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a b s t r a c t 

In recent years, we have witnessed an increase in the popularity of mobile wireless devices and networks, 

with greater attention devoted to feasibility of opportunistic computing, sensing, and communication. In 

Mobile Social Networks (MSNs), communication is provided by spatial proximity and social links be- 

tween peers, where personal devices carried by users communicate directly in a device-to-device mode. 

On one hand, human mobility provides encounters between peers and opportunities for communication 

without additional infrastructure; on the other hand, it introduces intermittent connections, network par- 

titions, and long delay, requiring sophisticated message-forwarding mechanisms to improve network per- 

formance. Therefore, socially-inspired approaches which consider network structure and personal user 

features have been proposed to cope with these challenges. However, many studies disregard adaptive 

policies of message forwarding capable of dealing with variations of these features. In this paper, we in- 

vestigated message dissemination in MSNs considering external factors such as temperature and seasonal 

calendar as environmental features capable of model users’preferences and encounters. We evaluated the 

time of day, the day of the week, and environmental variables such as weather and geographic posi- 

tion as important factors to the collective behavior and spatiotemporal characteristics of urban scenarios. 

This paper presents an analysis of real data from weather and human mobility, which depict distinct so- 

cial interactions and spatial features characterized by changes in thermal conditions. Thus, we propose 

a socially-aware forwarding mechanism that is adaptable to the seasonality of personal preferences. Our 

experiments indicated that pervasive data can provide useful information towards the design of the next 

generation of human-centered Opportunistic Networks. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

The future of computer networks comprises a large variety

f applications, composed of different devices and scenarios with

any particular features and challenges. Among the new technolo-

ies, Opportunistic Networks is an emergent network paradigm fo-

used on direct communication between devices for scenarios in-

ependent of infrastructure. Both industry and academia endorse

he benefits of opportunistic communication for Delay Tolerant Ap-

lications [1] , Vehicular Networks [2] , Participatory Sensing [3] ,

nd Mobile Social Networks (MSN) [4] , and, in addition, reinforce

he challenges of the area. In these scenarios, regular nodes are
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obile and have limited resources; communication occurs based

n spatial proximity between peers due to friendship, routine, mo-

ility, or simply by chance. These characteristics provide time-

ensitive scenarios with frequent topology changes and lack of

nd-to-end paths the majority of the time. For this reason, tra-

itional network protocols are neither efficient nor feasible, since

hey were not designed to deal with intermittent connections and

etwork partitions. 

The current ubiquity of portable wireless devices and increas-

ng enhancement of hardware capabilities contribute to the grow-

ng interest in applications using this network class. The popular-

ty of personal devices, such as smartphones, has led to significant

evelopment of online services focused on user content. Location-

ased Social Networks (LBSNs), such as Facebook and Twitter, cap-

ure a significant amount of spatiotemporal data about environ-

ents and human behavior, turning their applications into reposi-

ories of geolocated social information. These online services cap-

ure user preferences and urban dynamics [5] , and provide highly
chanism for mobile social networks, Computer Networks (2016), 
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contextualized data by means of real-time streams of observations

regarding large sets of features [6] . The large volume of records de-

scribes interactions in social media applications, people boarding

public transportation systems, and cell phone calls, among others.

When chronologically grouped, these observations represent time-

series of urban reality. Mining these data sources to formulate mo-

bility models and peer encounters has become an important is-

sue in mobile network scenarios. Moreover, insights about human

behavior and its fluctuations have been shown to be relevant as-

pects for opportunistic networks [4] . Many proposals have studied

opportunistic networks as complex systems sensitive to social and

spatiotemporal aspects using real data [7–9] . They explore perva-

sive social context [10] , such as social network contacts, personal

interests and previously visited venues, in addition to complex net-

work metrics, such as node centrality, betweenness, assortativity

and network density. 

In MSN scenarios, users are individuals carrying handheld de-

vices with direct connection capabilities such as Bluetooth and Wi-

Fi Direct in a device-to-device manner. Due to the relevance of hu-

man behavior in MSN applications, social features have been ex-

plored to identify communities and nodes with high centrality as

a critical issue for improving network performance, since social as-

pects usually have long-term characteristics. In this direction, many

forwarding algorithms have been proposed [11] , but only a few

consider the temporal changes of these features. For this reason,

they are inefficient in front of variations in user mobility and net-

work density, which are common in urban scenarios due to differ-

ent characteristics of days of the week and time of the day. 

