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a b s t r a c t 

Smart cities can be seen as large-scale Cyber-Physical Systems with sensors monitoring cyber and physi- 

cal indicators and with actuators dynamically changing the complex urban environment in some way. In

this context, urban sensing is a new paradigm that exploits human-carried or vehicle-mounted sensors

to ubiquitously collect data to provide a holistic view of the city. A challenge in this scenario is the trans- 

mission of sensed data in situations where the networking infrastructure is intermittent or unavailable.

This paper outlines our research into an engine that uses opportunistic networks to support the data

transmission of urban sensing applications. It applies situation awareness and computational intelligence

approaches to perform routing, adaptation, and decision-making procedures. We carried out simulations

within a simulated environment that showed our engine had 12% less overhead than other compared

approaches.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

According to [1] , the physical world is becoming more and

ore saturated with the presence of a vast number of mobile de-

ices. The integration of smart objects such as mobile and em-

edded computing devices with people and physical environments,

hich are typically tied by a communication infrastructure, in-

pired the development of the concept of cyber-physical systems

CPS). The concept of CPS encompasses systems ranging from a

ingle smart house to an entire smart city. Smart cities are large-

cale CPS with sensors monitoring cyber and physical indicators

nd with actuators dynamically changing the complex urban envi-

onment in some way [2] . Therefore, a key feature of smart cities

s sensing of different aspects of the city in order to provide cit-

zens with new services and improve their quality of life [3] . In

rder to facilitate this data collection, urban sensing applications

re emerging as a promising way to “feel the pulse” of the city. 
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One challenge to implementing urban sensing applications is

he transmission of sensed data using poor wireless infrastruc-

ures available in large-scale urban settings (i.e. with low coverage

or the huge number of devices spread throughout the environ-

ent, low bandwidth available, wireless shadowing, frequent dis-

onnections, etc.). Authors in [1,4,5] suggested that opportunistic

etworks could overcome a lack of connectivity in smart cities and,

onsequently, could be applied to support data transmission of

PS. In an opportunistic network, direct, physical contacts between

odes are opportunistically exploited to recognise and disseminate

elevant information toward potentially interested nodes, without

he need of centralised infrastructures or precomputed paths from

ource to destination [1] . 

In this paper, we propose an engine based on the opportunistic

etwork paradigm to transmit data of urban sensing applications

n scenarios where the networking infrastructure is intermittent or

navailable. The main differential of such engine is the application

f situation awareness in conjunction with computational intelli-

ence approaches to transmit data, perform routing, make adapta-

ions and carry out decision-making. Furthermore, the engine will

e used to underlie the opportunistic communication in Sensing

odule of our ubiquitous service-oriented architecture for urban

ensing, UrboSenti [6] . 
putational intelligence in opportunistic networks to support the 
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Fig. 1. High-level view of UrboSenti. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Communication component highlighted in figure. 
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It is our understanding that this is the first paper to adopt this

kind of approach to smart cities with a focus on urban sensing ap-

plications. Additionally, the results of this study indicate areas in

need of further research to be carried out in this area. 

The rest of this paper is structured as follows. The next sec-

tion describes the motivational scenario and raises some key is-

sues about current computational developments. Section 3 pro-

vides a brief outline of some background concepts and related

works. Section 4 describes the proposed architecture. Section 5 de-

scribes our experiments and analyses the results, and, finally, in

Section 6 some conclusions are drawn and recommendations made

for future research. 

2. Problem scenario 

Our research has been designed to address the problem-

scenario of a smart city where several data sources are being used

for sensing. Human-carried, fixed or vehicle-mounted sensors are

utilized to obtain information about transit maps, air quality, noise

levels, temperature, CO 2 concentration, etc. Moreover, data from

social networks together with sensor data are crucial to understand

the behavioural patterns of the city and to provide a holistic view

of it. 

Our Ubiquitous Service-Oriented Architecture for Urban Sensing

(UrboSenti) is designed to collect, analyse, and provide feedback

on sensed data obtained from several sources scattered around the

city. The main purpose of UrboSenti is to provide support for the

overall task of urban sensing. A high-level view of UrboSenti is de-

picted in Fig. 1 . 

Fig. 1 shows the division of UrboSenti into two key modules:

the Backend module and Sensing module. Backend module oper-

ates in a data center infrastructure and, in short, is responsible

for receiving sensed data, processing it and giving feedback to the

public and other systems. Sensing module is responsible for ur-

ban sensing and encompasses activities involving intentional and

non-intentional sensing. It operates in mobile devices (e.g. mo-

bile phones, embedded systems in vehicles, etc.) and in fixed sen-

sors scattered around the city. Vehicles and fixed sensors run a

lightweight version of Sensing module that collects data without

user interaction. In mobile phones, this module operates as an ap-
Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
lication that permits the users to report some events in the city

r be configured to acquire data without user interaction when

ome threshold is triggered. 

In both cases (with mobile and fixed devices), Sensing module

as a microkernel with a set of components that can be plugged

n “on demand” and are responsible for its essential features.

hese functions include Communication component (highlighted in

ig. 2 ) which is responsible for the management of all communi-

ation tasks. 

The Communication component transmits sensed data using

pportunistic networks paradigm when direct connection to the

nternet is unavailable. In such approach, the contacts between

odes are used for data forwarding. The contacted node acts as
putational intelligence in opportunistic networks to support the 
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t  
 “data mule”, carrying the sensed data in local buffer until the

ext node is encountered. This process repeats until a node with

n Internet connection is reached and data are sent to the Back-

nd module. Determining when to forward message to other node

resents a challenge in this process. A wrong forwarding strat-

gy could saturate the network, exhaust the nodes resources (e.g.

ower or buffer space) or even result in data loss. 

To overcome this challenge, we are proposing an engine that

pplies situation awareness , a high abstraction view of context, in

onjunction with computational intelligence approaches. We argue

hat an engine with these features could improve decisions about

outing and data transmission of Communication component. In

he next section, we describe the concepts used in this engine. 

