f

q

f

t

4

n

o

t

e

w

w

d

4

q

�

w

q

T

p

t

t

z

m

p

A

s

i

f

−
w

v

t

w

l

one packet). This case corresponds to the following output:

�cwnd (k) is -6 or NVVL.

.3. Membership functions

A membership function defines the semantic of a linguistic

alue. Let’s A denote a linguistic value and X be a universe of dis-

ourse for an input or output of a fuzzy system, i.e, the range of

umerical values that the inputs and outputs can take as values.

ach linguistic value A is associated with a membership function.

his membership function quantifies the certainty or membership

egree that a numerical value x ∈ X can be classified linguistically

s A . The set of numerical values of X that a membership function

escribes as being a linguistic value A is called a fuzzy set.

In this paper, we use the most common triangle membership

unction defined by the three parameters { a, b, c } as follows:

(6)

here a < b < c and b is the center of the triangle membership

unction (i.e., where it reaches its peak) [15] .

Consider, for example, the membership function μPVS that

uantifies the meaning of the linguistic value positive very small

or any numerical value x ∈ X :

• if μPV S (x) = 0 then we are certain that x is not PVS;

• if μPV S (x) = 0 . 5 then we are only half certain that x is PVS. It

could also be Z with some degree of certainty;

• if μPV S (x) = 1 then we are absolutely certain that x is PVS.

Fig. 5 shows all the membership functions for the inputs and

he output of the FLOWER fuzzy controller.
.3.1. Membership functions of e (k)

Since the queue size varies continuously as a function of the

etwork traffic, we need to make the input error e (k) independent

f the network state. For this purpose, before introducing e (k) into

he fuzzy controller, we express it as follows:

 (k) =

⎧ ⎨

⎩

e (k)

τ
× 100 if q (k) ≤ τ,

e (k)

q max − τ
× 100 if q (k) > τ

(7)

here q max is the maximum queuing delay observed on the net-

ork. Consequently, the membership functions of e (k) is linearly

istributed on the universe of discourse [−100 , 100] %.

.3.2. Membership functions of �e(k)

The queuing delay is ranging from 0 to the maximum value

 max . Thus, we have

e (k) = −(q (k) − q (k − 1)) = −�q (k) (8)

here

 (k) ∈ [0 , q max]

hen, the universe of discourse for �e (k) is [−q max , q max] ms.

The variation of the queuing delay, and thus �e (k), highly de-

ends on the network state. Hence, we need to dynamically adapt

he distribution for the membership functions of �e (k). In addi-

ion, as seen in the rule table in Fig. 6 , the congestion detection

one of FLOWER relies only on �e (k). Therefore, we must deter-

ine a threshold to define this zone. To this end, we use the ex-

onentially weighted moving average (EWMA) of values of �e (k).

s EWMA has higher weights on recent data than on older data,

udden network condition changes are further taken into account

n this average. Consequently, the distribution for the membership

unctions of �e (k) is as follows:

q max , sde −, −3 , −2 , −1 , 0 , 1 , 2 , 3 , sde + , q max

here sde − and sde + are the EWMA of the negative and positive

alues of �e (k), respectively. {−q max , sde −, sde + , q max } are respec-

ively initialized with {−5 , −4 , 4 , 5 } . These values are updated only

hen the absolute value of a new value is greater than the abso-

ute value of the initial value.

24 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

Fig. 6. Graphical representation of fuzzy controller operations.

c

o

f

R

w

a

t

T

f

μ

w

f

μ

w

R

i

t

c

g

4

f

t

w

Finally, we underline that, as an effect of the congestion detec-

tion zone, when �e (k) > sde + , even if the certainty μPVL (�e (k)) is

small, FLOWER reduces the congestion window to its initial value.

4.3.3. Membership functions of �cwnd (k)

Outside the congestion detection zone, the distribution of

�cwnd (k) is linear on the universe of discourse [−1 , 1] packet. As

a consequence, the maximum ramp-up speed of FLOWER is the

same as TCP, i.e., one packet per RTT. When operating in the con-

gestion detection zone, �cwnd (k) is set to negative infinity to sig-

nal FLOWER to reduce to minimum its sending rate. Otherwise,

FLOWER will ramp-down at maximum one packet per RTT.

4.4. Fuzzification

Fuzzification is the process of making a numerical value fuzzy

so that it can be used by the fuzzy system. Whenever the fuzzifi-

cation module receives a numerical value x , it converts this value

into a corresponding linguistic value by associating a certainty that

is quantified by the membership function μA (x).