This variability in scenarios represents a challenge to the com-

munication method used in opportunistic networks. The Store-

Carry-Forward method requires efficient mechanisms for choosing

the best nodes and the best time to forward or replicate mes-

sages, a non-trivial procedure, considering device constraints such

as buffer size, ener gy consum ption and overhead. Usually, the pro-

posed socially-inspired protocols select the relay nodes consider-

ing endogenous variables related to social aspects, and disregard

environmental variables with potential influence on human behav-

ior, and failing to incorporate mechanisms to adapt to fluctuations.

Thus, in this paper, we investigated the following: 

• The spatiotemporal variations of urban scenarios, according to

several parameters including time of day, weather, and calendar

(day of the week, month, seasonal weather, etc.) 

• The effects of these variations on human behavior and on the

performance of MSNs 

The contributions of this paper are threefold: first, we show

that the levels of venues’popularity and their visit patterns present

distinct behaviors according to seasonal and weather conditions.

These findings suggest that environmental variables can support

the design of socially-aware and pervasive protocols as additional

sources of information. Second, we have designed a simulation of

opportunistic communications based on real data from social me-

dia applications, incorporating different settings of months, sea-

sons, weather and mobility in New York City. The results present

variations in network metrics according to thermal conditions,

which evidences the relationship between environmental variables

and human mobility, and their effects on the performance of MSN

protocols. Finally, we propose a message-forwarding mechanism

based on environmental features and node mobility, which applies

the insights gained from observing fluctuations in human behavior.

The remainder of this paper is organized as follows. In the next

section, we discuss an overview of the related work of message

forwarding mechanisms for MSN, including flooding-based and

socially-aware protocols. We also present investigations of fluctu-

ations in human behavior characterized by environmental features.

In Section 3 , we describe the simulation model, the data used,
Please cite this article as: K. Machado et al., Pervasive forwarding me
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nd the combination of weather and social features in our simu-

ations. Section 4 describes the PervasivePeopleRank algorithm, our

roposal for forwarding messages on MSN-based applications. In

ection 5 , we present the simulation results, analysis, and find-

ngs of environmental effects on opportunistic social communica-

ions. Finally, in Section 6 , we present our conclusions and future

irections. 

. Related work 

One of the most significant challenges of communication in op-

ortunistic networks is the design protocol for optimized routing

echanisms. The protocols require sophisticated decision mech-

nisms to forward messages through the network, using one or

ore instances of them (replicas). These proposals investigate the

se of the personal device capabilities of computing, sensing, com-

unication, and data storage in order to monitor, predict and

odel entities and events that exist in the physical world, such as

he cyber-physical Systems [12] . Therefore, the message forward-

ng mechanisms should be able to select the best nodes to forward

essages and improve main performance indexes, such as deliv-

ry ratio and end-to-end delay, taking into account the overhead

aused by multiple replicas, hops, and energy. 

The Spray-and-Wait [13] (S&W) is one of the most popular al-

orithms for forwarding messages, using a flooding-based architec-

ure divided into two steps. The split approach enables rapid dif-

usion of replicas on the network during the first step, in addition

o using a customizable utility function for managing the replicas

uring the second step. Initially, each created message has λ repli-

as to spread on the network during the spray step. A relay node

an be any node in the network that meets other nodes with n >

 copies of the original message. As defined by a utility function,

he relay node receives c < n copies forwarded by the source or

nother relay node. When a node has only one replica of the mes-

age, it initiates the wait step. During this stage, it will not deliver

he last replica until it meets the destination node. 

Different mechanisms have been proposed for the spray and

ait steps which extend the original algorithm, including Spray-

nd-Focus [14] , which changes the wait . The new focus step deter-

ines that messages with one local replica will be forwarded to

heir destinations or other relay nodes, based on an evaluation of

he time interval since the last two meetings between nodes. The

ain advantage of this approach is the controlled number of repli-

as in the network; this is defined by λ, which represents an upper

ound to the overhead. 

