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a b s t r a c t 

Opportunistic networks are a special case of DTNs that exploit systematically the mobility of nodes. When 

node contacts occur, routing protocols can exploit them to forward messages. In the absence of stable 

end-to-end paths, spatio-temporal paths are created spontaneously. Opportunistic networks are suitable 

for communications in pervasive environments that are saturated by other devices. The ability to self- 

organize using the local interactions among nodes, added to mobility, leads to a shift from legacy packet- 

based communications towards a message-based communication paradigm. Usually, routing is done by 

means of message replication in order to increase the probability of message delivery. Instead, we study 

the use of Temporal Random Walks (TRWs) on opportunistic networks as a simple method to deliver 

messages. TRW can adapt itself to the self-organizing evolution of opportunistic networks. A TRW can 

be seen as the passing of a token among nodes on the spatio-temporal paths. Since the token passing is 

an atomic operation, we can see it as forwarding one simple message among nodes. We study the drop 

ratio for message forwarding considering finite buffers. We then explore the idea of token-sharing as a 

routing mechanism. Instead of using contacts as mere opportunities to transfer messages, we use them 

to forward the token over time. The evolution of the token is ruled by the TRW process. Finally, we use 

the TRW to monitor opportunistic networks. We present the limits and convergence of monitoring the 

interact time between participating nodes. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The Internet has entirely reshaped the way we communi-

ate and interact with one another. Along its evolution it has

een marked by many milestones, remarkably: reliable connections

TCP/IP), the world wide web (WWW), social and mobile networks.

he rapid development of the wireless infrastructure by network

roviders has been accompanied by an exponential growth in the

umber of mobile users, and more and more devices are envi-

ioned to be connected in the future: the Internet of Things (IoT) is

ust emerging [1] . However, global Internet access and connectiv-

ty still face several challenges: scarce or poor quality connectivity

n developing countries or places with limited accessibility, physi-

al obstacles limiting the deployment of wireless networks, natural

r man-made disasters, high operational costs with the increasing

umber of users, etc. 
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Delay tolerant networks (DTNs) were introduced [2–4] to deal

ith environments where interruptions or disruptions of service

ere expected. Such networks usually lack of end-to-end paths

r any infrastructure to help communications. In its purest form,

he definition of a DTNs is based on the delay tolerance nature of

ommunications; it covers a wide range of networks [5,6] : space

ommunications, vehicular networks, sensor networks, opportunis-

ic networks, etc. We can associate a DTN to the general case of a

etwork which may evolve with some unknown underlying pro-

ess. Usually, there is neither guarantee about the availability of

he connections nor the topology of the network. 

This work is focused on the so called opportunistic networks. In

hese networks, mobile nodes may interact using their contacts as

 communication opportunity. The store-carry-forward paradigm

llows nodes to exploit spatio-temporal paths created by contact

pportunities in order to deliver messages over time. Such a rout-

ng mechanism usually provides some kind of message replication

n order to increase the probability of message delivery. Instead we

aise the question: can we design a mobile and opportunistic infras-

ructure that could help to deliver messages? In the quest to provide

uch infrastructure, we study the application of temporal random

http://dx.doi.org/10.1016/j.comnet.2016.07.011
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walks (TRW) over opportunistic networks. A TRW can be seen as

the passing of a token among nodes on the spatio-temporal paths.

We explore the application and impact of TRW as a minimal and

non invasive infrastructure from two points of view: data forward-

ing and data recollection. 

1.1. Challenges in opportunistic networks 

In this section, we explore three use cases were opportunistic

networks can be crucial to provide solutions that scale to the fu-

ture demands of mobile networking. We expose their challenges

and the research opportunities they open. 

1.1.1. Network offloading 

Traditional and newer network operators have to meet the chal-

lenges created by the rapid rise in the number of mobile users.

For instance, in the 2014 demonstrations in Hong Kong, the Um-

brella Revolution [7] , users had trouble getting Internet connec-

tivity because of the great number of co-located accesses at the

same time. Using opportunistic communications, the FireChat ap-

plication helped the people in the demonstration to create commu-

nity communications. But usually, decisions to increase the infras-

tructure raise several questions. Firstly, in economical terms, the

fast pace of technology evolution makes it hard to privilege capi-

tal investment. However the obsolescence of platforms could make

customers leave. Deployment of new infrastructure increases cost,

both to support the investment and the operations. Secondly, net-

work capacity saturation is becoming a problem. Indeed, in large

sports and cultural events or demonstrations (like the Hong Kong

demonstrations), it is difficult to get network connection since the

infrastructure was not designed to support such massive demand.

The use of mixed architectures, where mobiles nodes help to of-

fload the main network as relays in a device-to-device manner

could provide a solution to both problems of operations and capac-

ity mentioned above. However, a mobile infrastructure where cost

is absorbed by customer technology introduces new challenges in

terms of security (intermediate nodes may access sensible data)

and cost models (users that accept to be relays may ask compensa-

tion for the use of their terminal). The introduction of a new mobile

infrastructure is needed to resolve these problems . We can refer to

some work that has already explored the network offloading using

mobile nodes, such as in [8–10] . 

1.1.2. Natural disasters 

Natural disasters such as earthquakes, hurricanes and forest

fires, can have a huge impact on the way people communicate.

The Chilean earthquake 2010 is a good example showing how the

Internet failed after the impact [11] . At first, networks experience

disruptions due to the combination of infrastructure destruction

accompanied by burst of communications. But, in the long term,

it is the time to recover from the failures that creates the largest

impacts. At the same time, communications are essential for the

census of casualties, the evaluation of damages, the deployment

of help centers, the distribution of goods etc. Any gathered in-

formation is crucial for good decision-making under the stress of

the catastrophe. Communications play a vital role in the recovery.

However, they may be very limited under these circumstances. 

The same scenario arises when Internet access is cut-off in-

tentionally as a measure of censorship. Opportunistic networks

can play a huge role in order to help re-establish communica-

tions after a disaster or cut-off. Delays to collect useful informa-

tion are acceptable in comparison to have no information at all. As

a matter of fact, the deployment of a self-managed opportunistic net-

works may help to improve communications in disaster or censorship

scenarios . 
.1.3. Mobile crowdsourcing 

Because it is now so easy to develop smartphone applica-

ions, a number of mobile phone sensing systems [12] have been

mplemented to gather a variety of useful measures. Practical

se cases can be encountered in earthquake monitoring [13] ,

ir/pollution monitoring [14] , urban noise detection [15] , urban

apping [16] , etc. Opportunistic sensing or mobile crowdsourcing

ystems (MCS) [5,12,17] are usually employed for these scenarios. 

Most previous work assumes that nodes can interact with a

otspot (sink) overlay network. This provides the optimal case in

erms of the accuracy of dissemination of measured information.

ndeed, as soon as a node exchanges its information with a sink,

t will be shared instantaneously with any other node interacting

ith any other sink. This increases the spatial span and decreases

he temporal span as we have more fresh measures. 

Of course, such infrastructure can be costly in terms of deploy-

ent or it may not be always available. For this reason, we seek

 minimal infrastructure to gather and provide an approximated

lobal view of the available information to all nodes. Instead of

eploying sinks that report data to a central monitoring system,

e can imagine a distributed crowdsourcing system. Inherently, a

ser can disseminate information, while another will receive this

ata and act in consequence. Since we cannot assume any broad-

ast support, the time to gather all the diffused data for any node

n a given time window will be the sum of all maximum delays

or all pairs of nodes in the underlaying routing. This can eas-

ly become unbounded. The simplest solution, that we will envis-

ge, is adding an overlay network composed of “special” mobile

odes that act as data sinks. Those sink nodes may be intercon-

ected between themselves. Temporal Random Walks (TRW) as an

pportunistic crowdsourcing architecture able to do both: gather data

mong peers and distribute a filtered and global approximation for the

easures. 

.2. Contribution of this work 

The major contribution of this work is the introduction of a mo-

ile lightweight communication infrastructure that emerges from

he behavior of the opportunistic network itself. We propose the

se of “Temporal random walks” (TRWs) to provide such self-

nfrastructure. The TRW architecture is basically a random walk in

 temporal network that is exploited as a communication method. 

We base this idea on the following analogy: in a gathering of

eople without Internet connectivity, a simple way to share a piece

f content is to pass a USB key. Each participant can add new in-

ormation or a message when he or she receives the key. The same

rinciple can be used as a publish/subscribe medium where every-

ody will get a copy of one specific message. Each person using

he key can pass it to another nearby random person. This is the

asis of a random walk where the network topology is changing

ccording to the opportunistic contacts between participants. 

Since the token passing in TRW is defined as an atomic op-

ration, we can see it as the forwarding of one simple message

mong nodes. Hence, to evaluate the performance of our approach,

e study the buffer occupancy of simple message forwarding. We

ocus on the drop ratio for message forwarding considering finite

uffers by modeling message drops with a continuous time Markov

hain (CTMC). We address the worst case scenario created by one-

acket buffers for message forwarding in homogeneous intercon-

act times (ICT). 

We then explore the idea of token-sharing as a routing mech-

nism. Instead of using contacts as mere opportunities to transfer

essages, we use them to pass the token over time. The evolution

f the token is ruled by the TRW process. Sending a message is

quivalent to copying it into the token. Eventually the destination
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ode will get the token and all its addressed messages. We study

he delivery effectiveness of such an approach. 

Finally, we study how to apply the TRW in order to monitor

pportunistic networks. Compared to wired networks, opportunis-

ic networks are challenging to monitor due to their lack of in-

rastructure and the absence of predictable end-to-end paths. We

resent the feasibility, limits and convergence of monitoring such

etworks. More specifically, we focus on the efficient monitoring

f the ICT between participating nodes. 

The work is structured in two parts: first the characterization

nd then the application of TRWs in opportunistic networks. The

rst part deals with the state of the art in opportunistic net-

orks and random walks and introduces the main notation for

he following Sections. It also addresses the connection between

essage forwarding and temporal random walks. The second part

eals with two applications of temporal random walks in the

pportunistic networks scenario: routing of messages in a pub-

ish/subscribe manner and the gathering of node’s information in

rder to provide a monitoring system. 

. Related work 

The focus of this work is entangled in the middle of DTN rout-

ng, temporal networks modeling, random walks and applications

n opportunistic networks. In this section we review separately the

ain related work on each area. 

.1. Routing on DTNs 

Routing in DTNs is characterized by the store-carry-and-forward

aradigm [4] . Nodes in a DTN will keep copies of the messages in

heir internal buffers until a new encounter occurs with a possi-

ility of forwarding. At that moment, following the specific rules

f the routing algorithm, the message will be passed and carried

y the new node until finally one node encounters the destina-

ion. Typically, DTN routing mechanisms can be classified accord-

ng to their routing decisions [18] . Usually they are broken down

mong the protocols that have some kind of infrastructure support,

r based on the nature of its dissemination methods: replication

ersus forwarding. 

The most basic routing algorithm in DTNs is the Direct Contact

lgorithm: the source will wait for a direct contact with the desti-

ation. When this future encounter occurs, the source will forward

he message to the destination. In the k -hop routing scheme, mes-

ages are transferred in the DTN through paths consisting of k hops

Epidemic routing [19] is the most popular and simple replica-

ion mode in DTNs. Every time two nodes are in contact they will

xchange messages. It is easy to see that the global performance

f this method is optimal since any other replication method will

se a subset of contacts, hence any contact path will also be con-

idered by the epidemic model. Hence, this method is optimal

n terms of delivery ratio when buffers and bandwidth are un-

ounded. 