. Background and related works 

According to Celino and Kotoulas [7] , urbanization has dramat-

cally increased over the past few years, and forecasts show that

igration to urban areas will continue to increase. The population

oncentration within cities poses numerous challenges in terms of

oth city governance and people’s lives. As a consequence, smarter

olutions are necessary to better address emerging requirements

n urban environments. The concept of “smart cities” is a response

o these challenges [8] . Smart cities are typical examples of dis-

ributed CPS since they integrate different domains in order to cre-

te sophisticated solutions and applications that may or may not

nteract with the city’s residents [9] . In such scenarios, the explo-

ation of users mobile devices and fixed sensors along to the city

o collect data from physical world to be processed, stored and ex-

loited in cyber world is an emerging trend called urban sensing. 

The literature depicts a number of initiatives in urban sens-

ng. Some examples include MetroSense [10] , AnonySense [11,12] ,

edusa [13,14] , PRISM [15] , MobiSens [16] , Pogo [17] , CenceMe

18] , SmarterSantander [19] and UrboSenti [6] . Each initiative pro-

oses a different approach to collect data from city, analyse it, and

ive feedback to citizens. In this paper, our focus is not on such

rban sensing solutions, but in the engine that runs in the sensing

odule of UrboSenti. As presented above, this engine applies situ-

tion awareness and computational intelligence approaches in Op-

ortunistic Networks to improve the routing of sensed data. These

oncepts are further explained in the next sections. 

.1. Opportunistic networks 

Opportunistic networking is a technology with good prospects

o realize the ubiquitous vision [20] . This new emerging paradigm

s sometimes referred in the literature as a subclass of Delay-

olerant Networks (DTN). Opportunistic Networks seeks to simplify

he complexity at the network layer by removing the assumption

f physical end-to-end connectivity while providing connectivity

pportunities for pervasive devices when no direct access to the

nternet is available. It represents the first attempt to close the gap

etween human and network behaviour by adopting a user-centric

pproach to networking and exploiting node mobility for users so

hat it can be regarded as an opportunity – rather than a challenge

to improve data forwarding [21] . 

In opportunistic networks, the nodes are assumed to be mo-

ile, and the forwarding of data is based on the Store-Carry and

orward (SCF) concept [22] where nodes act as “data mules” and

ata forwarding occurs at each nodes’ contacts. One fundamen-

al problem in SCF is how to select effective data mules to carry

ata from their source to their destination in a suitable way (i.e.

ith high delivery rate, low latency and low overhead), since end-

o-end paths might be absent for the lifetime of the message

23] . Several measures have been employed to overcome this prob-

em. These measures involve adopting different approaches, rang-
Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
ng from “naïve” (i.e. using no or slight contextual information)

o “intelligent” (i.e. using contextual information such as location,

istory, connectivity or social information for intelligent decision-

aking). As example of initiatives that uses these approaches we

ould cite: Epidemic [24] , Spray&Wait [25] (and the Spray vari-

nts like Spray&Focus [26] , Fuzzy-Spray [27] and others), Prophet

28] , BubbleRap [29] , dLife [30] , SPRINT [31] , AFRON [32] , DRAFT

33] , Cartoon [34] , CAR [35] , HiBOp [36] , CiPRO [23] , RAPID [37] ,

ropicman [38] , dLife [30] , and SCORP [39] . Due to space limita-

ion and this paper’s scope, we will not present more information

bout these initiatives – for further information see [40] and [4] . 

These existing initiatives in opportunistic networks do not focus

n smart city applications. Conti et al. [41] indicated that smart

ities are heterogeneous and dense scenarios, with constant topo-

ogical changes with no pre-defined pattern due to the mobility

f nodes. Consequently, data communication occurs spontaneously,

esulting in a huge amount of small streams of data. Therefore,

uch initiatives cannot be used “as-is”, without adaptation, as un-

erlying paradigm for data communication in an urban sensing

cenario. 

To overcome such limitations, we are proposing our engine. It

ses some concepts of context-based information for routing de-

isions like Cartoon [34] , but rather than just rely on instanta-

eous information, it makes decisions based on predictions. More-

ver, our work is sited in the same area of computational intelli-

ence as the CAR protocol [42] . However instead of depending on

alman Filters for prediction and a multi-criteria decision theory

hen choosing the ideal next hop for the message, in our work

e have employed fuzzy logic for decision-making and neural net-

ork for prediction. 

.2. Situation awareness 

Situation awareness (SAW) is a computing paradigm which uses

ontext-based data to sense and understand the current situation

nd to forecast future requirements. According to Ye et al. [43] , a

ituation is an abstraction of events occurring in the real world de-

ived from the context and hypotheses based on the relationship

f observed context to factors of interest to designers and applica-

ions. 

The first formalization of SAW was a 3-level model proposed

y Endsley [44] . The levels of the model were perception, Level 1

A which involves the monitoring and detection of states of ele-

ents; comprehension, Level 2 SA which concerns the formation

f a comprehensive picture of the elements by integrating differ-

nt kinds of context-based information; and projection, Level 3 SA

hich is the highest level of SAW and involves the projection of

he future actions of the elements. According to the author, situ-

tion awareness provides a more holistic view that improves con-

extual representation and reasoning. 

In our work, the proposed engine collects internal and exter-

al context data of node and environment to derive a high ab-

traction view or situation. It applies the 3-level model of Endsley

44] to support decision-making processes. The main advantage of

his approach is the human-friendly representation of context data

nd abstraction of complexity to read and to infer about those data

43] . 

As examples of works in this area, we could cite the RCSM

iddleware [45] and European Project CASCADAS [46] . We could

ot find any initiatives of SAW in opportunistic networks in urban

ensing area. 

.3. Computational intelligence 

Although used in different contexts, no widely accepted defini-

ion of the term computational intelligence (CI) exists [47] . James
putational intelligence in opportunistic networks to support the 
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Bezdek popularized the term who defined it as a discipline of ar-

tificial intelligence composed of computer systems that use nu-

meric data, recognise patterns, display computational adaptability

and fault tolerance, and commit errors at a rate approximating hu-

man performance [48] . As IEEE Computational Intelligence Society 1 

indicated, the concept of CI involves different topics of artificial in-

telligence which is composed of the subareas of neural networks,

fuzzy systems, genetic algorithms and evolutionary computing in-

cluding swarm intelligence. In this context, the component that

is being proposed will explore two approaches in particular: neu-

ral networks for predictions of future situations and fuzzy systems

for the treatment of uncertainty and decision making. Genetic al-

gorithms and evolutionary computation was not be used because

they are more suitable for optimization problems and classification

[49] . 