Recent studies have investigated MSNs considering the nodes

s users of personal devices such as smartphones, to take advan-

age of social aspects [8] . These proposals have explored social as-

ects, such as node popularity [15] , social group labeling [16] , ex-

ected delay and the number of encounters [17] , explicit mutual

nterests [18] , and a combination of communities and node cen-

rality [19] . In this direction, Moreira et al. [20] investigated the

mpact of human behavior on opportunistic social networks. They

tudied the use of social aspects and data similarity to develop

pportunistic forwarding systems for essential services in extreme

etworking conditions and dense networking scenarios. Further-

ore, their work shows suitable types of opportunistic forward-

ng schemes, according to network density. Their experiments used

imulations based on real and synthetic mobility traces, and their

ndings point to the investigation of self-awareness mechanisms

nd adaptable forwarding schemes based on network features and

he dynamism of user behavior. 

Chen et al. [17] proposed a forwarding scheme that considered

nformation from node encounters and time-to-live (TTL) mes-

age property. The authors proposed a routing protocol for delay-

olerant applications that distributed multiple replicas between
chanism for mobile social networks, Computer Networks (2016), 
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1 http://www.instagram.com . 
2 http://www.foursquare.com . 
3 http://www.wunderground.com . 
odes, in proportion to their expected encounter ratio. Their work

resented the Expected Encounter-based Routing protocol (EER),

sing the metrics Expected Encounter Value (EEV) of each node

nd the minimum Expected Meeting Delay (EMD) between the

urrent node and the destination. Whith similarity to Spray-and-

ocus, messages are created with λ replicas and spread on the net-

ork proportionally to EEV. Thus, when the number of replicas of

 held message is reduced to 1, the single replica is forwarded only

o the destination node or a relay node with lower EMD. The ex-

eriments used the vehicle-based mobility model, which is part of

NE Simulator [21] . 

Mtibaa et al. [15] proposed a forwarding mechanism based on

ode popularity, derived from the PageRank algorithm [22] . The

eopleRank proposal explores the popularity of nodes using a dis-

ributed approach, forwarding new copies of the original message

o nodes ranking higher than the current node. The messages are

uplicated on demand, and without a specific limit of replicas. The

erformance evaluation presented results using six datasets of real

ata, with 27 up to 414 nodes. 

Ciobanu et al. [23] explored the social graph from social me-

ia applications to provide additional information and support the

essage forwarding mechanism. The proposed algorithm, Oppor-

uNistic Socially-aware and Interest-based DissEmination (ONSIDE),

akes users’interests and contact history into consideration to de-

rease the congestion and required bandwidth, taking into ac-

ount the overall network’s hit rate and the delivery latency. Sim-

larly, Socievole et al. [24] introduced the multi-layer social net-

ork model, which combines social networks based on proxim-

ty and online social networks. The authors investigated the re-

ationship between different social network layers regarding node

entrality, community structure, link strength, and prediction. Both

orks discuss the advantages of using social aspects to improve

pportunistic dissemination, and the benefits of using online social

edia applications to obtain the social graph. Nevertheless, these

roposals assume an eventual connection to the Internet or to re-

ote servers of social media applications. These assumptions make

t difficult to use these proposals in scenarios without infrastruc-

ure. 

Environmental features can change the social and network vari-

bles used by these proposals when a contextual variable (e.g.,

eather, traffic conditions, day of the year) reaches a critical value,

ausing changes in the variable of interest (e.g., connection dura-

ion, distance traveled, node degree, clustering coefficient). These

ontextual tipping points, according to the definition of Lamber-

on et al. [25] , can represent symptoms of change in environmen-

al characteristics. Bakhshi et al. [26] discussed how weather con-

itions can influence people’s mood, retail sales, the stock mar-

et, among others. The authors argued that many of the effects

een in online communities can be explained using offline the-

ries from experimental psychology. Results showed that during

isits to restaurants, user experiences varied according to weather

onditions, which also influenced customers’online reviews. Simi-

arly, Bannur et al. [27] studied social media check-in data from

he user’s perspective, investigating seasonal polarity of check-ins

n different regions of the United States. Results showed the sea-

onal behavior of check-ins for specific categories of venues during

he 12 months of 2013 by quantifying the popularity of movies,

estaurants, shopping locations, etc., on different days of the week

nd different months. In addition to seasonal variation in visits,

he results showed that ranking of the most popular venues var-

ed during the year. 

Considering an urban scenario and social media traces, Cho

t al. [28] showed that humans experience a combination of

trong, short-range spatially and temporally periodic movement,

hich is not impacted by the social network structure. Their work

howed that, by investigating the Brightkite and Gowalla LBSNs,
Please cite this article as: K. Machado et al., Pervasive forwarding me
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ocial relationships can explain about 10%–30% of all human move-

ent, while periodic behavior can explain 50%–70%. 