In Spray-and-Wait [20] the main idea is to reduce the number

f message replicas by a simple decision: the source node will only

andle a limited number L of them. At each encounter, the node

ill spray � L / k � copies, keeping for itself L − � L/k � . This process

ontinues recursively until the node has only one copy left. Then

t enters into the wait phase, waiting for a direct contact with the

estination to forward the message. In [20] , they show that the

ptimal value for k is 2, calling it Binary Spray-and-Wait. The main

roblem of this algorithm is its hypothesis of an homogeneous net-

ork reducing its adaptability to heterogeneous environments. 

The PRoPHET routing [21] was one of the first algorithms to

erform limited replication of messages. Each node keeps the

robabilities of encounter with other nodes. When nodes are in
ontact they update and share the probabilities of encounters.

hese probabilities are transitive and age with time. The replica-

ion of a message is done if one node has not already a copy of

he message and if the node has a higher probability of meeting

he destination of the message. 

The work of [22] introduces the Resource Allocation Protocol

or Intentional DTN (RAPID). RAPID takes into account the utility of

eplicating a message as a resource allocation problem. A message

s replicated only if the utility of replicating the message is higher

han the utility of no replication. Three different metrics are pro-

osed: minimization of the average delay, minimization of missed

eadlines and minimization of the maximum delay. To calculate

he utilities, nodes need to consider extra information that is dis-

ributed in the network (such as: past replications of messages,

vailable bandwidth or expected meeting time among nodes). 

BUBBLE Rap is presented in [23] in order to cope with social-

ased DTNs. Indeed, this routing algorithm exploits the inter-

uman social structures to perform the forwarding. For this, the

lgorithm performs a community detection in order to select high

anking central nodes (hubs) in the communities. Those nodes will

e later used as relays for messages. In terms of the communi-

ies, each node belongs to at least one community. It has a global

anking across the whole system, and a local ranking within its lo-

al community. In the forwarding phase, a node first bubbles the

essage up the hierarchical ranking tree using the global ranking.

hen this process reaches a node in the same community as the

estination node, the local ranking is used to bubble up through

he local ranking tree until the destination is reached or the mes-

age expires. The DiBuBB algorithm [24] is used to detect commu-

ities in a distributed way; it has been shown to have a detection

ccuracy of 85%. 

The MaxProp [25] is a routing protocol adapted for vehicular

etworks. On these networks, the storage capacity is not a prob-

em, but contact times can be short. Hence, MaxProp prioritizes

essages based on the delivery likelihood to a destination and the

otal hop count. This likelihood is based on previous encounters. 

The Context-Aware Routing protocol (CAR) [26] uses context in-

ormation to define the node that will forward the message to the

estination. The choice of the best carrier is done using Kalman

lter based prediction and utility theory. 

The History Based Opportunistic Routing (HiBOp) [27] identifies

he appropriate message replicating nodes based on past and cur-

ent context information. A message is forwarded if the encoun-

ered node’s probability of reaching the destination is higher than

ith the current node. The source can inject several copies of the

essage in the network to improve the delivery ratio. 

.2. Temporal networks 

Temporal networks have gained interest in the research com-

unity over the last few years considering their great number of

otential applications: person to person communications, one to

any information diffusion, physical proximity, cell biology, dis-

ributed computing, infrastructural networks, neural and brain net-

orks, ecological networks, economic networks, citation networks,

tc. Many static representations have been proposed to charac-

erize such temporal networks: reachability graphs, line graphs,

ransmission graphs, etc. Also several models producing temporal

raphs have been proposed: temporal exponential random graphs,

odels for social groups, contact network models, randomized

dges, randomized times, randomized contacts, etc. The problem

f rumor-spreading on temporal networks has gained interest, spe-

ially to determine how the process is affected by burstiness or

emporal and infrastructural inhomogeneities. A complete review

n temporal networks, and all the topics discussed above can be

ound in [28] . 
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1 Also called max-degree random walk. 
A characterization of dynamic mobile networks is presented

in [29] . This work presents a framework to analyze two real-world

datasets in depth, focusing in the study of dynamic communities.

The paper presents results for the temporal correlation of the most

typical graph properties, such as: active links, number of connected

vertices, average degree, number of connected components and

number of triangles. 

A time-varying graph model is introduced in [30] . The model

is represented by a tuple T V G = (V, E, T , ρ, ψ) , where ρ is the

presence function which indicates if two nodes are connected at

a given time, and ψ is the latency function which indicates the

time it takes to cross a given edge if starting at a given time. From

this model a complete description of the properties of TVGs is

presented, including: journeys, topological distance, temporal dis-

tance, subgraphs, classes of TGV and others. 

The small-world phenomenon is defined by networks with a

high clustering coefficient and low shortest path length. This is

an intrinsic property of many real complex static networks [31] .

The work in [32] presents a model capable of capturing the small-

world behavior for dynamic networks. They state one sufficient

condition to the emergence of a small-world structure in temporal

networks. They also show how this structure significantly improves

the communication capacity of opportunistic networks. 

Finally, [33] introduces a study on the evolution of graphs over

time and their densification laws. This work is more centered on

the evolution of big graphs, such as patent networks, evolution of

autonomous systems and citation networks. 

2.3. Random walks meet temporal networks 

Multiple random walks on static graphs [34] introduces the

idea of variability in the starting point in order to avoid some

known bias of random walks. The introduction of more walkers

with different starting points, and the mixing of the sampled data.

The main idea behind this work is to sample some characteristic

on static graphs as the average degree. 

Random walks on temporal networks were introduced in [35] .

This work provides an empirical analysis for different social gather-

ing datasets. This work shows that known characteristics from ran-

dom walks on static graphs, as the mean first-passage time (MFPT)

and the coverage of the random walk, can be extended to the tem-

poral case. To ensure the convergence of the approximations, the

traces are repeated following tree strategies: sequence replication,

sequence randomization and statistically extended sequence. They

show that the convergence exists in the case of sequence random-

ization. Indeed, the fact of removing the social ties among contacts

allows to see the temporal network as a static one. 

Our work is inspired by a mix of ideas from the work

of [34] and [35] . One important difference is our independence

of the underlying temporal network. Indeed, most of the analyti-

cal work assumes the evolution of the networks to be an ergodic

or Markovian process in order to obtain the distributions. Instead,

we do not take into account any underlying nature of the network

evolution. We provide a statistical analysis to support our results. 

The work in [36] looks at the effects of non-Poisson inter-event

statistics on the dynamics of edge. The traditional aggregation of

edges to create a static weighted network implicitly assumes that

the edges are governed by Poisson processes. This is not typi-

cally the case in empirical temporal networks. The authors ap-

ply the concept of a generalized master equation to the study of

continuous-time random walks on networks. Then, they discuss

the impact of dynamical processes on temporal networks and build

a diagnosis tool that takes into account their nontrivial stochastic

nature. 

The work of [37] studies the use of random walks on tempo-

ral networks and the convergence of the cover time when using
ust one walker. They show that this convergence is exponential

n time. They also show that the lazy random walk 1 converges in

olynomial time on the size of the graph. This reinforces the idea

hat the use of several walkers in the network can improve the

btained results. 

The work of [38] studies the behavior of a continuous time

andom walk on a stationary and ergodic time varying dynamic

raph. They show how to calculate the stationary distribution of

he walker. However, this is difficult to characterize on general

ince it depends on the walker rate. They focus on three cases:

i) Time-scale separation: the walker rate is significantly larger or

maller than the evolution rate of the network or (ii) Coupled dy-

amics: the walker rate is proportional to the evolution rate of the

etwork. (iii) Structural constraints: the degrees of each node be-

onging to the same connected component are identical. For these

ases they express the analytical solution for the stationary distri-

ution of the walker. 

Finally, the work of [39] presents the use of random walks to

erform searches in time-varying networks. For this study, the rate

f evolution of the network and the rate of the walkers are sup-

osed to be in the same time-scale. They propose a Markovian

odel of evolution for temporal networks and study the station-

ry state of the random walk and the MFPT. They show that the

ynamics of the time-varying networks significantly alter the stan-

ard picture attained for dynamical process in static networks.

owever, new strategies need to be developed in order to deal

ith such scenarios. 

.4. Applications on opportunistic networks 

From an application point of view, work on DTNs and oppor-

unistic networks is mostly focused on the routing problematic.

ere, we focus in applications on infrastructure based routing and

onitoring over opportunistic networks. 

Ad-hoc networks were the first mobile networks to explore the

se of infrastructure to help routing messages. Most of the re-

earch in mixing mobile nodes and infrastructure (hybrid ad-hoc

etwork) study the capacity increases [40,41] . However, these stud-

es do not present how to route messages nor how to exploit the

ynamics of the network. 

The works of [42,43] propose hybrid routing approaches to in-

rease capacity. In the same context [44] present a heuristic to de-

ermine where to randomly place base stations in order to increase

onnectivity. The work of [45] explores several scenarios introduc-

ng base stations, wireless mesh and pure mobile networks. 

A relay infrastructure for vehicular mobile networks is pre-

ented in [46] . They show how the delivery ratio increases thanks

o the relay infrastructure. However their relay nodes are static in

rossroads. 

In ZebraNet [47] , base stations are installed in mobile vehicles

hat periodically move around the park to gather statistics when

hey meet the zebras. This works as a mobile infrastructure. In

WIM [48] , base stations are installed in buoys (static) and also

n seabirds (mobile). In DakNet [49] , mobile data carriers are im-

lemented using buses, motorcycles and bicycles. However, in all

hese examples, the infrastructure is defined by an external agent

nd it is expensive to deploy. 

The work in [50] introduces the idea of “crowd computing”.

hey show how an opportunistic network of mobile devices offers

ubstantial aggregate bandwidth and processing power. 

DTN monitoring in [51] provides an extension to well-known

ggregation algorithms for connected networks. Specifically, how

he notion of pair-wise averaging and population protocols apply
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Fig. 1. Opportunistic network and three different times. In blue we can see the effective opportunity connections between nodes. 
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o the DTN scenario. This work does not offer a mean to measure

he estimation error. Instead, the estimation is just performed over

 given amount of time or a number of desired contacts, assuming

hat the more contacts, the better the estimation will be. Most of

he work to characterize a DTN is based on the global estimation

f the intercontact time. 

In [52] an analytical model is presented that derives the aggre-

ated distribution law from the pairwise intercontact time distri-

utions. This study also shows that the pairwise connection is not

xactly mirrored by the aggregated distribution: if we assume that

he pairwise distribution follows an exponential law, then the ag-

regated distribution will follow a power law. 

Finally [53] presents a vicinity study to characterize the be-

avior of a DTN. In this paper, the concept of k -vicinity and k -

ntercontact are introduced. Trace analysis shows that k-vicinities

ntercontact time follows power laws with exponential decay af-

er a given time. Moreover, the k -vicinity of size k = {2,3} gives

nough awareness of its surrounding to a node. This assumption is

upported by the existence of groups in the node movements. 