4.5. Inference mechanism

The inference mechanism derives the fuzzy outputs from the

fuzzy inputs obtained by fuzzification, according to the relation

defined through fuzzy rules. The main matter is how to interpret

the meaning of each rule, i.e., how to determine the influence pro-

duced by the premise on the conclusion of the fuzzy rule. To as-

sess this influence, the inference process generally involves in two

steps:

1. The certainty of the premise is determined using the fuzzy con-

junctive operator (AND);

2. The certainty of the conclusion, influenced by the premise, is
determined using the fuzzy implication operator. y
To illustrate the general idea of the inference mechanism, we

onsider a simple fuzzy system with two inputs x 1 and x 2 and one

utput y . The system is described by the following rule base of the

orm:

 i : If x 1 is A

i
1 and x 2 is A

i
2 Then y is B

i ,

for i = 1 , 2 , . . . , r

here A

i
1
, A

i
2
, and B i are the linguistic values of the linguistic vari-

bles x 1 , x 2 , and y in the ith rule R i . We use the minimum opera-

or to represent both fuzzy conjunctive and implication operators.

herefore, the certainty of the premise of rule R i is determined as

ollows:

A i (x 0) = μ(A i
1

AND A i
2
) (x 1 , x 2)

= min (μA i
1
(x 1) , μA i

2
(x 2)) (9)

here x 0 = (x 1 , x 2) . Then, the certainty of rule R i is determined as

ollows:

R i (y) = min (μA i (x 0) , μB i (y)) (10)

here μB i (y) is the membership function of the consequent of rule

 i . The membership function μR i
(y) quantifies how certain rule R i

s when the output y should take on certain values. In Eq. (10) ,

he minimum operation truncates the membership function of the

onsequent μB i (y) to produce the membership function μR i
(y) (for

raphical representation, see example in Section 4.7).

.6. Defuzzification

Defuzzification is the process of combining results of the in-

erence mechanism to obtain a numerical output value y . We use

he “center-average” Defuzzification method which calculates the

eighted average of the output membership function centers b i :

 =

∑

i b i sup y { μR i (y) } ∑

i sup y { μR i (y) } (11)

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 25

w

fi

F

4

i

t

0

m

t

c

s

R

R

u

p

μ

a

μ

T

r

o

v

f

t

2

v

μ

a

μ

T

g

t

t

T

t

m

A

μ

s

a

s

T

b

�

5

t

F

T

u

r

n

L

r

m

5

b

t

t

P

a

2

o

a

H

r

B

e

l

t

u

r

5

p

t

c

5

t

i

t

b

5

t

l

a

F

b

r

t

a

fi

g

q

r

s

d

i
here sup y { μR i
(y) } is the highest value of μR i

(y) .

We have finished the description of the three processes fuzzi-

cation, inference and defuzzification in a general context. For

LOWER, we have x 1 = e (k) , x 2 = �e (k) and y = �cwnd(k) .

.7. Example of fuzzy controller operations

Consider the example in Fig. 6 . Suppose that e (k) = 35 after be-

ng converted to the percentage form and �e (k) = 1 . The fuzzifica-

ion process using Eq. (6) gives μPV S (e (k)) = 0 . 25 and μPS (e (k)) =
 . 75 , whereas μPV S (�e (k)) = 1 . Fig. 6 shows the certainties of the

embership functions for the inputs and indicates with black ver-

ical lines the numerical values of e (k) and �e (k). In this case, by

onsulting the rule table in Fig. 4 , we have the following corre-

ponding rules:

 1 : If e (k) is PVS and �e (k) is PVS Then �cwnd (k) is PS

 2 : If e (k) is PS and �e (k) is PVS Then �cwnd (k) is PM

Now, consider the first rule R 1 . Let x 0 = (e (k) , �e (k)) , and thus,

sing Eq. (9) of the inference mechanism, the certainty of the

remise of the rule R 1 is:

A 1 (x 0) = min (μPV S (e (k)) , μPV S (�e (k)))

= min (0 . 25 , 1) = 0 . 25

nd then, according to Eq. (10) , we have:

R 1 (�cwnd(k)) = min (0 . 25 , μPS (�cwnd(k)))

he membership function μR 1
(�cwnd(k)) , which is the conclusion

eached by rule R 1 , is shown in Fig. 6 as the blue region of the

utput membership function μPS (�cwnd (k)) defining the linguistic

alue PS. As mentioned in Section 4.5 , this blue region is a result

rom the truncation of the membership function μPS (�cwnd (k)) by

he minimum operator. As a conclusion for rule R 1 , we are at most

5% certain that the output �cwnd (k) should be a positive small

alue.