The state of the art of both topics, socially-inspired protocols

nd social media data mining, classified urban scenarios as dy-

amic systems and pointed to the influence of social aspects and

xogenous variables. Most of the performance evaluations carried

y recent studies considered real mobility traces, but the data an-

lyzed represented only a few hundred users, small sets of com-

unities or limited geographic areas, such as universities or con-

erence centers [29–31] . Moreover, existing socially-aware studies

ave implemented mechanisms based on the history of encounters

egardless of their fluctuations and characteristics, which have the

otential to deteriorate communication network performance. For

his reason, the design of socially-aware forwarding mechanisms

ith the ability of adapting to different network configurations is

 recent challenge, in which prediction of critical points of change

an support the pervasive mechanisms in improving the perfor-

ance in MSNs. 

. Trace-based analysis 

In this section, we describe the real data used in simulations,

s well as the methodology used to combine weather and social

edia data. Many papers have explored social media applications

o simulate large urban scenarios and investigate their dynam-

cs [7,32,33] . On the face of it, we reinforce the use of real data in

ur experiments, because environmental conditions are complex to

imulate, and their effects on the behavior of users are better ob-

erved in situ [34] . 

.1. Data description 

Many geolocalized data samples about daily life in urban envi-

onments are available through urban streams [6] , and can be com-

ined as layers of information [3] . Each geolocalized record rep-

esents an event limited by a temporal window and spatial area,

uch as sensing samples of mobility, content interest, venue popu-

arity, etc. We used public data sources in a combined approach to

nalyze the spatial distribution of users, and encounters between

hem, in different environmental configurations. 

The data collected comprises geolocated data samples of

eather conditions and human mobility limited to Manhattan in

ew York City (NYC) from February to August 2015. The traces of

uman mobility were built using data from social media applica-

ions, specifically geolocalized photos on Instagram 

1 and check-ins

n Foursquare 2 , resulting in a dataset of 1.3 million samples. 

By using social media applications as data sources, we obtained

eal data about venues, users, and encounter routines. Thus, in

his work, our simulations consider commutes between real loca-

ions, a large number of users with distinct behavior, and areas

ith time-sensitive agglomerations. According to public data col-

ected from those data sources, we defined a data sample from

ocial media as a 3-tuple s m 

= < u, p, t >, where u represents an

ser u i ∈ U, t is the timestamp of the sample, and p is the u i ’s

osition defined by latitude and longitude coordinates. In addi-

ion, we defined the path traveled by u i within a time window as

 

ts 
i 

= { s m 1 , s m 2 , . . . , s mk } . 
Weather conditions were collected from the National Weather

ervice (NWS) and public stations via the Weather Underground 

3 

ervice. The service provides data about weather variables with a

ensing frequency of up to 60 mi of interval, obtained from 54

eather stations in the area of interest. Weather data samples are
chanism for mobile social networks, Computer Networks (2016), 

http://www.instagram.com
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Fig. 1. Temperature average for the selected time series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Patterns of check-ins and photos during the seasons (time series tempera- 

ture). 

Fig. 3. Principal component analysis of venues’popularity according to temperature. 

 

t  
defined as a 3-tuple w = < t p , p, t >, where t p is the temperature

measured in degrees Celsius, p is the position of the weather sta-

tion, and t is the sample timestamp. The weather conditions of a

simulated time series are summarized according to the average of

all temperature measures during the selected time window, and

classified according to variance. 

Using this model, we defined each trace as T = < U t , t p , �t >,

where U t is a set of u ts 
i 

, t p is the average of temperature measures,

and �t is the time window of analysis. The set of traces comprises

15 independent time series grouped into seven days, starting on

Monday and ending on Sunday, which are subsets of collected data

and selected according to the absence of holidays and low variance

of temperature. By using this methodology, we defined classes of

temperature grouped by intervals of 5 °C, as shown in Fig. 1 . 

The collected data refers to the period previously mentioned,

and is limited by the bounding box of Manhattan defined by ge-

ographic coordinates 4 . The social media data samples were col-

lected using the Twitter Stream API 5 , and represent data samples

obtained at the moment of its online publication, and originally

published by mentioned applications; in other words, the samples

are collected in real-time and limited to the Foursquare and Insta-

gram applications. The weather data samples are limited accord-

ing to the geographic position of the weather stations, and are ob-

tained using public API of Weather Underground, which provides

queries based on geolocation and date. 