3.3.1. Artificial neural networks 

Artificial Neural Network (ANN) are mathematical models that

simulates a highly inter connected, parallel computational struc-

ture of the brain. It is considered a sub-area of computational in-

telligence. Henceforth, in this text the terms artificial neural net-

work and neural network are used interchangeably. 

Basically, there are two types of neural networks: feedforward

and recurrent. In Feedforward Neural Networks (FNN), an activa-

tion signal is propagated through the neural network from input

units to output units. In Recurrent Neural Networks (RNN), the val-

ues of output units are used as new input creating a directed cycle.

With this arrangement, the network creates an internal memory

state which allows the network the ability to handle problems by

predicting tasks for the next state based on past states [50] . For

predicting tasks, RNNs, in general, achieve better results in predic-

tion of time series than feedforward networks [50,51] . 

Despite this widely acknowledged potential, RNNs are difficult

to train by gradient-descent-based methods, which attempt to it-

eratively reduce the training error. To overcome such limitation a

new approach called Reservoir Computing (RC) was proposed. The

main differential of the RC paradigm is related to setting up RNNs

in the following way: (i) an RNN is randomly created and remains

unchanged during training. This RNN is called the reservoir. It is

passively excited by the input signal and maintains in its state a

nonlinear transformation of the input history; (ii) the desired out-

put signal is generated as a linear combination of the neurons sig-

nals from the input-excited reservoir. This linear combination is

obtained by linear regression, using the teacher signal as a target

[52] . 

RC methods have quickly become popular and today two kinds

are prominent: Echo State Networks (ESN) proposed by Jaeger

[53] and Liquid State Machines (LSM) proposed by Maass et al.

[54] . Both methods are based on the usage of a reservoir of neu-

rons, but LSM uses a more sophisticated synaptic models which

are usually more difficult to implement to correctly set up and

tune and more expensive to emulate on digital computers [52] . In

contrast, ESN uses a unique dynamic reserve pool structure that

allows the network to have effective short term memory capacity

and to show better performance in forecasting with low computa-

tional costs [55] . 

ESN is a three-layered recurrent network with sparse, random,

and, most importantly, untrained connections within the recurrent

hidden layer. As a seminal paper makes clear, ESN has the prospect

of offering significant performance benefits. The main structural el-

ement of ESN is a reservoir rather than a layered structure. The

weights between the connected neurons within the reservoir are

fixed and are randomly generated rather than trained. This ap-
1 http://cis.ieee.org/ . 

d  

f  

i  
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roach significantly reduces the learning process when compared

ith other algorithms (e.g. back propagation through time) and,

herefore, requires low computational costs to implement. This fac-

or led us to use ESN as an essential technique for forecasting of

ur engine. 

ESN has been employed to solve practical problems in vari-

us domains. ESN has been used to forecast predictions for power

lants and power grids [56–58] , flue gas turbine condition trends

55,59] , wind power generation [60] , exchange rate forecasting

61] and for credit rating systems citeBozsik2012. ESN was also ap-

lied to predict security events in computer networks, and more

elated to our work, Yu et al. [62] use ESN to predict mobile com-

unication traffic in a cellular network. However, at present, we

annot find any work that applies ESN in urban sensing applica-

ions. 

.3.2. Fuzzy logic 

Fuzzy logic is another sub-area of computational intelligence

sed by our engine. The fuzzy set theory was proposed by Zadeh

n 1965 as an extension of multi-valued logic. It has been described

s a precise logic of imprecision and approximate reasoning. A

uzzy set A in X is characterized by a membership function fA(x)

hich associates with each point in X a real number in the inter-

al [0,1], with the values of fA(x) with x representing the “grade

f membership” of x in A. Thus, the nearer the value of fA(x) is to

nity, the higher the grade of membership of x in A citeZadeh1965.

he shape of the membership function defines the fuzzy set and is

ependent on the purpose of set. The most commonly used mem-

ership functions are triangular, trapezoidal, generalised bell, sig-

oidal and gaussian. 

The Fuzzy Inference System (FIS) is a popular computing frame-

ork based on the concepts of fuzzy set theory, fuzzy if-then rules,

nd fuzzy reasoning [63] . An FIS is a system that uses fuzzy set

heory to map inputs to outputs. The mapping then provides a ba-

is from which decisions can be made. The process of fuzzy in-

erence involves the determination of a set of ‘if-then’ fuzzy rules,

he fuzzification of inputs using membership functions, the appli-

ation of rules and fuzzy operations to generate consequents and

o get an output distributions and finally the defuzzification of out-

ut distribution in case of crisp output. 

Two types of inference methods are used in FIS: Mamdani and

akagi-SugenoKang type (or simply Sugeno). The Mamdani method

f inference expects the output membership functions to be fuzzy

ets. After the aggregation process, a fuzzy set is established for

ach output variable that needs defuzzification. Sugeno FIS is sim-

lar to the Mamdani method in many respects. The first two parts

f the fuzzy inference process, fuzzifying the inputs and applying

he fuzzy operator are exactly the same in both methods. The main

ifference between Mamdani and Sugeno is that the Sugeno out-

ut membership functions are either linear or constant. 

We are using fuzzy logic because it is able to support real-time

ecisions about the context data of nodes once such data has some

egree of uncertainty and vagueness. For this reason, conventional

ogic may lead to completely wrong decisions owing to uncertainty

ithin context data. Fuzzy logic is a viable alternative to reasoning

nd making rational decisions with imprecision, uncertainty, in-

ompleteness of information, conflicting information, partiality of

ruth and degrees of probability [64] . 