In the same way, for the second rule R 2 , we have:

A 2 (x 0) = min (μPS (e (k)) , μPV S (�e (k)))

= min (0 . 75 , 1) = 0 . 75

nd

R 2 (�cwnd(k)) = min (0 . 75 , μPM

(�cwnd(k)))

he membership function μR 2
(�cwnd(k)) is shown as the red re-

ion of the output membership function μPM

(�cwnd (k)) defining

he linguistic value PM in Fig. 6 . Here, we are at most 75% cer-

ain that the output �cwnd (k) should be a positive medium value.

herefore, we are more certain of the conclusion reach by rule R 2
han the conclusion reach by rule R 1 .

To convert the conclusions of the inference process to a nu-

erical output, we use Eq. (11) of the defuzzification process.

s shown in Fig. 6 , the highest values of μR 1
(�cwnd(k)) and

R 2
(�cwnd(k)) is 0.25 and 0.75, respectively. Thus, we have:

up �cwnd { μR 1 (�cwnd(k)) } = 0 . 25

nd

up �cwnd { μR 2 (�cwnd(k)) } = 0 . 75

hen, with the output membership function centers b 1 = 0 . 4 and

 2 = 0 . 6 , we have:

cwnd(k) =

0 . 4 × 0 . 25 + 0 . 6 × 0 . 75

0 . 25 + 0 . 75

= 0 . 55
p
. Evaluation of FLOWER

We use the network simulator ns-2.35 to validate our new pro-

ocol. For this purpose, we have implemented an ns-2 prototype of

LOWER based on LEDBAT module developed by Valenti et al. [16] .

he prototype is implemented as a Linux congestion control mod-

le on top of the TCP-Linux framework [17] . Therefore, simulation

esults are much closer to a real implementation in the Linux ker-

el and would allow to easily port our implementation inside the

inux kernel (this also been the case for the LEDBAT module [16]).

We specifically focus on the FLOWER performance in terms of

espect to a LBE traffic and latecomer unfairness which are the two

ajor drawbacks of LEDBAT.

.1. Simulation setup

We use a dumbbell topology where a TCP flow shares a single

ottleneck link with a LBE flow (either FLOWER or LEDBAT). Note

hat to test our protocol, we follow the scenario used in [12] for

he sake of comparison. All sources send packets with a size of

 = 1500 B. The bottleneck link has a capacity set to C = 10 Mb/s

nd a one-way propagation delay owd ∈ [10, 50, 100, 150, 200,

50] ms. The bottleneck router is a FIFO drop-tail queue with a size

f B packets. For convenience, we express the bottleneck buffer B

s a ratio to the bandwidth-delay product BDP in terms of packets.

ence, we have B = � n · BDP � = � n · C · 2 · owd/ (8 · P) � , where the

atio n ∈ [0.2, 0.4, 06, 0.8, 1.0] and � x � is the ceiling function. Since

 must be an integer, we use the ceiling function to get the small-

st integer not less than B . We also convert the target τ from mil-

iseconds to packets as follows: τ (packets) = τ (ms) · C/ (8 · P) . In

his paper, we use the target queuing delay τ = 100 ms for all sim-

lations. Therefore, τ = 100 ms corresponds to 83.3 packets and is

ounded to 84 packets.

.2. Interaction with TCP

In this section, we study the behavior of FLOWER in the

resence of TCP and more specifically, the interaction between

he FLOWER fuzzy controller and the TCP AIMD (Additive In-

rease/Multiplicative Decrease) algorithm.

.2.1. Scenario and metrics

Two TCP and LBE flows start at t = 0 s and stop at t = 75 s. In

his scenario, owd = 50 ms and B = BDP . To investigate the behav-

or of one LBE flow in coexistence with one TCP flow, we consider

heir congestion windows and the queue length of the bottleneck

uffer.

.2.2. Results

Fig. 7 shows both congestion windows (top) as a function of

ime conjointly with the queue length and the target queuing de-

ay expressed in packets (bottom). The interaction between TCP

nd FLOWER is shown in Fig. 7 a. In the slow-start phase, TCP and

LOWER increase exponentially their congestion window. Thus, the

ottleneck queue fills up quickly until loss. Unlike TCP, FLOWER

educes its congestion window to its initial value which equals

o one packet in our implementation. After the slow-start phase,

pproximatively before t = 3 s, as the bottleneck queue is half-

lled but the resulting queuing delay is small compared to the tar-

et, FLOWER and TCP congestion windows conjointly grow. As the

ueue still increases because TCP keeps sending packets, FLOWER

educes its sending rate (the target is almost reached) and finally

tabilizes its congestion window. After t = 7 . 5 s, when the queuing

elay is close to the target, FLOWER reacts by decreasing its send-

ng rate. Finally, FLOWER reaches the minimum sending rate of one

acket per RTT at t = 9 . 3 s. Slightly afterwards, TCP gets losses and

26 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

Fig. 7. TCP and LBE congestion windows and bottleneck queue length as a function of time.

t

5

d

t

i

e

g

w

t

B

e

n

s

L

i

w

p

l

a

τ

t

t

r

b

c

T

a

t

C

N

t

5

a

i

5

T

f

o

s

c
enters in its recovery phase. As a consequence, TCP halves its con-

gestion window and the bottleneck queue is drained.