. Opportunistic networks modeling in a nutshell 

In order to set the basic vocabulary that will used in the work

e introduce the following definitions: 

efinition 1 (Node) . A node is a mobile entity capable of inter-

hanging information bi-directionally within a range r with one or

ore nodes. The set N denotes all the nodes in the network. Nodes

ill be noted as natural numbers N = { 1 , 2 , 3 , . . . , n } . 
For the rest of the work, we will assume that the data ex-

hanged between nodes can be transmitted in just one contact. To

ifferentiate this case from the typical DTN bundle [54] , we intro-

uce the message definition: 

efinition 2 (Message) . A message is a packet of data that can be

xchanged between two nodes in a connection. All the data for the

ontent is contained in this packet. The content will be named, or

agged in order to retrieve it by its name. 

We define Opportunistic Network as follows: 

efinition 3 (Opportunistic Network) . It as a continuous time

tochastic process where nodes exploit systematically their mobil-

ty to forward messages between themselves. The mobility intro-

uces delay when a node cannot forward its message, keeping it in

ts own buffer. This allows routing protocols to exploit opportunis-

ic contacts, in absence of stable end to end paths, as a means to

reate a temporal path for delivery. 
Fig. 1 presents such a network in its most general case: nodes

ove around in the space and whenever they are in contact (given

 transmission range) with another they can profit from that op-

ortunity to forward a message. In order to decrease the temporal

omplexity, we can transform the continuous time reality into a

iscrete one. For that we define: 

efinition 4 (Time window) . The time window is the granularity

hich we use to sample the continuous time to a discrete one. In

he following, we denote this time window as � unit of time, the

aximum time as T and the discrete time set as � = { t 1 , t 2 , . . . , t T } .
efinition 5 (Contact trace) . A contact trace is the result of the

iscretization of the continuous time given a � time window. It

s a binary vector, where we denote with a 1 when nodes are in

ontact and a 0 while they are not. Notice that if the total time

 that we observe a process is discretized by �, then the contact

race is a vector with T / � elements. 

We use temporal networks to model in a discrete way the op-

ortunistic networks. Temporal networks are in simple terms net-

orks that change their topology over time. The main difference

ith other computer networks is that the scale of changes is rather

igh. We can represent this as a series of time changing graphs

here the changes follow a stochastic process usually unknown. 

efinition 6 (Temporal Network) . We define a temporal network

s a finite set of graph snapshots G = { G 1 , G 2 , . . . , G T } , where G i =
(V (t) , E(t)) represents the connection graph at time t ∈ �. 

For simplicity, in this work we keep the set of nodes V ( t ) invari-

ble with time: nodes can be connected or disconnected, but they

an not appear or disappear (newborn or dead). This restriction

an be eliminated considering the final set V as V = ∪ t∈ �V (t) or

ith a model for the birth and death processes. The nodes of the

raph are defined as the elements in N (nodes in the network) and

he edges E ( t ) are defined as the set of connected nodes at time

 . As in static graphs, we can define the matrices A 1 , A 2 , . . . , A T as

he corresponding adjacency matrices for each graph in the tem-

oral network. We can now formally define a temporal connection

s: 

efinition 7 (Temporal connection) . We say there is a temporal

onnection between i and j at time t if ( i, j ) ∈ E ( t ) (equivalently

(A t ) i, j = 1 ). We denote this as i 
t −→ j. 

In the following we will consider symmetrical connections. We

ill just refer to one direction of the connection since if we have

 

t −→ j then we also have j 
t −→ i . 
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Fig. 2. Opportunistic overlay network. 
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Fig. 3. Dynamics of temporal random walks. 
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2 For simplicity, we will assume that the inverse mapping exists, denoting m 

−1 as 

the inverse partial function. 
We can now define a spatio-temporal path in a temporal net-

work as: 

Definition 8 (spatio-temporal path) . We say there is a spatio-

temporal path P d s (t ′ , t ′′ ) between a source s and a destination d

between time t ′ and t ′ ′ if ∃ l ≥ 2, v = (s, n ′ 
1 
, n ′ 

2 
, . . . , n ′ 

l−2 
, d) ∈ V l and

 

′ ≤ t ′ 1 < t ′ 2 < · · · < t ′ 
l−1 

= t ′′ such as 

P d s (t ′ , t ′′ ) = s 
t ′ 1 −→ n 

′ 
1 

t ′ 2 −→ n 

′ 
2 

t ′ 3 −→ . . . 
t ′ 

l−2 −−→ n 

′ 
l−2 

t ′ 
l−1 −−→ d (1)

Notice from the definition, the spatio-temporal path is not nec-

essarily unique. Also, the same node can appear more than once

on the path at different times. A spatio-temporal has a length in

space and time. 

An overlay network is a computer network that is built on top

of another network. We can think of nodes in the overlay networks

as virtual nodes connected through logical links. These logical links

can translate in many links in the underlying network. The most

typical examples of overlay networks on Internet today are pro-

vided by the distributed hash table of peer-to-peer systems, the

XMPP protocol used for Jabber and the numerous implementations

of sensor networks in the Internet of Things (IoT). Let us now de-

fine an opportunistic overlay network. 

Definition 9 (Opportunistic Overlay Network) . An opportunistic

overlay network is a logical network built on top of the oppor-

tunistic network. Nodes and their overlay peers are associated by

means of nodes connections in the underlying network. We denote

the nodes on the overlay network as W = { w 1 , w 2 , . . . , w k } . 
An opportunistic overlay network differs from a regular overlay

network because it inherits from the non-existence of end-to-end

paths as well as of their time-dependence. We now formally de-

fine the mapping relation between the two networks (as shown in

Fig. 2 ) as: 

Definition 10 (Mapping) . A mapping is a relation which associates

nodes in the overlay network with nodes in the opportunistic net-

work. Formally we denote m : W → V . 

For instance, Fig. 2 depicts the mapping relation 

m = { (1 , w 1 ) , (6 , w 2 ) , (7 , w 3 ) } 
This mapping relation entails two layers of interactions: the op-

portunistic contacts plane and the opportunistic overlay plane. In

the nodes plane, we see all the existing spontaneous links between

nodes, for instance the node 1 is connected with node 2 and the

node 3 is connected with node 4. Since node 1 is associated with

X by the mapping relation, the latter, in the overlay plane, can cap-

ture information of the established connections by 1. 

4. Temporal random walk over opportunistic networks 

In this section, we introduce our architecture for the Temporal

Random Walk (TRW), we provide an implementation and we ex-

plore its connection with message forwarding. 
.1. Architecture of TRW 

We can exploit the temporal dimension with the mapping rela-

ion. In fact, the mapping can be a function of time in order to fol-

ow the evolution of the network dynamics. Hence, in a posterior

ime, we might see a node in the overlay associated with another

ode in the opportunistic contacts plane. This leads us to introduce

he following distinction: 

efinition 11 (Dynamical mapping) . A dynamical mapping is a

apping relation that changes with respect to time. We denote

uch mapping function between an overlay node at a given time

s m : W × � → V . 

Notice that our definition of the dynamical mapping is equiva-

ent to saying “who is associated with w at time t”. We can also

hink in the reverse case: “who is associated with n at time t”2 .

iven this, we can define our temporal random walk as: 

efinition 12 (Temporal random walk) . A temporal random walk

TRW) is a dynamical mapping which progression is defined recur-

ively as follows: given an overlay node w ∈ W , a random start-

ng node i 0 = trw (w, 0) and the speed of evolution γ for the TRW.

hen, at time t + γ ∈ � the selected node of the TRW is defined

s: 

rw (w, t + γ ) = 

{
j (i, j) ∈ E(t) 
i ∼ (2)

here i = t rw (w, t ) and j is chosen from the neighbors of i at time

 with uniform probability p = 1 /δi (t) . 

For simplicity, we will call a node w in the overlay network a

walker” when it is following a TRW. Also the progression of the

RW will be referred as the step of the TRW. 

A temporal random walk differs from a random walk on a static

raph as follows: at time t 1 , a starting node is randomly selected;

fter a given time γ one of the nodes’ current neighbors is se-

ected with uniform probability. The probability to pass the token

s defined using the temporal degree function δi ( t ). Hence, if the

opology changes, the value of this function may also change with

he time. The process repeats at rate γ from the last selected node.

otice that the rate of the walkers γ may be different from the

ate of the network evolution �. 

In the following we will consider that the pace of the walker is

he same as the evolution of the network, hence γ = �. 

We now introduce the architectural part of our temporal ran-

om walk with the following definition. 

efinition 13 (Token) . A token is a virtual device attached to a

alker in the opportunistic overlay network, which is passed from

ode to node following the steps of the temporal random walk. 

For instance, in Fig. 3 we see that at time t 1 A is selected as

he starting node. At this time, A is connected with { B, C, D }. C is
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Algorithm 2 Filter algorithm with tokens merging option (TRW- 

M) 

1: procedure filter (neighbors, added) 
2: l ← list() 
3: for n 

′ ∈ neighbors do 

4: if ¬ hasT oken (n 

′ ) then 

5: if ¬ contains (n 

′ , ad d ed ) then 

6: put(n 

′ , l) 
7: else if hasT oken (n 

′ ) then 

8: mergeT okens (n, n 

′ ) 
9: return (l) 

Fig. 4. TRW and forwarding similitudes. 
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t  
andomly selected with 1/3 probability. Then at time t 2 the con-

ections have changed. We can see that C is connected with { B,

 }. In this case B is selected randomly with 1/2 probability. Fi-

ally, at time t 3 E is selected as the only connected node. We

ee that the token is passed among nodes in the following con-

act sequence: { A 

t 1 −→ C, C 
t 2 −→ B, B 

t 3 −→ E} and hence the TRW map-

ing will be trw = { ((w, t 1 ) , A ) , ((w, t 2 ) , C) , ((w, t 3 ) , B ) } . We notice

wo things: (i) the degree of a node changes with time ( δA (t 1 ) =
 , δA (t 2 ) = 0 , δA (t 3 ) = 1 ), hence the selection probabilities change,

nd (ii) in the temporal random walk we can profit from temporal

aths that are created with the evolution of the communication:

he path between A and E only exists thanks to other nodes’ con-

acts (The temporal path P E 
A 
(t 1 , t 3 ) ). 

Consequently, our definition of the temporal random walk is

ow equivalent to the following: “which node is holding the token

 at time t”. The reverse case will be “which token is the node n

olding at time t”. 

.2. Implementation of TRW 

The implementation of TRW in a real opportunistic network

s a distributed algorithm. At each step of the process, a token

older will (i) exchange synchronization messages with its neigh-

ors; (ii) define the set of neighbors that can receive a token;

iii) pass the token. For simplicity and without loss of generality,

e present a centralized version of the algorithm. There are no

tructural differences between both centralized and decentralized

ersions. The centralized one keeps a global table at each step to

void the overhead of probes searching for potential nodes to pass

he token to. 