3.2. Data combination 

Fig. 2 shows the time series of visits for two Points of Interest

(POI) in NYC: Central Park (CP) and Times Square (TS). The data

represents the normalized average number of visits 6 during daily

hours in different seasons and weather conditions. Both places

present similar peaks of popularity during the night, but more than

one peak occurs in the summer season, specifically at CP, where

two similar peaks were registered and did not occur with the same

intensity during winter and spring. The difference seen in these

time series illustrates how visiting patterns can be influenced by

thermal and temporal variations. Note that even popular venues,

which can attract crowds any day of the year (such as in well-

known POIs), present fluctuations characterized by environmental

variables and seasonality. 
4 The guidelines for data collection, as well as tools used and their parameters, 

are available on http://homepages.dcc.ufmg.br/ ∼kassiolsm/comnet . 
5 Application Programming Interface available online on https://dev.twitter.com/ 

streaming/overview . 
6 normalized by the max of individual time series. 
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In order to verify whether there are significant differences in

he activities done in NYC when the weather changes, we cre-

ted a m × n matrix M that represents the places people visit in

YC at different temperatures. Each row i ∈ { 1 , 2 , . . . , m } of M is

 5 °C temperature range, and each column j ∈ { 1 , 2 , . . . , n } is

he average amount of data samples in place p j when the tem-

erature was in the range defined by row i . Thus, Fig. 3 shows

he Principal Component Analysis (PCA) for matrix M , that is, each
chanism for mobile social networks, Computer Networks (2016), 
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Fig. 4. Popular venues in New York City in different phases. 
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oint in the graph is a 5 °C temperature range, and the horizontal

nd vertical axes represent the first and second principal compo-

ents of M according to PCA, respectively. The first two compo-

ents can explain 74% of the variance seen in the data. The results

resented distinct values for the set of temperatures observed, i.e.,

enue popularity in NYC varies according to the local tempera-

ure. The first component (on the horizontal axis) shows the differ-

nce between cold and hot temperatures, while the second com-

onent (on the vertical axis) apparently measures temperature ex-

remes. Based on these observations, we modeled the popularity of

enues in three phases: negative, transition , and positive . Wherein

he negative phase comprises time series with average tempera-

ures lower than 0 °C; the transition phase includes time series

ith average temperatures between 0 °C and 10 °C; and the pos-

tive comprises time series with average temperatures greater than

0 °C. 

Fig. 4 shows the analysis of geolocalized data samples, accord-

ng to the three phases defined in the PCA. The circles represent

opular venues in the area of interest, and the size of the circle

epresents popularity according to the average daily number of vis-

ts (for better visualization, we maintained a limit of only 150 of

he most popular venues). The results show a variation in popular-

ty during the phases, with new venues observed only in specific

hases. For example, during the phase negative , three POIs with

imilar levels of popularity close to Central Park are observable in

he North, but their popularity changes during the transition and

ositive phases. A similar situation was registered with the Brook-

yn Bridge on the South, where at least three POIs were observable

n the positive phase. 

Fig. 5 presents the entropy matrices, grouped according to the

hases defined in PCA. Each element of the matrix represents the

ntropy calculated using i ∈ { 1 , 2 , . . . , n } that represents the num-

er of data samples at a place p i observed in intervals of two

ours, and according to the days of the week. Entropy values are

elated to the total number of check-ins observed, where low val-

es indicate few opportunities for encounters between users due

o sparse check-ins and their spatial distribution. Hours with lower

ntropy values occur in periods outside regular business hours in
Please cite this article as: K. Machado et al., Pervasive forwarding me

http://dx.doi.org/10.1016/j.comnet.2016.08.022 
he transition and positive phases. Entropy begins increasing at 8 h

nd decreasing at 0 h during the weekdays, a consequence of the

outine behavior of the citizens of NYC. The entropy values show

ritical hours; they are time windows with low mobility, capable

f negatively impacting opportunistic communication performance.

he phases emphasize the distinct patterns of critical hours, show-

ng the fluctuation of spatial distribution and mutable characteris-

ics of the critical hours set. Few users keep moving according to

heir particular features; therefore, forwarding mechanisms should

ay attention to nodes with high mobility for improving the net-

ork performance in critical hours. It is important to note that

everal particular situations and variables can influence the spa-

ial distribution of people, such as holidays, musical events, traf-

c jams, and weather conditions. In particular, weather conditions

uch as snow, rain or severe temperatures can influence personal

references and urban mobility in the form of traffic jams, inclina-

ion to indoor places, and increased demands on public transporta-

ion. 