TCP re-enters in the congestion avoidance phase at t = 10 s

while FLOWER grows at its maximum speed as the queue is not

fully filled. FLOWER prevents bottleneck overflow by reducing its

sending rate before the knee phase [18] (i.e. when the rate in-

creases gradually but slower than the delay). When TCP halves its

congestion window at t = 21 . 8 s, we observe an abrupt decrease

of the queuing delay. Shortly afterwards, FLOWER detects this de-

crease with the help of the congestion detection scheme, hence

it drops to the minimum its congestion window. Therefore, the

queue is drained and FLOWER enters in a new cycle. Henceforth,

both FLOWER and TCP are in steady state.

This first experiment illustrates the good LBE behavior of

FLOWER in the presence of TCP. Clearly, the fuzzy controller with

the congestion detection scheme allows FLOWER to be LBE compli-

ant. In this standard configuration (we recall that B = BDP), LEDBAT

does not behave as a LBE protocol and is too aggressive as shown

in Fig. 7 b. This figure also illustrates that the LEDBAT P-type con-

troller does not react correctly to congestion events. We refer the

reader to previous studies [6,14] for further details on the LEDBAT

defective behavior.

In the next section, we extend these measurements to several

general networking use-cases in order to exhaustively illustrate the

good performance of our fuzzy controller scheme.

5.3. FLOWER versus LEDBAT performance in coexistence with TCP

NewReno and TCP Cubic

In this section, we evaluate the impact of FLOWER flows on TCP

flows (either NewReno or Cubic) in different network conditions.

5.3.1. Scenario and metric

We consider x long-lived TCP flows with x LBE flows where x ∈
{2, 5, 10}. The simulation lasts 1200 s where TCP flows start con-

secutively every 10 s from t = 0 s and keep sending data until the

end of simulation. LBE flows start randomly between t = 350 s and

 = 450 s in order for TCP to reach the full capacity.

To assess the impact of LBE on TCP, we define the metric rate

distribution (X) as the total throughput achieved by all flows F k
where k ∈ { TCP, LBE } over the total throughput of all flows on the

link:

X k =

F k
F T CP + F LBE

(12)

For each combination of network configuration { owd, B }, we run

the simulation 10 times. After each run, we calculate the rate distri-

bution over the last 600 seconds. Then, the mean of the 10 metric

values is taken as the measured value.
.3.2. Results

In Fig. 8 , using histogram, we group the simulation results into

ifferent categories of one-way delay (denoted owd in Fig. 8), and

hen into subclasses of buffer size given as a ratio to the BDP . For

nformation purpose, note that at the top of the histogram, the

quivalent ratio to the BDP is converted as the ratio to the tar-

et value given in packets as explained in Section 5.1 . This means

e express B as the ratio to the target τ in the same way as with

he BDP . For instance, looking at Fig. 8 , a buffer sized 0.4 of the

DP at owd = 100 ms corresponds to 0.7 of target value in pack-

ts. For each buffer size, each stacked column gives the sum of the

ormalized rates obtained by both TCP and LBE flows. Then, each

lice inside a column represents the part obtained by x TCP and x

BE flows given by (12) .

Fig. 8 a, c and e show the performance of LEDBAT and FLOWER

n the presence of TCP NewReno. We have selected a set of net-

ork configurations following our previous study on the LEDBAT

erformance issues [6] . These network configurations illustrate a

arge number of use-cases where LEDBAT performs (in Fig. 8 a, c

nd e, when the ratio of the bottleneck buffer size to the target

is largely greater than 1) or does not perform correctly (resp.

he reverse). As shown in Fig. 8 a, c and e, LEDBAT obtains some-

imes more than TCP NewReno and crosses the fair-share line rep-

esented by a dotted line. We then compare the results obtained

y FLOWER in these configuration. Fig. 8 a, c and e allow to easily

ompare the performance of both protocols in identical situation.

he results are unequivocal and illustrate that FLOWER behaves as

 LBE protocol where LEDBAT fails in realistic cases.