The Algorithm 1 presents the implementation details. The TRW

rocedure is called at each step of the process, and it attempts to

ass the token to the node’s neighbors. The TRW builds a list of

elected nodes that will hold the token (line 2). For each node in

he network, the TRW checks if that node holds a token (line 4).

f so, we check if that node is connected to at least one other

ode and also that it can release its token according to the TRW

rate (line 6). When more than one token is moving around, we

emember that a node can only hold one token at a time. The fil-

er procedure checks which of the connected nodes are holding

r will hold the token to remove them from the possible candi-

ates (line 8). Finally, a node is chosen uniformly from one of the

ltered neighbors (line 10) and the token is passed (line 12). 

lgorithm 1 Temporal Random Walk algorithm. Notice this func-

ion is called at each � time step of the process 

1: procedure TRW (nodes) 
2: ad d ed ← list() 
3: for n ∈ nodes do 

4: if hasT oken (n ) then 

5: t ← getT oken (n ) 
6: if degree (n ) > 0 ∧ canRelease (t) then 

7: neighbors ← getNeighbors (n ) 
8: l ← f ilter (neighbor s, ad d ed ) 
9: if size (l) > 0 then 

10: k ← uni f ormSel ect(l ) 
11: put(k, ad d ed ) 
12: passT oken (n, k, t) 

The only restriction we impose is that when two token holder

odes meet, they do not exchange their tokens. This contact in the

verlay network can be further exploited. In fact, we can merge

he tokens information as presented in Algorithm 2 . We will call

his merge case as TRW-M. It is important to notice that TRW-M is
ot longer a forwarding method, but also a replication one. Indeed,

e can see that in the worst case, we will have as many copies of

ne message as tokens in the network. 

.3. Characterization of TRW: Connection with message forwarding 

As defined, a temporal random walk is a random walk on a

emporal network where one or more walkers carry some mes-

ages, perform an action when they meet or gather information.

n simple terms, we use the walkers as mobile network nodes and

omputational devices that move in the network to provide a ser-

ice. One could think that the token passing between nodes cor-

esponds exactly to the behavior of forwarding a special message

n a temporal network. This special message will be passed among

odes indefinitely to distinguish which are the nodes selected by

he temporal random walk at a given time. Fig. 4 shows the sim-

larities between both processes. When we study the forwarding

f a message in an opportunistic network, we can see either two

ases: (i) one node holds a message and forward its message to

nother node that does not have a message (ii) two nodes hold

 message and the interchange will produce a drop. We can take

dvantage of the connection between temporal random walks and

essage forwarding to characterize the former using the later. In-

eed, the forward of the message is equivalent to passing the to-

en. Likewise, the drop of a message can be seen as a merge op-

ortunity for the tokens. In the end, the token is a set of messages

hat is jumping from one node to another. 

An interesting point is to question the real possibility to pass

he token at each encounter. This can be characterized in terms of
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Fig. 5. Chain transitions from a given state ( d, c ). We observe that either we find 

one destination (d, c − 1) or we have a drop (d + 1 , c − 1) . The rate at which we 

encounter a destination is increased by D when multiple destinations are available. 

The state (d + 1 , c − 2) is included to show the progression of states. 
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the number of messages in the token. In other words, if we are

able to characterize the message drop in the simple message for-

warding, we may infer the communication capacity of such tem-

poral random walk. 

4.3.1. The (d,c) model 

We consider a temporal network with N identical nodes with

a buffer capacity of one message. We consider S < N message

sources and M initial copies of the same message. Notice that

S = M due to the buffer size restriction. The M messages are de-

livered to any of D < N − S destinations. Unless stated differently,

we consider D = 1 . Intermediary nodes act as forwarders of those

M messages. Hence, no extra copies are created in the evolution of

the process. Our goal is to determine the distribution of dropped

messages and the drop ratio over time. 

Let 0 ≤ t i, j (1) ≤ t i, j (2) < . . . be the successive encounter times

among nodes i and j . We consider that the transmission time of

a message is negligible with respect to the time it takes for two

nodes to meet one another. It follows that the n -th intercontact

time between i and j is ict i, j (n ) = t i, j (n + 1) − t i, j (n ) . we assume

that the processes { t i, j (k ) , k ≥ 1 , ∀ i � = j ∈ N } are mutually inde-

pendent and homogeneous Poisson processes with rate λ > 0.

Hence the random variables { ict i, j (k ) , k ≥ 1 , ∀ i � = j ∈ N } are mu-

tually independent and exponentially distributed with mean 1/ λ
as presented in [55] . 

Since each node can keep only one message, each time a con-

tact occurs we try to forward it. Hence, when node i and j meet ei-

ther: (i) only one of the nodes has a message, it is instantaneously

transmitted, or (ii) both nodes have a message, then one is chosen

at random and it instantaneously transmit its message while the

other drops its message. 

To calculate the number of dropped messages, we introduce a

continuous time Markov chain ( X ( t ), t > 0). The states of the chain

are ( d, c ), where d represents the number of dropped messages and

c the number of message copies. Our initial state is when we have

M messages to deliver and no drops: (0, M ). The transitions from a

generic state ( d, c ) are: 

1. Delivery transition: we transit from ( d, c ) to (d, c − 1) when

a message is delivered. The rate of encountering a destination

will be D λ. Since we have c nodes with a copy of the mes-

sage, the transition from ( d, c ) to (d, c − 1) will happen with

rate cD λ. 

2. Drop transition: we transit from ( d, c ) to (d + 1 , c − 1) when a

drop occurs. The transition from ( d, c ) to (d + 1 , c − 1) occurs

with rate c(c−1) 
2 λ given the number of combinations where two

nodes with a message meet. 

In Fig. 5 , we detail the possible transitions in the general case.

The absorbing states of the chain are in the form ( d , 0) with

0 ≤ d ≤ M − 1 . Note that when reaching the absorbing states, we

must impose some border conditions. Since the last message will
e delivered with probability 1, we cannot transit from state ( d , 1)

o (d + 1 , 0) . 

We can easily calculate the probabilities of going from the state

 d, c ). Indeed, the embedded Markov chain for X ( t ) allows to write

he probabilities of jumping between states as shown in Eq. 3 . 

P ((d, c) → (d, c − 1)) = 

cDλ

cDλ + 

c(c−1) 
2 

λ
= 

2 D 

c + 2 D − 1 

P ((d, c) → (d + 1 , c − 1)) = 

c(c−1) 
2 

λ

cDλ + 

c(c−1) 
2 

λ
= 

c − 1 

c + 2 D − 1 

(3)

The absorbing states probabilities are defined as: 

 M 

(d) = P (X ∞ 

= (d, 0) | X (0) = (0 , M)) , 0 ≤ d ≤ M − 1 (4)

Since the process is a feed-forward process, these probabili-

ies can be easily calculated with a dynamic programming algo-

ithm. The drop rate distribution is defined as the expected value

f reaching the absorbing states over the number of starting mes-

ages ( Eq. 5 ). 

ropRatio (M) = 

1 

M 

M−1 ∑ 

d=0 

d P M 

(d) (5)

It is important to note that the probabilities are independent

f the process arrival rate λ. Therefore, for any { t i, j } defined as

efore, we expect the same drop ratio results. 

.4. Model evaluation 

In this section, we present the comparison between a simulated

pportunistic network and the modeled CTMC results. We generate

airwise ICTs distributed as defined in Section 4.3.1 . We then run

n event driven simulation to perform the forwarding of the mes-

ages in the network and calculate the drop ratio for a given con-

guration. We compare the simulated and predicted drop ratio for

he ( d, c ) model. The model results have been obtained with MAT-

AB, while the continuous time simulations are implemented with

he R language. We run all the simulations with N = 100 nodes and

uffer size B = 1 . We repeat each simulation 10 times and provide

he average results within a 95% confidence level. The network oc-

upancy is defined as ρ = S/N. Sources are increased to represent

he following values of ρ: 

∈ { 1 , 2 , 5 , 10 , 15 , . . . , 80 , 95 , 98 } 
We present the results of simulating with λ = 500 . Figs. 6 a

nd 6 b show how increasing the number of sources (hence the

etwork occupancy) increases the number of messages dropped

nd the drop ratio as predicted by the ( d, c ) model. We see in

ig. 6 a how the model prediction for the drop of messages matches

he simulated results. Both grow linearly. Fig. 6 b presents the drop

atio results. In this figure, we plot the drop ratio for each rep-

tition (red points). We also plot the average interpolation up to

 95% confidence interval envelope (gray area within the error

ars). Again, we see how close the simulated and model results

re. Indeed, we compute the average case for the 10 repetitions

nd graph the difference between the average and the model. We

ee that the maximum difference between both is 0.04. Of course

his is only true for the average case. We will see a bigger dif-

erence if we include the variance (points dispersion), especially

hen the number of sources is small: when we have less sources,

he probability of dropping a message is lower, but not zero (bigger

ariance); when we have more sources, the chances of eventually

ropping a message are almost 100% (smaller variance). 
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Fig. 6. Number of drops and drop ratio for the single destination homogeneous 

case: we see how close the ( d, c ) model-predicted values and the simulated values 

are. 
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. Applications of TRW on opportunistic networks 

Temporal Random Walks where introduced in Section 4 . In this

ection we study two applications of them in scenarios inspired

rom the challenges discussed in Section 1.1 . 

.1. TRW as a communication infrastructure 

We present in this section the use of TRW as a lightweight

nfrastructure to communicate among nodes in opportunistic net-

orks. Given the TRW evolution, each time that a node holds the

oken in the overlay (walker), the associated node in the oppor-

unistic contact plane can read and write information on it. It

s important to note that our algorithm is a generalized version

here more than one token can be used in parallel. 
.1.1. Evaluation 

We perform a series of simulations with synthetic and real

races using the ONE Simulator [56] . We try the TRW and TRW-M

nder different scenarios with increasing number of tokens in the

etwork, i.e. | W | = { 1 , 2 , 4 , 8 , 16 , 32 } . The message creation process

andomly selects a node and adds a new message of 500 kb each

00 seconds. Since we want to study the long term behavior of

he TRW process, we impose that the tokens can store an infinite

umber of messages and that those messages have infinite time to

ive. 

It is important to remember that TRW-M is a replication

ethod: in the worst case, we will have as many copies of one

essage as tokens in the network. This is why, we compare our

esults with the well known Binary Spray-and-Wait [20] routing

rotocol (BSW), since BSW can define the maximum number L of

opies for each message. While the BSW is quite different from

ur algorithm (restricted message copy at each contact versus to-

en exchange at each contact), we use it as a baseline for compar-

son in the case of a homogeneous network of nodes sharing the

ame protocol. Specifically, we compare the average delivery ratio

nd the average delivery delay using BSW (with increasing number

f messages copies {1, 2, 4, 8, 16, 32}). Each BSW node is equipped

ith a simple broadcast interface of 250 kbps and 10 meters range.

 BSW node has a buffer of 5 Mb (10 messages). Note that the

SW with one message is equivalent to direct contact delivery and

oes not perform as standard BSW. 

We assume that the writing and reading time of a message in

he token is negligible. Also, merging two tokens is instantaneous

infinite bandwidth). In the following we will consider that the

tep of the TRW is equal to the update interval of the simulator

hich is set to � = 1 second. 

.1.2. Synthetic traces 

We use the RandomWayPoint model (RWP) to generate syn-

hetic traces. We have 100 nodes moving with a speed between

.5 and 1.5 m/s. We simulate three densities of nodes: 10 3 , 10 4 

nd 10 5 nodes/km 

2 , to show the impact of increasing opportunis-

ic contacts. Each simulation represents 24 hours. We repeat each

cenario 10 times to account for variability. We present the mean

alue in a 95% confidence interval. 