Fuzzy logic has been successfully applied in a wide variety of

elds such as automatic control, data classification, expert systems,

ime series prediction, robotics, and pattern recognition and deci-

ion making [65] . In ubiquitous computing, it has been used for

ifferent purposes such as location prediction [66] and context in-

erence [67] . In the field of opportunistic networks, the closest

nitiatives are AFRON [32] , Fuzzy-Spray [27] , FuzzyCom [68] and
putational intelligence in opportunistic networks to support the 
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Fig. 3. Engine behaviour. 

A  

w

4

 

g  

w  

s  

a

4

 

c  

m

 

(  

t  

S  

B  

C  

s  

a  

a

 

o  

t  

i  

t  

s  

m  

t  

n  

e  

i  

a  

s

 

e

4

 

c  

f  

p  

g  

e

 

t  

a  

u  

c  

n  

n  

l  

a  

p  

t  

n  

s  

a  

l  

c  

a  

b

 

a  

c  

c  

d

 

d

 

m  

N  

c  

s  

s  

l  

n  

a  

e  
daptive Fuzzy Spray&Wait [69] . However, none of them was built

ith focus in urban sensing area. 

. Proposed solution 

As shown in Section 2 , in this work we are describing our en-

ine used to underlie communication data when opportunistic net-

orks paradigm is used by Sensing module of UrboSenti. In this

ection, we describe how the engine works, its conceptual model

nd then outline its inner architectural features. 

.1. Engine dynamics 

As we explained above, UrboSenti is an architecture that en-

ompasses the overall urban sensing tasks. It is composed of two

ain modules: Backend and Sensing. 

Sensing module runs in each sensor node in a smart city

 Fig. 3 ). These nodes collect data about city intentionally or unin-

entionally, without user interaction (i). In normal operation mode,

ensing module collects data and sends it to be processed by

ackend module using its internal communication component (ii).

ommunication component provides methods for transmission of

ensed data by means of the available network infrastructure, such

s IEEE 802.11b/g/n (both structured and ad-hoc), GPRS/EDGE/3G

nd Ethernet using traditional TCP/IP stack. 

In some parts of the city, the network infrastructure could be

verloaded, intermittent or unavailable. In this case, communica-

ion component of the sensing module receives an alert of other

nternal components indicating that it needs to adapt its behaviour

o send data without network infrastructure (iii). In this case, it

tarts to use the opportunistic network as paradigm for data trans-

ission. In this operation mode, instead of sending data directly

o the Internet, the node stores it in a local buffer. When another

ode is encountered, the communication component employs our

ngine to decide if the stored data should be forwarded or stay

n local buffer until next encounter (iv). This process repeats until

 node with an Internet connection is reached and sensed data is

ent to be processed by Backend module (v). 

To support such decision-making process about forwarding, the

ngine uses some conceptual models detailed in next section. 
Please cite this article as: C.O. Rolim et al., Situation awareness and com
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.2. Conceptual models 

As previously presented, a challenge in opportunistic networks

oncerns the right time to forward message to contacted node. To

acilitate such decision-making process, our proposed engine ap-

lies concepts of situation awareness and computational intelli-

ence. To support such tasks, we developed some conceptual mod-

ls that will be implemented later. 

The first model is Situation awareness ( Fig. 4 ). The main func-

ion of this model is to understand what happens when the node

nd project adapt proactively. It is based on a 3-tier Endsley’s sit-

ation model presented in Section 3.2 . This model groups internal

ontext data such as power, buffer usage, traveled distance from

odes and external context data from scenario such as number of

eighborhood nodes, type of contacted node, etc. in a set called

ow level context. Such data provide the basic perception of situ-

tion (first level of Endsley’s situation model) and are used as in-

ut for the situation comprehension (second level of situation). To

his task, a repository of rules is used to characterize the current

ode situation. Once the current situation is acknowledged, it is

tored to be used in the future as a reference of past situations

nd also is used as a basis to predict future node situations (third

evel of situation). To define future situations, a set of rules and a

omputational intelligence approach with support for prediction is

pplied (for such tasks, the prediction model described next will

e used). 

At this point, the engine becomes aware of the past, current

nd future node situations and such information is used to de-

ide about routing. Since all information has some degree of un-

ertainty and vagueness, fuzzy logic is applied to facilitate the

ecision-making (the decision-making model is presented next). 

As a result of the overall processes, an indication about routing

ecision is produced. 

The Prediction model ( Fig. 5 ) is used by situation awareness

odel support prediction of future situations. A recurrent Neural

etwork (NN) is used for this purpose. We have chosen NN be-

ause of its capacity to solve non-linear problems; it has univer-

al function approximators suitable for prediction. Each node is re-

ponsible for training and running its own NN. This approach al-

ows us to ensure that each node has a suitable NN to suit its

eeds. The current and past low-level context-based data are used

s input for NN. The NN starts the training phase by testing sev-

ral configurations from a configuration repository and seeking to
putational intelligence in opportunistic networks to support the 
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Fig. 4. Situation model. 

Fig. 5. Prediction model. 
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find the optimal Network (with the lowest Root Mean Squared

Error – RMSE). When an optimal network is found, it is used

for prediction in the next phase, exploitation. In the exploitation

phase, the current low-level context data is pumped to the op-

timal NN found in the previous phase. The outputs of this pro-

cess are newly predicted, low-level context data that probably

characterize the future situation of a node. It is an essential re-

quirement for NN to ensure that computational costs are kept

low due to the power and processing constraints of the mobile

nodes. 

The Decision-making model ( Fig. 6 ) is designed to define the

potential of a node to be an effective data mule. As it handles

uncertain data, fuzzy concepts are applied. Precise and impre-

cise low-level context-based data (from current and projected fu-

ture situations) are used as input. These context data are fuzzi-

fied using membership functions and the inference runs with ap-

plication of ‘if-then’ fuzzy rules. The output of inference is de-
Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
uzzified and the potential of node to be a good data-mule is

enerated. 

.3. Engine architecture 

Our engine makes use of dynamism and the models depicted

bove. Its internal architectural features are outlined in Fig. 7 and

ts behaviour is explained below. 

The engine starts with the Contextual Information that repre-

ents information about the context of node. At constant time in-

ervals, Context Collector collects the data and stores them in Con-

extual Graph , thus creating a new Layer 2 vertex. The Contextual

raph component manages all the data storage. The Neo4j 2 graph

atabase was used as the underlying software for this purpose.

ts main function is to store instantaneous and predicted context
2 http://www.neo4j.org/ . 

putational intelligence in opportunistic networks to support the 
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Fig. 6. Decision-making model. 