Using the same network configurations as above, we now study

he performance of LEDBAT and FLOWER in coexistence with TCP

ubic in Fig. 8 b, d and f. TCP Cubic is more aggressive than TCP

ewReno but in those cases, the performance of FLOWER is better

han LEDBAT in respect of the LBE principle.

.4. Intra-protocol fairness

We finally study the interaction between two FLOWER flows to

ssess their intra-fairness and determine whether FLOWER is not

mpacted by the latecomer issue.

.4.1. Scenario and metric

In this scenario, the buffer size B is set to twice the BDP .

his configuration is favorable to get the LEDBAT latecomer un-

airness phenomenon. The bottleneck link has a one-way delay

wd = 50 ms. The first LBE flow starts at t = 0 s and the second

tarts at t = 20 s . Both flows last 150 s. As in 5.2 , we draw their

ongestion windows and the queue length of the bottleneck buffer.

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 27

Fig. 8. Rate distribution of TCP and LBE flows.

Fig. 9. LBE congestion windows and bottleneck queue length as a function of time.

28 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

t

o

w

v

t

t

5

6

s

b

s

i

s

t

n

b

6

d

m

t

i

t

b

w

d

6

fi

5

F

d

p

i

r

o

6

l
5.4.2. Results

Fig. 9 b shows the LEDBAT latecomer issue [16] . The first LED-

BAT flow starts when the bottleneck queue is empty, and as a re-

sult, senses a base delay. When the second LEDBAT flow starts at

 = 20 s, the queue is filled with ≈ 50 packets. Consequently, the

second flow estimates a higher base delay including the queuing

delay of the first one. Since its estimated queuing delays are be-

low the target delay, the second flow raises its sending rate. As

a result, the first one senses an increasing queuing delay and be-

gins to decelerate. Finally, it reaches its minimum rate at t = 131 s

as shown in Fig. 9 b. On the contrary, FLOWER does not inherit

this latecomer issue thanks to the congestion detection scheme de-

scribed in Section 4 as shown in Fig. 9 a. This experiment demon-

strates that two FLOWER flows can now share fairly the link ca-

pacity.

To better understand this experiment, we recall that the goal

of slow-start is to create a spike in queuing delay when a new

FLOWER flow enters in the network. This queuing delay spike

should be detected by other ongoing FLOWER flows with the help

of the congestion detection zone in the rule table of the fuzzy

controller. However, when the bottleneck buffer size is not large

enough or when the bottleneck is heavily congested, this queuing

delay spike (caused by the slow-start) might be too small to be

detected by FLOWER. In general and in this context (i.e. bottleneck

heavily congested or small buffer size), the performance of delay-

based congestion control protocols heavily suffer from the inaccu-

racy of the estimated delay as discussed [3] .

6. Coexistence of FLOWER and AQM

Active Queue Management (AQM) has been an active research

field starting from the QoS epoch. While many schemes have been

proposed, their deployment seems very limited although many of

them are available in the GNU/Linux kernel. However, recent con-

cern about the excessive network end-to-end delay makes AQM an

up to date and hot topic at the IETF today. AQM is usually consid-

ered as the best solution to solve this bufferbloat problem [19,20] .

Unfortunately, LBE transport protocols are designed to work mainly

under a DropTail queuing discipline.

In the presence of AQM, LEDBAT loses its LBE characteristic and

behaves like standard TCP as shown by the authors of [21] and

of [12,22] . LEDBAT RFC also admits this fact [4] : “If Active Queue

Management is configured to drop or ECN-mark packets before the

LEDBAT flow starts reacting to persistent queue buildup, LEDBAT

reverts to standard TCP behavior rather than yielding to other TCP

flows”. Therefore, when designing a new LBE protocol (or any kind

of novel transport protocol), it is important to study its coexistence

with AQM schemes.

In this section, we evaluate the impact of AQM such as RED

[23] , CoDel [24] and PIE [25] on the LBE-compliance of FLOWER in

the presence of standard TCP connections. We chose to limit our

study to these three AQMs as they currently compete at the IETF

as a potential solution for the bufferbloat problem [19,20] . To ease

the comparison, we directly employ the scripts used by the authors

of this excellent study [12] , which are available at [26] .

6.1. Active Queue Management Schemes

Before diving into the results, we briefly review and recall the

principle behind each AQM tested.

6.1.1. Random Early Detection (RED)

RED randomly dropped packets with a probability p , calculated

based on the Exponential Weighted Moving Average (EWMA) q avg
f the instantaneous queue length as follows:

p(q a v g) =

⎧ ⎪ ⎨

⎪ ⎩

0 0 ≤ q a v g ≤ min th ,

q a v g − min th

max th − min th

p max min th < q a v g ≤ max th ,

1 q a v g > max th

(13)

here

min th : the minimum threshold,

max th : the maximum threshold,

p max : the maximum probability for packet dropping at the max-

imum threshold.