Fig. 7 shows that for the highest density scenario, all meth-

ds behave similarly. The increasing number of copies in BSW in-

reases the delivery ratio. As expected, adding more tokens in-

rease the delivery ratio as well. Nevertheless, with TRW we see a

egradation of the performance in all cases when more than 8 to-

ens are aggregated. The more tokens that are in the network, the

ess the token can be passed (due to the restriction of not pass-

ng a token to a node that already holds one). This is not the case

or TRW-M which profits from tokens interactions to increase the

umber of messages stored in them. We also see how the BSW is

ffected when decreasing the density. The lower the density, the

ewer contacts, therefore the lower delivery ratio. In the middle

ensity scenario increasing the number of copies has the negative

ffect of decreasing the delivery ratio from 90% to 70%. This de-

rease is due to the controlled flooding process of the BSW and

he consequent dropping of messages. The dropping occurs when

 node exceeds the maximum number of messages on its buffer. In

he three scenarios, the TRW-M delivery ratio is maximized with

he larger number of tokens. Nevertheless we see that the differ-

nce between 4, 8 or 16 tokens is less than 10%. 

Fig. 8 shows the impact of the number of tokens on the aver-

ge delay. For the three cases, adding more tokens in TRW adds

ore delay for the same reason as before: nodes cannot pass the

oken. In the TRW-M case adding tokens considerably decreases

he delay. The delay of BSW is always lower when increasing the

umber of copies. Even when the delivery ratio is low, the delay
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Fig. 7. Average delivery ratio for RWP when increasing number of tokens/messages for TRW, TRW-M, BSW. 

Fig. 8. Average delay for RWP when increasing number of tokens/messages for TRW, TRW-M, BSW. 

Table 1 

Traces configuration. 

Traces Nodes � (secs) Connections Duration 

Hours Days 

Cambridge 36 600 10 ,641 274 .3 11 .4 

Infocom 2005 41 120 22 ,459 76 .4 3 .2 

Infocom 2006 98 120 170 ,601 95 .3 4 

RollerNet 62 15 6015 2 .8 < 1 
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is low because only the newest messages are kept in the buffer

even though the time to live (TTL) is infinite. 

5.1.3. Real traces 

We perform our evaluation using Haggle [57–59] and Roller-

Net [60] traces. All are Bluetooth sighting traces by groups of users

carrying small devices (iMotes) for a given period. Table 1 sum-

marizes the different traces and their characteristics. Both Infocom

experiments were conducted during their respective conferences

and workshops trying to capture an opportunistic network in an

academic event. The Cambridge experiment investigated the feasi-

bility of a city-wide content distribution architecture composed of

short range wireless access points. RollerNet was collected among

a thousand participants of a rollerblading tour in Paris. RollerNet

studies a class of DTNs that follow a pipelined shape presenting

the accordion phenomenon. 

As we saw with synthetic traces, the BSW is highly affected by

nodes’ buffer size. In this section, we also test the BSW with a 100-

message buffer (BSW-100). We repeat each experience 5 times and

we present a mean value in a 95% confidence interval. 
Fig. 10 shows a large variance for the average delivery ratio

ith just one token for both TRW and TRW-M. This variance de-

reases as more tokens are added. Also, we see the impact of the

uffer size on the BSW. In all Haggle traces we see a boost: Cam-

ridge increases from 15% to 40%, Infocom 2005 from 35% to al-

ost 80% and Infocom 2006 from 40% to 75%. RollerNet is a spe-

ial case with a higher density of contacts, so here, both versions

f BSW performs equally well. We also confirm the degradation in

RW performance above a given number of tokens. In this case we

nd that between 2 and 4 is the optimal number. It is important to

otice that with the Infocom and RollerNet traces with TRW and 4

okens, we have more than 80% delivery ratio. With Cambridge, the

elivery ratio degrades to 63% due the longer duration of the expe-

ience. Also as expected, we notice that TRW-M produces the best

esults in all Haggle traces and in the case of RollerNet, the results

re close to those of BSW (less than 10% off). Finally, we notice the

tability of TRW: just 4 tokens suffice to get a high delivery ratio. 

As expected, the delay of both TRW and TRW-M is larger than

hat of the BSW ( Fig. 9 ). This increase is due to the lack of bound-

ries of the random walk process with respect to message deliv-

ry, i.e. the token moves wherever it can without restrictions. We

lso confirm that the boost on BSW performance with a bigger

uffer also increases the delay. In that case, the nodes are able to

tore messages for a longer time before dropping them. We see

he same increasing delay impact in TRW when adding more to-

ens, confirming the results from synthetic traces. However, the

ncrease in delay is also associated with an increase in delivery ra-

io which could be beneficial. When comparing equivalent delivery

atio between TRW-M and BSW, we observe equivalent delays. For

nstance in RollerNet with 2, 4 or 8 tokens/messages, we confirm
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Fig. 9. Average delay for traces when increasing number of tokens/messages for TRW, TRW-M, BSW, BSW-100. 

Fig. 10. Average delivery ratio for traces when increasing number of tokens/messages for TRW, TRW-M, BSW, BSW-100. 

Table 2 

Typical transfer rates for communication technologies. 

Technology Bandwidth 

Bluetooth 1.0 700 Kbps 

Bluetooth 2.0 2 Mbps 

Bluetooth 3.0/4.0 25 Mbps 

WiFi (device-to-device) 11 Mbps 

WiFi direct 250 Mbps 

USB 2.0 10–280 Mbps (full/hi speed) 

USB 3.0 3200 Mbps 

Thunderbolt 6400 Mbps 
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3 We will abuse of the notation for the ict dataset and its associated ict ( t ) func- 

tion. We will treat them both as indistinguishable. 
hat BSW and TRW-M have similar delivery ratio and delay. We see

he maximum delay difference with 32 tokens/messages, with an

ncrease of less than 5 minutes. 

.1.4. Cyber-physical considerations 

We discuss the cyber-physical aspects associated to a real im-

lementation of TRW. assumptions, limits and benefits of our ap-

roach. The main concerns can be grouped in the time needed to

ead/write in the token (we assume negligible time) and the cost

f merging tokens (we assume infinite bandwidth). Both can be

xplained in terms of technology: the USB key analogy is just a

imple example that allows us to devise such a token where the

ransfer rate is several orders of magnitude greater than current

ireless technologies. As we can see in Table 2 , our assumption

s not far from the reality: Bluetooth 4.0 is 128 times slower than

SB 3.0 and 256 times slower than Thunderbolt. Merging messages

ould be done with the same high speed communication interface

mong tokens (in the opportunistic overlay plane). 

One could also argue that we should count the time of mount-

ng/unmounting the token on the computer, but this is equivalent

o someone selecting a file to transfer in a standard manner. Again,

e can think of a technology where this process is not cumber-

ome, e.g. contactless smart cards. Also in terms of storage capac-

ty we know a simple USB key has much more memory than any

Mote device of the past. 
.2. Monitoring opportunistic networks with TRW: ICT case 

This section introduces the use of TRW to monitor the global

ntercontact Time (ICT). We focus on the ICT characterization, since

t is a temporal measure that it is highly affected by the quality

f the sampled data. We define our notation and explain how to

reate an approximate characterization of the ICT. We also specify

hat we understand by ICT approximation. 

As defined in Section 4.3 , the n -th intercontact time between i

nd j is ict i, j (n ) = t i, j (n + 1) − t i, j (n ) . From these random variables,

e obtain the pairwise intercontact time distribution ict i, j ( t ). The

lobal intercontact time ict ( t ) is defined as ∪ i, j ict i, j ( t ). We assume

hat the pair-wise distributions for ( i, j ) and ( j, i ) are the same.

e see that to characterize the global ict ( t ) we need to know all

he pairwise ict i, j ( t ) distributions. Due to the difficulty of gathering

ll those pairwise distributions, we propose to select a subset of

odes that can approximate the global ict ( t ) distribution 

3 . 

Since the ict is defined as a probability distribution, the moni-

oring problem is reduced to construct an estimation of this distri-

ution. We define 〈 ict 〉 as the sampling recollected by the monitor-

ng process. In the following, we propose to investigate methods of

roviding representative 〈 ict 〉 sampling of the whole network. No-

ice that we can generalize this method to 〈 ict 〉 = ∪ w ∈ W 

〈 ict 〉 w 

. 

.2.1. Temporal random walks to sample ICT 

We propose four sampling strategies for 〈 ict 〉 : Static, Last, All,

ny. We use a static map for the first strategy and the TRW tem-

oral mapping for the others. Each node in the opportunistic net-

ork can store their previous encounters and its frequency. While

 node holds the token, it will record the sampled data in the

oken according to the selected strategy. Then the token will be

assed by the temporal random walk and hence the 〈 ict 〉 will be

ollected. Here 〈 ict 〉 is constructed as the union of the intercontact
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Fig. 11. KS Distance with increasing number of monitors (RWP simulation and IN- 

FOCOM traces). Notice that in both cases, the lower bound is obtained using dy- 

namic monitoring with the any strategy (full memory and interchanges). 
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values sampled by the token at each connection ( i, j ). If we have

i = (w, t) , then: 

• Static : we select a random sample S of size k from the set

of nodes N . We then define the static map m : w i → i ∀ i ∈ S .

Note that this relationship is not time-dependent, hence we can

say the monitor nodes are static. It is used as a reference value.

All the contacts stored in i will be stored in w i . 

• Last : we just consider the last pairwise intercontact between i

and all its neighbors. This implies that each node must keep a

memory of only the last contact with other node. 

• All : we consider the complete pairwise intercontact distribu-

tion between i and all its neighbors. In this case, the needed

memory is extended to all non-recorded contacts in the token.

In the worst case this can be all the period of observation. 

• Any : we consider the complete history of past intercontact dis-

tribution between i and any other node. In this case, we keep

the same memory as for the All method. 

Now that we are able to define two datasets, the original and

the sampled, representing the intercontact time distribution of two

different groups, we wonder how both distributions are different. 

5.2.2. ICT approximation: How to compare? 

We use the two-sample Kolmogorov-Smirnov (KS) statistical

test to compare the sampled 〈 ict 〉 with the original ict . The KS test

defines a distance D ( Eq. (6) ) between these distributions. The Null

hypothesis of the two-sample KS Test is if they are drawn from a

similar underlying distribution. 

D = sup 

t> 0 

| ict (t ) − 〈 ict 〉 (t) | (6)

We use the p-value to reject the null hypothesis with signifi-

cance level α = 5% . Rejecting the null hypothesis means that both

samples definitely do not come from the same distribution. Fail-

ing to reject means that both distributions are the same within an

error associated to the significance level. 

But, this does not say anything about the distribution they

come from. This must be analyzed case by case. Note that this test

just says within a given confidence level if the two samples come

or not from the same distribution. To go further we need to know

specifically which statistical test to perform given the underlaying

probability distribution. 

5.2.3. Evaluation 

In this section, we perform a series of simulations with “The

ONE Simulator” [56] to test the intercontact time monitoring

strategies previously presented. 

Synthetic Traces:. For each simulation, we set a group of 100 nodes

moving according to the random waypoint movement (RWP) in

a square of 100 × 100 m 

2 . We gather the approximated intercon-

tact time distribution according to the four methods. For the sim-

ulations, we test N = 100 nodes and � = 5 minutes for T = 500

time windows. Since we want to study the limit of the monitoring

methods, for each one, we increase the number of monitors/tokens

from 1 to 100. We repeat each simulation 10 times to reduce the

randomness effects. 