Fig. 7. Engine architecture. 
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nformation. In Contextual Graph, the vertices of the graph are

tructured in layers: Layer 1 stores basic information about the

ode (i.e. node name, address, network interfaces, etc.), Layer 2

tores instantaneous context information about the node (i.e. node

ower, current position, buffer usage, number of messages, current

ime, speed, distance traveled from last point, number of reach-

ble neighbors, etc.) that will be used as historical values to prime

he Forecaster component, and Layer 3 stores predicted context

alues that are periodically generated by Forecaster. Moreover, we

sed edges to represent the contacts between the nodes. Fig. 8

hows an example of partially stored data in one node of the

etwork. 

The Situation Manager component implements our situation

wareness model. It draws on data from the Contextual Graph to

uild, analyse, project and create a repository of situations. The

nformation generated by this module is used later by the De-

ision Maker. It also runs maintenance routines like pruning old

ata and invoking Forecaster for prediction. At fixed time inter-

als, the Situation Manager retrieves context data from the Con-

extual Graph and with the aid of a set of rules stored in its in-

ernal situation repository, it seeks to determine (“build”) the sit-

ation of the current node. The identified situation (e.g. the node

s sensing low battery power and high buffer usage) is analysed,

nd if it finds that some action needs to be taken, this is reported

o the Decision Maker. If a situation cannot be identified, an un-

nown situation is found. Thus, a new set of rules that characterise

his situation is created “on the fly” and stored in the repository

or future use. When the Situation Manager component detects

 sufficient amount of context information, it is able to project
Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
 future situation. The Forecaster component is invoked for this

urpose. 

The Forecaster component implements our prediction model, so

hat it can predict the probable values that will characterize a fu-

ure situation. When carrying out this task, it uses context val-

es that are stored such as the values in Layer 2 in the Contex-

ual Graph which provides historical data to train ESN (i.e. node

ower, current position, etc.). The low computational costs in-

olved in training the neural network allows us to enable each

ode of the network to build its own ESN (Neural Network) with

he most appropriate configuration for its context. This is accom-

lished by testing different internal parameters of ESN (i.e. the

ize of reservoir, sparsity of the reservoir, spectral radius and leak

ate) with different values until the one with the lowest MSE is

ound. When the optimal neural network is found, its configura-

ion is stored. At this stage, the optimal network is ready to pre-

ict future values in the exploitation phase. During the exploita-

ion phase, the structure with historical data is used to “pump”

he best network which was been found and saved in the previous

hase with historical context data to activate the internal reservoir.

ome stages later, the input data are switched off to allow the net-

ork to predict values in a self-recurring way. The predicted val-

es are stored in the Contextual Graph as Layer 3 vertices. At this

tage, the component sets an internal variable to indicate that this

ode is now running in smart mode. In smart mode, all the de-

isions of the Decision Maker are made on the basis of past, cur-

ent and predicted data to improve the accuracy of routing and

daptation decisions. In “dummy” mode, only the current situation

s used. 
putational intelligence in opportunistic networks to support the 
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Fig. 8. Example of conceptual graph structure. In detail stored data in node c10. 
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The Decision Maker implements our Decision-making model. It

runs at constant time intervals to decide if some internal param-

eters need to be adjusted (such as the buffer scheduling policy,

maximum size of messages, time to live of new messages, etc.) or

if a “trap” should be triggered to attract the attention of an ex-

ternal component of the micro-kernel of the Sensing module (e.g.

to change the configuration of the network interface, to perform

some adaptation action, etc.). Decision Maker is also invoked when

the current node contacts another node to decide if some buffered

message should be forwarded, delivered or remain at the local

buffer. In simple terms, Decision Maker decides if the encountered

node is an effective “data mule”. We employ the term potential to

represent the capacity of the node to carry and deliver message

to its destination of forward it to a closest neighbour. The strat-

egy used in Decision Maker is quite simple: if the potential of the

contacted node is greater than the potential of the current node,

then the message is forwarded; otherwise, the message remains at

the local buffer (obviously the message is delivered if the encoun-

tered node is its destination). FIS is used to calculate the potential

of each node. All context values (current, past and predicted) of

the current and contacted node from Contextual Graph are used as

input for the FIS. It uses its internal components and fuzzy rules to

calculate the potential of each node. 

5. Simulation and experimental results 

5.1. Implementation of the main components 

The implementation of main components of the engine is de-

scribed below. 

5.1.1. Forecaster 

The ESN used in Forecaster was designed by using ESNJava 3 . It

provides a graphical interface making ESN networks easier to han-

dle and API easier to embed ESN in Java applications. However, the

ESNJava only handles situations where a sequence of values that

must be learned (i.e. teacher enforced) are received as input and

the network is trained to reproduce the desired dynamic proper-

ties for this original sequence. In other words, the ESNJava only

seeks to reproduce learned input and does not provide predictive
3 http://www.wsi.uni-tuebingen.de/lehrstuehle/cognitive-modeling/code/ 

overview.html . 

l  

Please cite this article as: C.O. Rolim et al., Situation awareness and com
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upport. This restriction was overcome by making changes in the

ource code of ESNJava. The original code of ESNJava was changed

o introduce support for the network itself so that it could predict

he output used as the next input stage in a self-recurring way (as

ntroduced in the description of the prediction model in Section 4 ).

As each node executes its own neural network and results in

 specific configuration, we have not shown the configuration re-

ults for each node, but only the results from the average of all

he nodes. On average, around 104 epochs were used in the train-

ng phase and 54 in the exploitation phase. The MSE in the train-

ng phase ranged from 4 . 01 e −08 to 4 . 55 e −10 and in the exploitation

hase ranged from 1 . 21 e −7 to 7 . 67 e −8 . The internal size of the net-

ork ranged from 10 to 20 neurons and the spectral radius from

.77 to 0.85. The only value that was fixed for all the nodes was

he sparsity of the reservoir = 1 and leak rate = 0. Fig. 9 graph-

cally represents the process of selecting the best network config-

ration of one node. For this node, the best network configuration

ad a network size of 10 and spectral radius of 0.77. 