In this study, we use the default version of RED in ns-2. In this

ersion, the gentle _ mode is enabled to make RED more robust;

he min th and max th are automatically configured as a function of

he target average delay targetdelay _ , which has a default value of

 ms.

.1.2. Controlled delay (CoDel)

The goal of CoDel is to keep the minimum queuing delay (or

ojourn delay) experienced by packets in a fixed interval (100 ms

y default) below a target delay (5 ms by default). Therefore, CoDel

tarts to drop selected packets when the minimum queuing delay

s higher than the target delay. Each time CoDel drops a packet, it

ets the next dropping time based on the number of drops since

he beginning of the dropping state, as follows:

extDropT ime = lastDr opT ime +

interv al √

numO f Dr ops
(14)

For our test, we use the ns-2 CoDel implementation provided

y the scripts of [12] .

.1.3. Proportional Integral Controller Enhanced (PIE)

Similar to CoDel, PIE keeps the queuing delay around a target

elay, which has a default value of 20 ms. However, instead of

onitoring the real delay for each packet like CoDel, PIE estimates

he current queuing delay based on the queue draining rate us-

ng Little’s law. To determine the dropping probability every t update

ime units, PIE employs a PI-type controller that takes into account

oth the current queuing delay and its trend:

p = p + α · (queuingDelay − targetDelay)

+ β · (queuingDelay − lastQueuingDelay) (15)

here the factors α and β are respectively set to 0.125 and 1.25 by

efault. The ns-2 implementation of PIE used can be found at [27] .

.2. Scenario and metrics

We consider five long-lived standard TCP flows conjointly with

ve LBE flows. All flows start at time t = 0 . In this scenario, owd =
0 ms and B = 250 pkts = 3 × BDP to reproduce the bufferbloat.

To evaluate the interaction between LBE protocols (LEDBAT,

LOWER) and AQM schemes (RED, CoDel, PIE), we measure the rate

istribution of TCP X TCP , the average queue length E [Q] in terms of

acket, and the bufferbloat intensity defined as E [Q]/ B . Note that

n [12] , the authors denote X TCP as TCP %.

For each combination of LBE protocols and AQM schemes, we

un the simulation ten times and each run lasts for 60 s. The mean

f the metric values is then taken as the measured values.

.3. Impact of AQM schemes on LBE protocols

We present the simulation results in Fig. 10 using a paral-

el coordinate plot. The left and right y-axes correspond to the

S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30 29

Fig. 10. Impact of AQM on LBE protocols.

b

s

t

s

t

l

u

i

t

T

a

N

b

t

p

t

q

c

a

t

o

f

o

m

i

A

7

p

f

m

n

r

t

k

s

b

w

A

f

n

R

[

[

[

[

[

[

ufferbloat intensity E [Q]/ B and the rate distribution of TCP, re-

pectively. In the parallel coordinate plot, a line connecting these

wo metrics represents the interaction of each combination of AQM

chemes and LBE protocols. The ideal interaction is illustrated by

he green oblique region in Fig. 10 , in which the queuing delay is

ow while the LBE traffic remains low-priority.

Under DropTail (denoted DT in Fig. 10), TCP continuously fills

p the buffer until loss and therefore maximizes the bufferbloat

ntensity, as shown in Fig. 10 . As for LEDBAT and FLOWER, in

his case, they are both LBE-compliant, which are represented by

CP shares approaching one. We recall that the goal of LEDBAT

nd FLOWER is to keep the queuing delay around a fixed target.

evertheless, this choice of design only limits the exacerbation of

ufferbloat but does not solve it.

Fig. 10 clearly shows that employing an AQM scheme solves

he bufferbloat issue. However, such an AQM scheme also com-

romises the low-priority characteristic of LBE protocols and raises

heir aggressiveness towards TCP. In this case, LEDBAT competes

uite fairly with TCP. The results for LEDBAT are actually in ac-

ordance with the study in [12] . Regarding the new protocol, in

ll cases, FLOWER is always more LBE-compliant than LEDBAT and

ends towards the ideal region. There are two reasons behind this

utcome. First, FLOWER has a congestion detection zone in its

uzzy rule base that allows it to react better than LEDBAT in front

f congestion. Second, FLOWER resets its congestion window to

inimum in case of loss to alleviate its impact on higher prior-

ty flows. Both allows to make FLOWER compliant to perform with

QM schemes.