Our initial results indicate that the 〈 ict 〉 distribution is similar

for both static and dynamic scenarios. We observe that in the RWP

simulation each monitor has an indistinguishable view of its sur-

roundings: the monitor sees that all nodes move uniformly into

the space. In Fig. 11 a, the average distance ( Eq. (6) ) is graphed as

a function of the number of monitors. As expected, we observe

that the more monitors we add, the smaller the distance we ob-

tain (hence the better the approximation). This is independent of

the method used. Since the homogeneous view in the RWP model,
e can say that increasing the number of monitors increases the

ontacts and hence the quality of the ICT approximation. 

Also, we can see that in the one monitor case, it is better to use

he dynamic than the static mode. This is due to the fact that we

ather more contacts when we move. With the same argument,

e can see that the distance between the different strategies in

he dynamic mode is correlated with respect to the amount of in-

ormation we add in the sample: D Any < D All < D Last . When cal-

ulating the KS test, we always verify the null hypothesis for any

umber of monitors. This is independently of the selected method

static or dynamic) and sampling strategy selected ( Last, All, Any ).

n the case of RWP, we know that the ICT [55] follows an expo-

ential law, hence we can fit an exponential model to 〈 ict 〉 and

btain the desired result. An overall conclusion can be as such: in

he random waypoint scenario, we can monitor a group of nodes

sing a subset of monitors. The key parameter to take into account

s the number of contacts, that can be regulated either by increas-

ng the time sampling or by increasing the number of nodes in the

pace. 

eal Traces. We use the INFOCOM traces [57] to study the 98

istributed nodes in the conference. We aggregate the traces

nto snapshots with � = 5 minutes. We also impose symmetry

n the connections. We perform the same analysis than with

he synthetic traces. As expected, in Fig. 11 b, we see that we

lways decrease the distance between the approximation and the
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Table 3 

Monitors coverage (in percentage of nodes in the 

network) needed to be sure that 〈 ict 〉 is a good esti- 

mator for ict (i.e. stop rejecting the null hypothesis). 

Static Any 

Statistically representative > 78% > 15% 

Approximately representative > 17% > 3% 
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eal value of the ICT by adding monitors. However, we see that

he Last and All sampling strategies are lower bounded by the

tatic method. This is equivalent to say that randomly selecting

 number of monitors and staying statically attached to them

rovides a better approximation than dynamically changing nodes

hen just the pairwise information is considered (as in Last and

ll strategies). We get a bigger distance due the fact that passing

he token at each time can bias the data to smaller values of

ntercontact time (we will have a higher probability of short

ntercontact times than the real ict ). In the static case we have

 partial local view of the network, but consistent with all the

eriods of observation. This will add longer intercontact times to

he sampling, reducing the bias (we will add more information

o the tail of the distribution reducing the probability of shorter

ntercontact times). In other words, adding diversity is not enough

o improve the sampling because it adds bias. 

However, we can see that the Any sampling strategy always

raws the smaller approximation distance. This is due to the fact

hat this method is a mix between static and dynamic monitor-

ng. Indeed, the holder of the token at the last snapshot will add

ll its intercontact time information. This information is equivalent

o the information that we would have added as a static monitor.

owever, we have to remember that the cost of this strategy re-

uires that all the nodes in the plane node store theirs contacts.

ere the token becomes just a method of data recollection. An ob-

ious improvement is to leverage the monitors connections. When

hey receive the token they may add their information as well as

heir past connections information. 

Both simulation and trace analysis confirm the possibility of se-

ecting a group of nodes and attaching monitors to them in order

o capture the global behavior of the ICT. These experiments lead

s to conclude that it is not possible to fully define the most repre-

entative set of monitors: any non-random selection will introduce

ome bias to the sampling. Nevertheless, we have not yet explored

ll the possibilities of our monitoring mechanism. In Table 3 , we

how the percentage of nodes needed to stop rejecting the null

ypothesis ( pval > α). To stop rejecting the null hypothesis implies

hat the 〈 ict 〉 is a good estimator for the real ict . We see that in the

tatic case we need to control at least 75% of the network. This im-

lies a huge cost for monitoring. However, in the dynamic case we

eed only to cover 15% when we use the any sampling strategy.

his number hides the fact that all nodes in the nodes plane must

e storing past connections in memory. We thus obtain the trade-

ff sought: either we add more memoryless monitors or we have

ess monitors to recollect nodes data with higher memory capac-

ty. If we accept a non-statistically accurate view these numbers

rop to 17% and 3% respectively. It is important to notice that the

act that the static mapping requires such a big number of moni-

or nodes is due the unknown dynamics of the opportunistic net-

ork. Indeed, since we do not assume any prior knowledge about

he nodes, we do not explore nor exploit any specific characteristic

hat my result in a better selection. In simple words, a random se-

ection will not produce good results. Using this reasoning for the

NFOCOM conference, and assuming that the devices delivery was

andom, we conclude that to get a statistically representative esti-

ation of the ICT , the experience should have covered at least 75%
f the people in the conference. We see that the best case is the

ynamic mode with the any sampling strategy. This provides the

imit of the monitoring: when the monitors plane and the nodes

lane become just one, all nodes are constantly monitoring and

toring their neighborhood and we use the random walk process

ust to recollect data. 

. Conclusions 

In the following we present the main conclusions to each part

f our work. 

.1. TRW architecture for opportunistic networks 

Random walks on temporal networks were studied in previous

ork as a sampling method. In this work we used them to pro-

ide a computer communication architecture. In Section 4 , we de-

ned and discussed the main elements necessary to use temporal

andom walks over opportunistic networks, defining our own Tem-

oral Random Walk (TRW) architecture. Indeed, we formalized the

oncept of dynamic overlay for opportunistic networks. We defined

 dynamical mapping function that links nodes in the opportunis-

ic network with nodes in the overlay and we defined the token as

 virtual device symbolizing who is the walker at a given time. The

ynamic mapping is defined at each instant as the nodes in the

pportunistic network that are holding a token in the overlay. The

rogression of the tokens follows a random walk in the temporal

etwork. We then discussed the link between TRW and message

orwarding. 

.2. Drop model for message forwarding 

DTNs characterization has focused on metrics such as average

elay, delivery ratio, etc. assuming that the problem of buffer oc-

upancy is of lower importance. In Section 4.3 , we studied the

rop ratio for the progression of messages from a set of sources

o a set of destinations. To our knowledge, we provide the first

ork specifically focused on the formal analysis of message drop-

ing in Opportunistic networks. Each source generates one mes-

age that can be absorbed by any destination. Messages in our

tudy are simply forwarded among nodes to avoid the inclusion

f extra copies (replication), which will only increase the proba-

ility of drops. We worked with nodes with 1-message buffers to

epresent the worst case scenario to obtain an upper bound for the

rop ratio: all nodes in the network have their buffers almost full

nd we want to know how many new messages can be injected. 

Our main contribution is the introduction of a continuous time

arkov chain model to characterize the drop of messages under

hese hypotheses. We introduced the ( d, c ) model for homogeneous

ontact between nodes. We show the link between the encounter

ate among nodes with the drop ratio of forwarded messages in

he homogeneous case: we showed that the upper bound for the

rop ratio is independent of the encounter rate. We performed

imulations to calculate the drop ratio for several scenarios to val-

date the model. We showed that the outputs of the CTMC model

t very well to the simulation outputs. For future work, we plan

o better characterize the behavior of the two-class model by vary-

ng encounter frequencies. We will further investigate the cases of

arger buffers and full heterogeneity. 

.3. TRW as a lightweight infrastructure for opportunistic networks 

As we have discussed in this work, one of the main challenges

n opportunistic networks is the lack of persistent end-to-end

aths. However, we can exploit temporal paths formed by con-

acts between nodes. Using the store-carry-and- forward paradigm,
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nodes can save messages until they find the destination. However,

in order to increase the delivery probability, most of the algo-

rithms perform message replication. This naturally introduces over-

head as well as complexity for the deployment on opportunistic

networks. Many alternatives have been explored in order to re-

duce the number of copies. For instance, the Binary Spray-and-

ait algorithm introduces a maximum of L copies for each mes-

sages. In Section 5.1 , we explored the use of temporal random

walks over opportunistic networks as a communication infrastruc-

ture. We proposed to use contacts as a medium to pass a specific

device gathering messages (the token), rather than to route a mes-

sage. The simple analogy is to copy messages in a USB key and

pass it among nearby contacts to eventually deliver the messages.

We studied how this method can successfully deliver messages, in-

troducing two variants: TRW and TRW-M. The former works as de-

scribed before, but the later exploits the contacts of tokens in the

overlay network for merging the tokens contents. We showed that

this merge strategy increases the delivery probability, keeping at

most as many copies of a message as the number of tokens avail-

able. As expected, the simplicity of this approach leads to increased

delays, which can be acceptable in DTNs. We verified our approach

with both synthetic and real traces. We further noted how the con-

nectivity of the network has a significant impact on the delivery:

the more disconnected the nodes are in the network, the more

resources a typical routing algorithm will need. Indeed, messages

will need to stay in nodes’ buffers for a longer time until a new

contact arrives. Our approach offers a high delivery ratio indepen-

dently of the density of contacts. We showed with the changes in

node density, that such lightweight infrastructure in opportunis-

tic networks can be useful in disaster scenarios where the density

of nodes is low, and the need to have an acceptable communica-

tion medium is crucial. Also it can be useful to offload mobile cell-

phone networks when antennas cannot cope with the device den-

sity. With the use of our infrastructure we can provide access to

the network to nodes that cannot connect otherwise. 

6.4. TRW as a monitoring application 

Finally we proposed the use of TRW as an application to mon-

itor mobile crowdsourcing scenarios. We presented how to use

temporal random walks to monitor the ICT and an evaluation of

their capabilities using both simulated and real trace-based oppor-

tunistic networks. Our results show that it is possible to approxi-

mate the ICT characteristic of an opportunistic network with only

collecting a subset of global information. However, this has a cost

in terms of number of monitor or states of past activity to track.

This tradeoff in monitor numbers and memory capabilities have an

impact on the quality of the estimated ICTs. We further discussed

this tradeoff and proposed some potential approach to overcome

the shortcomings of the approach (e.g. favoring monitor number

or memory capacity) 

In the future we plan to develop a reflective monitoring system

for DTNs. We seek to study under which conditions certain net-

works can converge to a uniform state where all the nodes share a

good approximation of the global network state. This can be ex-

ploited to improve algorithms over opportunistic networks from

local information. 

References 

[1] L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput. Netw.

54 (15) (2010) 2787–2805, doi: 10.1016/j.comnet.2010.05.010 . 

[2] A. McMahon, S. Farrell, Delay- and disruption-tolerant networking, IEEE Inter-
net Comput. 13 (6) (2009) 82–87. http://doi.ieeecomputersociety.org/10.1109/

MIC.2009.127 . 
[3] A. Hooke, The interplanetary internet, Commun. ACM 44 (9) (2001) 38–40,

doi: 10.1145/383694.383703 . 
[4] K. Fall, A delay-tolerant network architecture for challenged internets, in: Pro-
ceedings of the 2003 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, in: SIGCOMM ’03, ACM, New
York, NY, USA, 2003, pp. 27–34, doi: 10.1145/863955.863960 . 

[5] M. Conti, S. Giordano, M. May, A. Passarella, From opportunistic networks to
opportunistic computing, IEEE Commun. Mag. 48 (9) (2010) 126–139, doi: 10.