.1.2. Decision maker 

The FIS used in Decision Maker was implemented using JFuzzy-

ogic library 4 . The following linguistic variables were defined to

orm the FIS that was used to calculate the node potential: current

ower, current speed, total distance traveled from last point, over-

ll distance traveled, current coordinates, last coordinates, current

uffer usage, current number of carried messages, total number of

orwarded messages, current number of neighboring nodes, and to-

al number of connections. These variables represent different as-

ects of the context and each has linguist values (“low”, “medium”,

high”) associated with a Gaussian membership function with cen-

er and width values scaling in accordance with the magnitude of

he context data. The variable potential which is used as the output

f FIS employs a three triangular membership function with values

anging from 0 to 100. The COG (Center Of Gravity) was used as a

efuzzification method and the default value is 0 when no rule is

ctivated in the defuzzification. 

The fuzzy inference rules were defined in compliance with

uzzy Ccontrol Llanguage (FCL) and adopted the form IF variable

S property THEN action. An example of a rule that was used in

ur FIS, is IF power IS low OR power IS medium THEN potential IS

ow. Fig. 10 shows some of the used membership functions and the
4 http://jfuzzylogic.sourceforge.net/ . 

putational intelligence in opportunistic networks to support the 
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Fig. 9. Selection of best network configuration. 

Fig. 10. Example of membership functions used in decision maker module. 
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efuzzified potential of one node indicating that it has a potential

f 40.97. 

.1.3. Situation manager 

Java Drools 5 was used for the Situation Manager and this em-

loys an inference rule system through an enhanced implementa-

ion of the Rete algorithm 

6 . 

Since there are a large number of similar rules with different

alues, we decided to make use of the Drool Decision Table. De-

ision tables are a precise yet compact way to model complicated

ogic. It works like ‘if-then-else’ and switch-case statements and

ssociates conditions with actions to perform. However, unlike the

ontrol structures found in traditional programming languages, de-

ision tables can associate many independent conditions with sev-

ral actions without several ‘if-then’ conditions. A decision table

onsists of three parts: (i) condition rows that list conditions rel-

vant to decision; (ii) action rows that identify actions that result

rom a given set of conditions; and (iii) rules which specify which

ctions are to be followed for a given set of conditions. 
5 http://www.drools.org/ . 
6 A Rete algorithm is a pattern matching algorithm for implementing a produc- 

ion rule system. 
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As the Situation Manager is still under construction, the follow-

ng experiments were only carried out with a basic situation set

as described above), without incorporating new situations into the

epository. 

.2. Simulation setup 

The main modules were implemented to determine the func-

ionality and performance of the proposed engine and some simu-

ations were conducted with the aid of the Opportunistic Network

nvironment (ONE) Simulator. 

As illustrated by [70] , a typical large-scale urban sensing sce-

ario is formed by fixed nodes installed at strategic locations

round the city and mobile nodes carried by humans (e.g. smart-

hones) or by vehicles (e.g. cars, buses and trains). Thus, to simu-

ate data transmission in the city, two groups of nodes were cre-

ted: mobile and fixed. The mobile group consists of pedestrians

nd vehicles. The fixed group consists of static sensors and access

oints strategically placed in the city. 

The simulation runs a sensing application in mobile nodes and

tatic sensors along a city with 490 km 

2 of area. When an event

s sensed, the collected data are forwarded between nodes using

he opportunistic network paradigm until an access point is reach.

he access point acts as a “bridge” between the city and the Inter-
putational intelligence in opportunistic networks to support the 
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Fig. 11. Performance in scenarios with different numbers of nodes. 
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net, which sends all received data to be processed by the Backend

Module hosted in a data center infrastructure. 

In the simulation, pedestrians and vehicles moved using the

Shortest Path Map Based Movement model (this model uses Dijk-

stra’s algorithm to find shortest paths between current location

to a randomly selected destination, by using the roads or paths).

This model was also used in works of [30] and [71] . The pedes-

trian nodes moved between 0.5 and 1.5 km/h, and had a Blue-

tooth device with a radio range of 5 m and transmission speed of

2 Mbps and a Wi-Fi interface with a range of 20 m and trans-

mission speed of 10 Mbps. The vehicle nodes moved between 10

and 50 km/h and had a Wi-Fi interface with same transmission

and range of pedestrian nodes. Both pedestrian and vehicles had

a buffer size of 50 M. A growing number of mobile nodes were

used for all the simulations: 10 nodes of each group in the first

test case, 25 for the second, and 50, 75, 10 0, 50 0 and 10 0 0 for

each consecutive scenario. 

In the fixed group, we placed 50 static sensors around the city.

Each sensor had one Wi-Fi interface with a range of 30 m and

transmission speed of 10 Mbps. Ten access points were used. Each

one had Wi-Fi with the same configuration of the static sensors

and a wired interface of 1 Gbps that simulated the connection to

the Internet. The data buffer of static sensors was set with 256 M,

and the buffer of access points was set with 512 M. 

A total time of six hours (21,600 s) was adopted for all the sim-

ulations. On average, the nodes generated about one message of

sensing data every 25 to 35 s. A total of 711 messages was gener-

ated in each simulation. Message sizes were set at a uniform dis-

tribution between 100 KB and 2 MB. The message lifetime (TTL)

was set to 24 min (1440 s) to prevent nodes from carry old mes-

sages for a long time. 

The same power restrictions that were used by Rodrigues-silva

et al. [71] was applied in the simulation. All mobile nodes started

with a fully charged battery of 19,080 Joules which corresponds

to the power of typical cellular battery of 5.3 W/h and 3.7 V and

a recharge was set randomly in intervals between 4 and 4.5 h.

The energy spent on scanning the other nodes was 0.092 mW/s,

and the energy required for sending and receiving messages was

0.08 mW/s. Only fixed nodes were set with unlimited energy,

without need of recharges, since they are permanently connected

to the power grid. 