. Conclusion

We propose FLOWER, a new delay-based congestion control

rotocol designed to provide a LBE service using results from the

uzzy logic area. The main goal of FLOWER is to overcome both

ajor LEDBAT drawbacks: aggressiveness and latecomer unfair-

ess, while being LBE compliant. Our simulation study over a wide

ange of network use-cases shows that FLOWER performs better

han LEDBAT in case where it usually fails. To the best of our

nowledge, FLOWER is the first solution that solves both the aggres-

iveness issue inherent to LEDBAT protocol and the fairness issue . Last

ut not least, we finally showed that FLOWER remains compliant

ith AQM schemes that aim to mitigate the bufferbloat issue.
cknowlegdments

The authors wish to thank CNES and Thales Alenia Space for

unding and Cédric Baudoin, Emmanuel Dubois, Patrick Gélard for

umerous discussions on this study.

eferences

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, An architecture for
differentiated services, RFC 2475, Dec., 1998,

[2] V. Cerf , V. Jacobson , N. Weaver , J. Gettys , BufferBloat: what’s wrong with the
internet? Queue ACM 9 (12) (2011) 10–20 .

[3] D. Ros , M. Welzl , Less-than-best-effort service: a survey of end-to-end ap-
proaches, Commun. Surv. Tut. IEEE 15 (2) (2013) 898–908 .

[4] S. Shalunov, G. Hazel, J. Iyengar, M. Kuehlewind, Low extra delay background
transport (LEDBAT), RFC 6817, Dec., 2012,.

[5] G. Carofiglio , L. Muscariello , D. Rossi , C. Testa , A hands-on assessment of trans-

port protocols with lower than best effort priority, IEEE LCN, 2010 .
[6] S.Q.V. Trang , N. Kuhn , E. Lochin , C. Baudoin , E. Dubois , P. Gelard , On the exis-

tence of optimal LEDBAT parameters, IEEE ICC, 2014 .
[7] N. Kuhn , O. Mehani , A. Sathiaseelan , E. Lochin , Less-than-best-effort capacity

sharing over high BDP networks with LEDBAT, IEEE VTC Fall, 2013 .
[8] D. Ros , M. Welzl , Assessing LEDBAT’s delay impact, Commun. Lett. IEEE 17 (5)

(2013) 1044–1047 .

[9] G. Carofiglio , L. Muscariello , D. Rossi , C. Testa , S. Valenti , Rethinking the low
extra delay background transport (LEDBAT) protocol, Comput. Netw. 57 (8)

(2013) 1838–1852 .
[10] A. Venkataramani , R. Kokku , M. Dahlin , TCP nice: a mechanism for background

transfers, SIGOPS Oper. Syst. Rev. 36 (SI) (2002) 329–343 .
[11] A. Kuzmanovic , E.W. Knightly , TCP-LP: low-priority service via end-point con-

gestion control, IEEE/ACM Trans. Netw. 14 (4) (2006) 739–752 .

[12] Y. Gong , D. Rossi , C. Testa , S. Valenti , M. Täht , Fighting the bufferbloat: on
the coexistence of AQM and low priority congestion control, Comput. Netw.

65 (2014) 255–267 .
[13] A.J. Abu , S. Gordon , A dynamic algorithm for stabilising LEDBAT congestion

window, ICCNT, 2010 .
[14] D.R. Giovanna Carofiglio Luca Muscariello , S. Valenti , The quest for LEDBAT

fairness, IEEE GLOBECOM, 2010 .

[15] K.M. Passino , S. Yurkovich , Fuzzy Control, Addison-Wesley, 1998 .
[16] D. Rossi , C. Testa , S. Valenti , L. Muscariello , LEDBAT: the new bittorrent con-

gestion control protocol, ICCCN, 2010 .
[17] D.X. Wei , P. Cao , NS-2 TCP-Linux: an NS-2 TCP implementation with conges-

tion control algorithms from Linux, in: Proc. Workshop Ns-2: The IP Network
Simulator, 2006 .

[18] D.-M. Chiu , R. Jain , Analysis of the increase and decrease algorithms for con-

gestion avoidance in computer networks, Comput. Netw. ISDN Syst. 17 (1)
(1989) 1–14 .

[19] N. Khademi , D. Ros , M. Welzl , The new AQM kids on the block: an experimen-
tal evaluation of codel and PIE, in: IEEE Conference on Computer Communica-

tions Workshops (INFOCOM WKSHPS), 2014, pp. 85–90 .
20] N. Kuhn, E. Lochin, O. Mehani, Revisiting old friends: Is codel really achiev-

ing what RED cannot? in: Proceedings of the 2014 ACM SIGCOMM Workshop

on Capacity Sharing Workshop, in: CSWS ’14, ACM, New York, NY, USA, 2014,
pp. 3–8, doi: 10.1145/2630 088.2630 094 .