1109/MCOM.2010.5560597 . 
[6] M. Conti, S. Giordano, Mobile ad hoc networking: milestones, challenges, and

new research directions, Commun. Mag. IEEE 52 (1) (2014) 85–96, doi: 10.1109/

MCOM.2014.6710069 . 
[7] 2014 hong kong umbrella revolution. Accessed: 2016-08-06. doi: https://en.

wikipedia.org/wiki/2014 _ Hong _ Kong _ protests#Censorship . 
[8] B. Han, P. Hui, V. Kumar, M. Marathe, J. Shao, A. Srinivasan, Mobile data of-

floading through opportunistic communications and social participation, Mo-
bile Comput. IEEE Trans. 11 (5) (2012) 821–834, doi: 10.1109/TMC.2011.101 . 

[9] P. Baier , F. Dürr , K. Rothermel , TOMP: opportunistic traffic offloading using

movement predictions, in: Proceedings of the 37th IEEE Conference on Local
Computer Networks (LCN), IEEE Computer Society, Clearwater, 2012, pp. 1–8 . 

[10] F. Rebecchi, M. Dias de Amorim, V. Conan, A. Passarella, R. Bruno, M. Conti,
Data offloading techniques in cellular networks: a survey, Commun. Sur. Tut.

IEEE 17 (2) (2015) 580–603, doi: 10.1109/COMST.2014.2369742 . 
[11] V. Ramiro , J. Piquer , T. Barros , P. Sepúlveda , The chilean internet: did it survive

the earthquake?, in: L.A. Cardenas (Ed.) WIT Transactions on State of the Art

in Science and Engineering, vol. 1, 1, WIT Press, 2012, pp. 133–151 . 
[12] W.Z. Khan, Y. Xiang, M.Y. Aalsalem, Q. Arshad, Mobile phone sensing systems:

a survey, IEEE Commun. Surv. Tut. 15 (1) (2013) 402–427, doi: 10.1109/SURV.
2012.031412.0 0 077 . 

[13] M. Faulkner, R. Clayton, T. Heaton, K.M. Chandy, M. Kohler, J. Bunn, R. Guy,
A. Liu, M. Olson, M. Cheng, A. Krause, Community sense and response sys-

tems: your phone as quake detector, Commun. ACM 57 (7) (2014) 66–75,

doi: 10.1145/2622633 . 
[14] D. Hasenfratz , O. Saukh , S. Sturzenegger , L. Thiele , Participatory air pollution

monitoring using smartphones, In Mobile Sensing: From Smartphones and
Wearables to Big Data, ACM, Beijing, China, 2012 . 

[15] R.K. Rana, C.T. Chou, S.S. Kanhere, N. Bulusu, W. Hu, Ear-Phone: An End-to-End
Participatory Urban Noise Mapping System (2010). 

[16] J. Biagioni, T. Gerlich, T. Merrifield, J. Eriksson, EasyTracker: automatic transit

tracking, mapping, and arrival time prediction using smartphones, in: Proceed-
ings of the 9th ACM Conference on Embedded Networked Sensor Systems, in:

SenSys ’11, ACM, New York, NY, USA, 2011, pp. 68–81, doi: 10.1145/2070942.
2070950 . 

[17] R. Ganti, F. Ye, H. Lei, Mobile crowdsensing: current state and future chal-
lenges, IEEE Commun. Mag. 49 (11) (2011) 32–39, doi: 10.1109/MCOM.2011.

6069707 . 

[18] L. Pelusi, A. Passarella, M. Conti, Opportunistic networking: data forwarding
in disconnected mobile ad hoc networks, Commun. Mag. IEEE 44 (11) (2006)

134–141, doi: 10.1109/MCOM.2006.248176 . 
[19] A. Vahdat, D. Becker, Epidemic Routing for Partially Connected Ad Hoc Net-

works, Duke University, July 20 0 0, http://cse.ucsd.edu/node/1853 . 
[20] T. Spyropoulos, K. Psounis, C.S. Raghavendra, Spray and wait: an efficient rout-

ing scheme for intermittently connected mobile networks, in: Proceedings of
the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, WDTN ’05,

ACM, New York, NY, USA, 2005, pp. 252–259, doi: 10.1145/1080139.1080143 . 

[21] A . Lindgren, A . Doria, O. Schelén, Probabilistic routing in intermittently con-
nected networks, SIGMOBILE Mob. Comput. Commun. Rev. 7 (3) (2003) 19–20,

doi: 10.1145/961268.961272 . 
[22] A. Balasubramanian, B. Levine, A. Venkataramani, Dtn routing as a resource

allocation problem, SIGCOMM Comput. Commun. Rev. 37 (4) (2007) 373–384,
doi: 10.1145/1282427.1282422 . 

[23] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding in delay-

tolerant networks, Mob. Comput. IEEE Trans. 10 (11) (2011) 1576–1589, doi: 10.
1109/TMC.2010.246 . 

[24] P. Hui, E. Yoneki, S.Y. Chan, J. Crowcroft, Distributed community detection in
delay tolerant networks, in: Proceedings of 2nd ACM/IEEE International Work-

shop on Mobility in the Evolving Internet Architecture, MobiArch ’07, ACM,
New York, NY, USA, 2007, pp. 7:1–7:8, doi: 10.1145/1366919.1366929 . 

[25] J. Burgess, B. Gallagher, D. Jensen, B. Levine, Maxprop: routing for vehicle-

based disruption-tolerant networks, in: INFOCOM 2006. 25th IEEE Interna-
tional Conference on Computer Communications. Proceedings, 2006, pp. 1–11,

doi: 10.1109/INFOCOM.2006.228 . 
[26] M. Musolesi, C. Mascolo, Car: context-aware adaptive routing for delay-tolerant

mobile networks, IEEE Trans. Mob. Comput. 8 (2) (2009) 246–260. http://doi.
ieeecomputersociety.org/10.1109/TMC.2008.107 . 

[27] C. Boldrini, M. Conti, J. Jacopini, A. Passarella, Hibop: a history based routing

protocol for opportunistic networks, in: World of Wireless, Mobile and Multi-
media Networks, 2007. WoWMoM 2007. IEEE International Symposium on a,

2007, pp. 1–12, doi: 10.1109/WOWMOM.2007.4351716 . 
[28] P. Holme, J. Saramäki, Temporal networks, Phys. Rep. 519 (3) (2012) 97–125.

http://dx.doi.org/10.1016/j.physrep.2012.03.001 . Temporal Networks. 
[29] P. Borgnat , E. Fleury , J.-L. Guillaume , C. Robardet , Characteristics of the dy-

namic of mobile networks, in: 4th International Conference on Bio-Inspired

Models of Network, Information, and Computing Systems, Springer, Avignon,
France, 2009, pp. 130–139 . 

[30] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs
and dynamic networks, in: H. Frey, X. Li, S. Ruehrup (Eds.), Ad-hoc, Mobile, and

Wireless Networks, Lecture Notes in Computer Science, 6811, Springer Berlin
Heidelberg, 2011, pp. 346–359, doi: 10.1007/978- 3- 642- 22450- 8 _ 27 . 

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://doi.ieeecomputersociety.org/10.1109/MIC.2009.127
http://dx.doi.org/10.1145/383694.383703
http://dx.doi.org/10.1145/863955.863960
http://dx.doi.org/10.1109/MCOM.2010.5560597
http://dx.doi.org/10.1109/MCOM.2014.6710069
https://en.wikipedia.org/wiki/2014_Hong_Kong_protests#Censorship
http://dx.doi.org/10.1109/TMC.2011.101
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0008
http://dx.doi.org/10.1109/COMST.2014.2369742
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0010
http://dx.doi.org/10.1109/SURV.2012.031412.00077
http://dx.doi.org/10.1145/2622633
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0013
http://dx.doi.org/10.1145/2070942.2070950
http://dx.doi.org/10.1109/MCOM.2011.6069707
http://dx.doi.org/10.1109/MCOM.2006.248176
http://cse.ucsd.edu/node/1853
http://dx.doi.org/10.1145/1080139.1080143
http://dx.doi.org/10.1145/961268.961272
http://dx.doi.org/10.1145/1282427.1282422
http://dx.doi.org/10.1109/TMC.2010.246
http://dx.doi.org/10.1145/1366919.1366929
http://dx.doi.org/10.1109/INFOCOM.2006.228
http://doi.ieeecomputersociety.org/10.1109/TMC.2008.107
http://dx.doi.org/10.1109/WOWMOM.2007.4351716
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0026
http://dx.doi.org/10.1007/978-3-642-22450-8_27


V. Ramiro et al. / Computer Networks 111 (2016) 29–44 43 

 

[
 

 

 

 

 

 

[  

 

 

 

 

[  

 

 

 

 

 

[  

 

 

 

[  

 

[  

 

 

 

 

 

[  

[  

[  

 

[  

 

 

 

[  

 

 

 

 

[  

 

 

 

[  

[  

 

 

 

 

 

 

[  

 

 

[  

[  

[  

[  

 

 

 

[  

 

 

[  

 

 

[  

 

[31] M.E.J. Newman , Networks: An Introduction, Oxford University Press, Oxford;
New York, 2010 . 

32] A.-D. Nguyen, P. Senac, M. Diaz, Modelling mobile opportunistic networks –
from mobility to structural and behavioural analysis, Ad Hoc Netw. 24 (Part

B) (2015) 161–174 Modeling and Performance Evaluation of Wireless Ad-Hoc
Networks. http://dx.doi.org/10.1016/j.adhoc.2014.07.017 . 

[33] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: Densification laws,
shrinking diameters and possible explanations, in: Proceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery in Data Min-

ing, in: KDD ’05, ACM, New York, NY, USA, 2005, pp. 177–187, doi: 10.1145/
1081870.1081893 . 

34] B. Ribeiro, D. Towsley, Estimating and sampling graphs with multidimensional
random walks, in: Proceedings of the 10th ACM SIGCOMM Conference on In-

ternet measurement, IMC ’10, ACM, New York, NY, USA, 2010, pp. 390–403,
doi: 10.1145/1879141.1879192 . 

[35] M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Random walks on tem-

poral networks, Phys. Rev. E 85 (2012) 056115, doi: 10.1103/PhysRevE.85.056115 .
36] T. Hoffmann, M.A. Porter, R. Lambiotte, Generalized master equations for non-

poisson dynamics on networks, Phys. Rev. E 86 (2012) 046102, doi: 10.1103/
PhysRevE.86.046102 . 

[37] C. Avin, M. Koucký, Z. Lotker, How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs), in: L. Aceto, I. Damgård, L. Gold-

berg, M. Halldórsson, A. Ingólfsdóttir, I. Walukiewicz (Eds.), Automata, Lan-

guages and Programming, Lecture Notes in Computer Science, 5125, Springer
Berlin Heidelberg, 2008, pp. 121–132, doi: 10.1007/978- 3- 540- 70575- 8 _ 11 . 

38] D. Figueiredo, P. Nain, B. Ribeiro, E. de Souza e Silva, D. Towsley, Character-
izing continuous time random walks on time varying graphs, in: Proceedings

of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’12, ACM, New

York, NY, USA, 2012, pp. 307–318, doi: 10.1145/2254756.2254794 . 