5.3. Evaluation metrics 

To evaluate our simulations, we adopted the same performance

metrics used by Karamshuk et al. [72] and supported by ONE Sim-

ulator: Started, the number of transmissions started between net-

work nodes; Created, the number of messages created during sim-
Please cite this article as: C.O. Rolim et al., Situation awareness and com
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lation excluding replicated messages; Relayed, the number of suc-

essful transmissions between nodes; Delivered, the number of

uccessfully delivered messages; and Overhead ratio, the estimated

umber of extra messages needed by the routing protocol for ac-

ual delivery of the data. It is defined as the following formula:

Number of messages relayed - Number of messages delivered)

(Number of messages delivered). 

.4. Experimental results 

.4.1. Experiment 1 - performance evaluation 

The purpose of the first experiment was to assess the perfor-

ance of the proposed engine to handle the total of 711 messages

enerated and the impact of the number of nodes on the percent-

ge of delivered messages and overhead. As explained above, we

ested different scenarios ranging from 10 to 10 0 0 nodes. The re-

ults are shown in Fig. 11 . 

Fig. 11 shows on average an incremental rise in the percentage

f delivered messages related to the increase of nodes in scenario.

hen we increased the total number of nodes from 10 to 10 0 0

an increment of 10 0 0% in the number of nodes), the percentage

f delivered messages increased from 2.9% to 50.3%, an increase of

634%. If we compare the scenario of 50 to 100 nodes (an incre-

ent of 100% in the number of nodes), the percentage of delivered

essages increased from 4.6% to 11.6%. It corresponds to an incre-

ent of 152%. But, if the number of nodes were doubled again,

rom 500 to 10 0 0, were an increment of just 80% in number of de-

ivered messages (from 27.8% to 50.3%) In other words, the incre-

ental rise in the percentage of delivered messages not necessary

ollows the perceptual increment of nodes. 

The success in the routing decision strategy is strengthened by

he overhead based metric. The scenario with 10 0 0 nodes had an

ncrease of 80% in the number of delivered messages to the sce-

ario with 500 nodes, but with 4% less overhead. That is, even

hen the number of nodes were increased by more than 100%,

he overhead remained low. This indicates that as the number of

odes increase, the engine improves the decision-making process

ue to the increase in contacts which increases the amount of

vailable context data used to characterize the situation and the

odel’s ability to forecast. Thus, a low overhead indicates that ef-

ective data mules were selected. 

Additionally, when the number of nodes is low (in the case of

cenarios with 10 and 25 nodes), the overhead percentage is sig-

ificantly higher in comparison to scenarios with 10 0 0 nodes. With

 low number of nodes and fewer contacts, three issues occur: (i)

essages stay in local buffer longer, resulting in delay of delivery

r discard of the message due to expiration of TTL; (ii) the relay

f messages is high and sometimes the same message returns to
putational intelligence in opportunistic networks to support the 
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n already visited node; and (iii) the decision making process of

he engine makes flawed forwarding decisions due to limited ex-

ernal context data (exchanged between nodes contacts). In future

ersions of the engine, we will try to overcome such issues using

 variable TTL of message according to some context data such as

etected number of contacts in last x minutes or sparsity of con-

acts and the implementation of a historical of visited nodes em-

edded in the message header to avoid messages revisiting nodes.

n this case, we will need to verify the impact of such an approach.

owever, it is believed that these rates of delivered messages and

verhead supposedly could be further improved through the con-

lusion of Situation Manager and inclusion of rules that allow a

ynamic adjustment of the internal parameters of the component,

uch as buffer and TTL management.t. 

.4.2. Experiment 2 - comparison of ESN with other neural networks 

In this experiment, we attempted to determine the effects of

he Forecaster equipped with ESN in comparison to other low com-

utation cost approaches. We selected two kinds of NN which have

 reliable predictive power and were previously tested in our pre-

ious paper [73] : SVM (Support Vector Machines) and NARX (Non-

inear Autoregressive model with eXogenous input). 

When conducting this experiment, each kind of such NN was

plugged” into the Forecaster and the simulations run. With ESN,

ach node trained and formed its own instance of ESN Neural Net-

ork. It was possible to do due to low computational cost of this

pproach. In the case of SVM and NARX, the same situation is un-

uitable. Despite the findings in the literature that both are compu-

ationally effective, in our experiments SVM and NARX consumed

 lot of memory and processing power. To solve this problem, we

an a fixed configuration for all nodes. 

The ESN was used as discussed in Section 4 . In the case of the

VM, we used Weka 7 which implements the SMOreg algorithm.

eka is a collection of machine learning algorithms employed for

ata mining tasks. We used the complexity constant C = 1.0 with

tandard normalisation. In the case of the RegSMOImproved opti-

izer, we used the Epsilon parameter in Epsilon-insensitive loss

unction = 0.001 and the Kernel with default values. The number

f units was set to forecast 10 steps ahead. The best result in one

ode of network occurred with a RMSE (Root Mean Squared Error)

 5.48 at 10th step ahead. 

NARX was implemented by Matlab R2013b 8 with 10 hidden lay-

rs and 2 delays. We trained NARX with the same input and de-

ired output as were used in SVN. The forecast was set at 10 steps

head. As NARX is a recurrent neural network, we used the last

utput to provide the network with feedback. With this configu-

ation, the best result was an MSE of 9 . 0167 e −06 with 100 epochs

n the “validation” phase. All the values of the residual autocor-

elation were in the confidence interval, which suggests that past

rrors do not distort the current prediction. After having trained

nd validated the network, we integrated the Matlab script with

he simulator that was used by means of Matlabcontrol API 9 . 

Fig. 12 shows the results and the comparison of the perfor-

ance of the proposed engine when each approach was adopted

n different scenarios. 

On the basis of the results, we formed the graph shown in

ig. 12 and examined the performance of the proposed engine

hen each approach was adopted in different scenarios. 

In the scenario with 10 0 0 nodes, the engine which ran the

orecaster equipped with ESN had 62.5% more delivered messages

han SVN and 49.2% more than NARX. Compared with NARX in the

ame scenario, ESN had 1800% less overhead. The low overhead of
7 http://www.cs.waikato.ac.nz/ ∼ml/weka/ . 
8 http://www.mathworks.com/ . 
9 https://code.google.com/p/matlabcontrol/ . 