[21] J. Schneider , J. Wagner , R. Winter , H. Kolbe , Out of my way - evaluating low
extra delay background transport in an ADSL access network, in: Teletraffic

Congress (ITC), 2010 22nd International, 2010, pp. 1–8 .
22] Y. Gong , D. Rossi , E. Leonardi , Modeling the interdependency of low-priority

congestion control and active queue management, in: 2013 25th International
Teletraffic Congress (ITC), 2013, pp. 1–9 .

23] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoid-

ance, IEEE/ACM Trans. Netw. 1 (4) (1993) 397–413, doi: 10.1109/90.251892 .
24] K. Nichols , V. Jacobson , Controlling queue delay, Commun. ACM 55 (7) (2012)

42–50 .
25] R. Pan , P. Natarajan , C. Piglione , M.S. Prabhu , V. Subramanian , F. Baker , B. Ver-

Steeg , PIE: a lightweight control scheme to address the bufferbloat problem,
in: IEEE 14th International Conference on High Performance Switching and

Routing (HPSR), 2013, pp. 148–155 .

26] http://perso.telecom-paristech.fr/ ∼drossi/index.php?n=Dataset.LEDBATAQM .
[27] https://heim.ifi.uio.no/ ∼naeemk/research/PIE/ns-2/ .

http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0017
http://dx.doi.org/10.1145/2630088.2630094
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0020
http://dx.doi.org/10.1109/90.251892
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30298-5/sbref0023
http://perso.telecom-paristech.fr/~drossi/index.php?n=Dataset.LEDBATAQM
https://heim.ifi.uio.no/~naeemk/research/PIE/ns-2/

30 S.Q.V. Trang, E. Lochin / Computer Networks 110 (2016) 18–30

puter Science and the master degree in Computer Networking from Université Pierre et
ystems Networking and Telecommunications from Institut Supérieur de l’Aéronautique et

15, respectively. Since 2016, he is a research engineer at Symbiosis Technologies, France.

atory of Pierre and Marie Curie University - Paris VI in December 2004. From July 2005

orks and Pervasive Computing research program at National ICT Australia, Sydney. Since
hematics and Computer Science at ISAE. His main reserach domain deals with Satellite

ort Protocols, Reliability, Erasure Coding, Congestion Control.
Si Quoc Viet Trang received the bachelor degree in Com
Marie Curie (Paris VI), and the Ph.D. degree in Computer S

de l’Espace (ISAE), Toulouse, France, in 2010, 2012 and 20

Emmanuel Lochin received his Ph.D. from the LIP6 labor

to August 2007, he held a researcher position in the Netw
2007, he is professor at the Department of Applied Mat

Networking and his research interests include DTN, Transp

	FLOWER, an innovative Fuzzy Lower-than-Best-Effort transport protocol
	1 Introduction
	2 Contextual background and motivation
	2.1 LEDBAT in a nutshell
	2.2 Two main LEDBAT issues
	2.2.1 Aggressiveness of LEDBAT
	2.2.2 Latecomer unfairness

	2.3 Motivation of FLOWER

	3 Design and implementation
	3.1 FLOWER overview
	3.2 Comparison of FLOWER and LEDBAT
	3.3 Peak-valley detection algorithm
	3.4 Slow-start: to do or not to do?

	4 FLOWER fuzzy controller
	4.1 Choosing the controller inputs and output
	4.2 The rule base
	4.3 Membership functions
	4.3.1 Membership functions of e(k)
	4.3.2 Membership functions of e(k)
	4.3.3 Membership functions of cwnd(k)

	4.4 Fuzzification
	4.5 Inference mechanism
	4.6 Defuzzification
	4.7 Example of fuzzy controller operations

	5 Evaluation of FLOWER
	5.1 Simulation setup
	5.2 Interaction with TCP
	5.2.1 Scenario and metrics
	5.2.2 Results

	5.3 FLOWER versus LEDBAT performance in coexistence with TCP NewReno and TCP Cubic
	5.3.1 Scenario and metric
	5.3.2 Results

	5.4 Intra-protocol fairness
	5.4.1 Scenario and metric
	5.4.2 Results

	6 Coexistence of FLOWER and AQM
	6.1 Active Queue Management Schemes
	6.1.1 Random Early Detection (RED)
	6.1.2 Controlled delay (CoDel)
	6.1.3 Proportional Integral Controller Enhanced (PIE)

	6.2 Scenario and metrics
	6.3 Impact of AQM schemes on LBE protocols

	7 Conclusion
	 Acknowlegdments
	 References