39] N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-Satorras, A. Vespig-
nani, Random walks and search in time-varying networks, Phys. Rev. Lett. 109

(2012) 238701, doi: 10.1103/PhysRevLett.109.238701 . 
40] U.C. Kozat, L. Tassiulas, Throughput capacity of random ad hoc networks with

infrastructure support, in: Proceedings of the 9th Annual International Con-
ference on Mobile Computing and Networking, MobiCom ’03, ACM, New York,

NY, USA, 2003, pp. 55–65, doi: 10.1145/938985.938992 . 

[41] B. Liu, P. Thiran, D. Towsley, Capacity of a wireless ad hoc network with infras-
tructure, in: Proceedings of the 8th ACM International Symposium on Mobile

Ad Hoc Networking and Computing, MobiHoc ’07, ACM, New York, NY, USA,
2007, pp. 239–246, doi: 10.1145/1288107.1288140 . 

42] C. Mayer , Hybrid Routing in Delay Tolerant Networks, KIT Scientific Publ., 2012 .
43] C.P. Mayer, O.P. Waldhorst, Routing in hybrid delay tolerant networks, Com-

put. Commun. 48 (2014) 44–55. http://dx.doi.org/10.1016/j.comcom.2014.03. 

018 . Opportunistic networks 
44] C. Shen, D. Pesch, A heuristic relay positioning algorithm for heterogeneous

wireless networks, in: Vehicular Technology Conference, 2009. VTC Spring
2009. IEEE 69th, 2009, pp. 1–5, doi: 10.1109/VETECS.2009.5073297 . 

45] N. Banerjee, M.D. Corner, D. Towsley, B.N. Levine, Relays, base stations, and
meshes: Enhancing mobile networks with infrastructure, in: Proceedings of

the 14th ACM International Conference on Mobile Computing and Networking,
MobiCom ’08, ACM, New York, NY, USA, 2008, pp. 81–91, doi: 10.1145/1409944.

1409955 . 
46] V. Soares, F. Farahmand, J. Rodrigues, Improving vehicular delay-tolerant net-
work performance with relay nodes, in: Next Generation Internet Networks,

2009. NGI ’09, 2009, pp. 1–5, doi: 10.1109/NGI.2009.5175762 . 
[47] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, D. Rubenstein, Energy-

efficient computing for wildlife tracking: design tradeoffs and early experi-
ences with zebranet, SIGARCH Comput. Archit. News 30 (5) (2002) 96–107,

doi: 10.1145/635506.605408 . 
48] T. Small, Z.J. Haas, The shared wireless infostation model: a new ad hoc net-

working paradigm (or where there is a whale, there is a way), in: Proceed-

ings of the 4th ACM International Symposium on Mobile Ad Hoc Networking
&Amp; Computing, MobiHoc ’03, ACM, New York, NY, USA, 2003, pp. 233–244,

doi: 10.1145/778415.778443 . 
49] A. Pentland, R. Fletcher, A. Hasson, Daknet: rethinking connectivity in develop-

ing nations, Computer 37 (1) (2004) 78–83, doi: 10.1109/MC.2004.1260729 . 
50] D.G. Murray, E. Yoneki, J. Crowcroft, S. Hand, The case for crowd computing, in:

Proceedings of the Second ACM SIGCOMM Workshop on Networking, Systems,

and Applications on Mobile Handhelds, in: MobiHeld ’10, ACM, New York, NY,
USA, 2010, pp. 39–44, doi: 10.1145/1851322.1851334 . 

[51] A. Guerrieri, I. Carreras, F. De Pellegrini, A. Montresor, D. Miorandi, Distributed
estimation of global parameters in delay-tolerant networks, in: World of Wire-

less, Mobile and Multimedia Networks Workshops, 2009. WoWMoM 2009.
IEEE International Symposium on a, 2009, pp. 1–7, doi: 10.1109/WOWMOM.

2009.5282449 . 

52] A. Passarella , M. Conti , Characterising aggregate inter-contact times in hetero-
geneous opportunistic networks, in: J. Domingo-Pascual, P. Manzoni, S. Palazzo,

A. Pont, C. Scoglio (Eds.), NETWORKING 2011, Lecture Notes in Computer Sci-
ence, 6641, Springer Berlin / Heidelberg, 2011, pp. 301–313 . 

53] T. Phe-Neau , M. Dias de Amorim , V. Conan , Vicinity-based dtn characterization,
ACM Workshop on Mobile Opportunistic Networks (ACM MobiOpp), 2012 . 

54] K. Scott, S. Burleigh, Bundle Protocol Specification, RFC 5050 (Experimental),

Internet Engineering Task Force, Nov 2007. 
55] R. Groenevelt, P. Nain, G. Koole, The message delay in mobile ad hoc networks,

Perform. Eval. 62 (1–4) (2005) 210–228, doi: 10.1016/j.peva.2005.07.018 . 
56] A. Keränen , J. Ott , T. Kärkkäinen , The one simulator for DTN protocol evalu-

ation, in: SIMUTools ’09: Proceedings of the 2nd International Conference on
Simulation Tools and Techniques, ICST, New York, NY, USA, 2009 . 

[57] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, CRAWDAD

dataset cambridge/haggle (v. 2006-09-15), downloaded from http://crawdad.
org/cambridge/haggle/20060915/imote , doi: 10.15783/C73S3N , Sep 2006. 

58] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, J. Scott, Impact of human
mobility on the design of opportunistic forwarding algorithms, in: INFOCOM

2006. 25th IEEE International Conference on Computer Communications. Pro-
ceedings, 2006, pp. 1–13, doi: 10.1109/INFOCOM.2006.172 . 

59] J. Leguay, A. Lindgren, J. Scott, T. Friedman, J. Crowcroft, Opportunistic content

distribution in an urban setting, in: Proceedings of the 2006 SIGCOMM Work-
shop on Challenged Networks, in: CHANTS ’06, ACM, New York, NY, USA, 2006,

pp. 205–212, doi: 10.1145/1162654.1162657 . 
60] P.U. Tournoux , J. Leguay , F. Benbadis , V. Conan , M.D. de Amorim , J. Whit-

beck , The accordion phenomenon: analysis, characterization, and impact on
dtn routing, in: Proc. IEEE INFOCOM, 2009 . 

http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0028
http://dx.doi.org/10.1016/j.adhoc.2014.07.017
http://dx.doi.org/10.1145/1081870.1081893
http://dx.doi.org/10.1145/1879141.1879192
http://dx.doi.org/10.1103/PhysRevE.85.056115
http://dx.doi.org/10.1103/PhysRevE.86.046102
http://dx.doi.org/10.1007/978-3-540-70575-8_11
http://dx.doi.org/10.1145/2254756.2254794
http://dx.doi.org/10.1103/PhysRevLett.109.238701
http://dx.doi.org/10.1145/938985.938992
http://dx.doi.org/10.1145/1288107.1288140
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0039
http://dx.doi.org/10.1016/j.comcom.2014.03.018
http://dx.doi.org/10.1109/VETECS.2009.5073297
http://dx.doi.org/10.1145/1409944.1409955
http://dx.doi.org/10.1109/NGI.2009.5175762
http://dx.doi.org/10.1145/635506.605408
http://dx.doi.org/10.1145/778415.778443
http://dx.doi.org/10.1109/MC.2004.1260729
http://dx.doi.org/10.1145/1851322.1851334
http://dx.doi.org/10.1109/WOWMOM.2009.5282449
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0049
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0050
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0050
http://dx.doi.org/10.1016/j.peva.2005.07.018
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0052
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0052
http://crawdad.org/cambridge/haggle/20060915/imote
http://dx.doi.org/10.15783/C73S3N
http://dx.doi.org/10.1109/INFOCOM.2006.172
http://dx.doi.org/10.1145/1162654.1162657
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055
http://refhub.elsevier.com/S1389-1286(16)30239-0/sbref0055


44 V. Ramiro et al. / Computer Networks 111 (2016) 29–44 

 Université du Toulouse in 2015 (at ISAE-SUPAERO). Before, he got a Master in Computer 
ering degree, both from Universidad de Chile. During his Master degree, he worked at the 

s a research engineer at NIC Chile. He is currently a postdoc researcher at the “Complex 
 by a DGA grant. His research interests mainly focus on opportunistic networks, temporal 

ory of Pierre and Marie Curie University - Paris VI in December 2004 and the Habilitation 

011 from Institut National Polytechnique de Toulouse (INPT). From July 2005 to August 
Pervasive Computing research program at National ICT Australia, Sydney. He joined ISAE 

officer. He is member of TéSA laboratory and networking expert in the TeSA scientific 
nsport protocols and congestion control. 

e l’Aviation Civile (ENAC). Patrick Sénac graduated from the “Ecole Nationale Supérieure 

ue et d’Informatique et Télécommunication” (ENSEEIHT) in 1983 and received the Ph.D. 
sity, France. During 1991 he was invited researcher at the School of Electrical Engineering 

 was invited professor at the School of Electrical Engineering and Telecommunication of 

e has published more than 100 papers in international conferences and Journals, has co- 
s and is the co-author of two books on Petri Nets, one book on multimedia systems, one 

 networks. His current research interests focus on the modeling and design of advanced 
 mobile networks, modeling and analyzing dynamic networks and routing in DTN. 
Victor Ramiro received his Ph.D in Computer Science from
Science focusing on Programming languages and an Engine

PROG Lab at Vrije Universiteit Brussel. Later, He worked a
Systems Engineering department” at ISAE-SUPAERO funded

networks and dynamics on complex systems. 

Emmanuel Lochin received his Ph.D from the LIP6 laborat

Thesis (Habilitation á Diriger des Recheches) in October 2
2007, he held a researcher position in the Networks and 

in September 2007 as researcher and network security 
committee. His research interests are mainly related to tra

Patrick Senac is the head of research at Ecole Nationale d

d’Ingénieurs d’Hydraulique d’Electrotechnique, d’Electroniq
degree in computer science in 1996 from Toulouse Univer

of University of California at Berkeley and during 2004 he

the University of New South Wales in Sydney, Australia. H
edited the proceedings of several international conference

on pervasive networking and one on opportunistic mobile
architectures, protocols and mechanisms for pervasive and


	Characterization and applications of temporal random walks on opportunistic networks
	1 Introduction
	1.1 Challenges in opportunistic networks
	1.1.1 Network offloading
	1.1.2 Natural disasters
	1.1.3 Mobile crowdsourcing

	1.2 Contribution of this work

	2 Related work
	2.1 Routing on DTNs
	2.2 Temporal networks
	2.3 Random walks meet temporal networks
	2.4 Applications on opportunistic networks

	3 Opportunistic networks modeling in a nutshell
	4 Temporal random walk over opportunistic networks
	4.1 Architecture of TRW
	4.2 Implementation of TRW
	4.3 Characterization of TRW: Connection with message forwarding
	4.3.1 The (d,c) model

	4.4 Model evaluation

	5 Applications of TRW on opportunistic networks
	5.1 TRW as a communication infrastructure
	5.1.1 Evaluation
	5.1.2 Synthetic traces
	5.1.3 Real traces
	5.1.4 Cyber-physical considerations

	5.2 Monitoring opportunistic networks with TRW: ICT case
	5.2.1 Temporal random walks to sample ICT
	5.2.2 ICT approximation: How to compare?
	5.2.3 Evaluation


	6 Conclusions
	6.1 TRW architecture for opportunistic networks
	6.2 Drop model for message forwarding
	6.3 TRW as a lightweight infrastructure for opportunistic networks
	6.4 TRW as a monitoring application

	 References