[  

r  

0  

a  

a  

Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
SN with respect to SVN was also observed in a scenario with 10 0 0

odes with 1222% less overhead. As can be observed, ESN was the

est approach, SVN second and NARX was the worst. 

One factor not shown in the chart is the computational cost of

SN. Even when several different configurations to find the best

etwork were tested for each node in the simulation, the impact

f the processor load was minimal. ESN’s lightweight processing

as the main unexpected discovery in this experiment. 

.4.3. Experiment 3 - comparison with other approaches 

In this experiment, we compared the performance of our engine

ith some “as is” approaches from opportunistic networks. The

ame scenario setup was employed as in the previous experiments.

he protocols used for purposes of comparison were Prophet,

RAFT, Spray&Wait and BubbleRap. These were chosen because

hey represent different classes of “intelligent” protocols and have

een extensively studied by researchers [33,74,75] . The following

onfiguration parameters were employed: in Prophet - secondsIn-

imeUnit = 30; In DRAFT - familiarThreshold = 120, degrade = 0.5

nd frame size = 3600; In Bubblerap K = 5, familiarThreshold =
0 0, centralityTimeWindow = 360 0 and epoch/count = 6 (i.e. sim-

lation time of 21,600 s/centralityTimeWindow 3600 = 6. Selecting

arameters for protocols in this way, or “cherry picking”, is accept-

ble and consistent with the original paper of such approaches. 

The results from the comparison of selected approaches in a

cenario with 100 nodes are shown in Fig. 13 . 

As can be seen, the experiments with Spray&Wait, DRAFT and

rophet show similar results to our engine in number of deliv-

red messages. Our approach is only inferior to Spray&Wait. How-

ver, it should be noted that in terms of the number of started

nd relayed messages and the overhead bandwidth ratio, our en-

ine is almost 12% higher. This result can be attributed to the low

umber of started/relayed messages. The number of relayed mes-

ages was 632% minor in comparison with Spray&Wait. This rate

ndicates that our strategy to just relay messages to effective data

ules generates low overhead, thus saving computational costs. In

rder to relay messages, mobile devices use battery power for pro-

essing and data transmission; thus, if this overhead indicator has

 high value, it can influence the battery life of these devices. 

BubbleRap had the lowest number of delivered messages. Bub-

leRap uses social metrics to make the forwarding decision. We

elieve that such low value is due to sparse contacts of nodes

ot characterizing communities of nodes. Despite the number of

elivered messages sent by BubbleRap, DRAFT and Prophet gen-

rated significant overhead in comparison with our engine. These

nitiatives have an acceptable performance in some opportunistic

etworks scenarios with similar characteristics (e.g. social events,

ampus, school, manufactory) but as we had suspected, when it

as used in an urban sensing scenario, it was found to be unsuit-

ble due to high dynamicity of nodes, lack of communities (a fea-

ure used by BubbleRap), clusters (as explored by DRAFT) or fre-

uent encounters (explored by Prophet). 

DRAFT had an impressive number of started and relayed mes-

ages resulting in 900% more overhead than Prophet (second worst

verhead rate). DRAFT combines spatial clustering with a decay

unction to create dynamic encounter graphs. This means that clus-

ers reflect current and recent behaviour patterns by excluding de-

ices which have not been seen for a long time [33] . Thus, this

verhead rate indicates that DRAFT was having difficulties form-

ng satisfactory clusters due to sparsity of encounters. With smaller

lusters, it was failing to deliver packets to their final destinations

76] . To mitigate this issue, we tried to fine tune their configu-

ations, changing values of degrade of decay ranging from 0.5 to

.8; the time frame value was tested with values of 360 0, 180 0

nd 7200; the familiar threshold was set with values of 120, 60

nd 240 seconds. But even changing such values in different ex-
putational intelligence in opportunistic networks to support the 
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Fig. 12. Comparison of ESN with other neural networks. 

Fig. 13. Comparison based on opportunistic networks approaches. 
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periments, the values of delivered messages did not change and

overhead had few changes. Therefore, as indicated by the authors

of DRAFT, the random message generation, short TTL of messages

and fragmented nature of scenario are interfering in results. 

On the whole, the results suggest that our engine achieved a

satisfactory performance in terms of the number of delivered mes-

sages and overhead ratio and could be used in large-scale urban

scenarios where the network infrastructure is intermittent or un-

available, such as in smart cities. 

6. Conclusion and suggestions for future work 

In this paper, we have described our attempt to build an engine

that employs the opportunistic networks paradigm to transmit

sensed data in situations where the networking infrastructure is

intermittent or unavailable. Additionally, our experiments applied

situation awareness and computational intelligence approaches to

make decisions about the routing of messages and adaptation de-

cisions. The proposed engine will be used as a basis for the data

transmission in the Communication component of a large-scale ar-

chitecture called UrboSenti. We have also outlined our design mod-

els for the software modules and their internal components. Cur-

rently, we are working on the incorporation of new dynamic rules

in Situation Manager. The preliminary results obtained from a sta-

tistical situation set are acceptable. We believe that the perfor-
Please cite this article as: C.O. Rolim et al., Situation awareness and com

data transmission of urban sensing applications, Computer Networks (2
ance of engine will be improved when such implementation is

nished. The experiments also showed that ESN is a reliable tech-

ique for prediction. It achieved an impressive predictive perfor-

ance and has a low computational cost compared with all the

ther approaches that we had previously adopted. In addition, the

esults revealed that some popular opportunistic networks initia-

ives cannot be used “as is” in the area of urban sensing applica-

ions. 

Finally, the proposed engine is able to fill the gap of data trans-

ission that was outlined in our initial problem-scenario. More-

ver, this should encourage us to conduct further research into the

ultidisciplinary area of smart cities with the aim of improving

ervices and applications for urban sensing. 

In future work, we are seeking alternative means of construct-

ng fuzzy sets and rules “on the fly”, depending on the situation in

hich the node is embedded and intend to explore the application

f a Deep Belief Network (DBN) or Restricted Boltzmann machines

RBMs) for the purposes of prediction. 
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