. PervasivePeopleRank 

In this section, we present the PervasivePeopleRank (PPR), an al-

orithm designed for forwarding messages in MSN applications,

hich selects relay nodes based on information about users and

he environment. 

The PPR extends the previous protocol PeopleRank (PeR) pro-

osed by Mtibaa et al. [15] , which ranks the nodes according to

heir social links. When an encounter between two nodes N i and

 j occurs, the algorithm calculates the individual PeR value using

he following equation: 

 eR (N i ) = (1 − d) + d 
∑ 

N x ∈ F i 

P eR (N x ) 

| F x | (1)

Eq. 1 describes the PeR computation performed on both nodes,

here F i is the set of neighbors connecting to N i (social links) and

 is a damping factor defined as the probability, at any encounter,

hat the social link between nodes improves the rank of the nodes

nvolved. The damping factor (0 < d ≤ 1) controls the weight given
chanism for mobile social networks, Computer Networks (2016), 
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Fig. 5. Entropy average of encounters grouped by phases. 
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to the social links on the forwarding decision. The PeR value is

the metric used for replicating and sending messages towards the

central nodes of the network, which have a higher probability of

knowing the destination node. 

Originally, the social links used in the metric are collected from

social media applications. Therefore, the metric eventually requires

connection to the Internet or a server capable of providing the

users’social graph. Meanwhile, we adapt the protocol to compute

the social links using nearby devices close enough to connect di-

rectly. The PeR protocol represents a feasible alternative to large

scenarios, with a lack of infrastructure and susceptibility to vari-

able features. PeR provides customization of the impact of social

links using the damping factor, which provides the adaptability to

work in scenarios without additional resources (remote servers and

Internet) and the low complexity to compute the main metric PeR

in distributed form. 

The PPR considers seasonal and thermal aspects due to their

effects on mobility preferences and node connectivity, taking into

account the date, hour and temperature. Algorithm 1 shows the

PPR forward decision, in which nodes N i and N j share their PeR

values and the size of their respective sets of social links. The two

nodes then update their PeR values and replicate messages, if N j 

has a greater PeR j value than PeR i or the node destination is known

by N j . 

Algorithm 1: PervasivePeopleRank Algorithm 

1 P eR i ← P eR (N i ) ; 

2 P eR j ← send(P eR i ) ; 

3 F j ← send(F i ) ; 

4 P eR i ← update (P eR j , F j ) ; 

5 for m ∈ buffer(i) do 

6 if P eR j ≥ P eR i OR destination(m) ∈ F j then 

7 forward( N j , m) ; 

8 else 

9 �M j ← send(�M i ) ; 

10 if critical(hour) AND �M j ≤ �M i then 

11 forward-ephemeral( N j , m) ; 

The case of PeR j < PeR i , PPR applies a time-dependent mecha-

nism which evaluates two features: 

• environmental: PPR evaluates whether the current hour is a

critical hour of encounters employing the entropy matrices. In

our experiments, we defined a critical hour as one that demon-

strates lower entropy than the daily average. 

• node mobility: the algorithm also evaluates the �M i , which is

the daily average of time intervals between mobility events of

the node N i . 

We assume the nodes are capable of storing the entropy matri-

ces and the social links locally. The data can be stored in key-value
Please cite this article as: K. Machado et al., Pervasive forwarding me
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ata structures indexed by phases, day of the weeks and time of

ay the case of the matrices and by the id of user in case of social

inks. To mitigate the storage cost of social links and the impact of

ncounters with a single occurrence, we assume that each social

ink has a lifetime of τ hours. The τ defines the maximum interval

etween two consecutive meetings of two random users; if the en-

ounter does not happen again before the deadline, the social link

s removed. Otherwise, the deadline is renewed. 

The environmental and node mobility features are evaluated to

ope with hours of low ratio of encounters. Thereby, we assume

hat in addition to the capability of knowing the day and hour, all

odes are equipped with sensors or other resources for measuring

emperature and mobility events. Obtaining the time and calen-

ar information are trivial tasks for modern personal devices. Ad-

itionally, these devices have sensors for temperature, luminosity,

edometer, accelerometer, etc., capable of acquiring data about the

nvironment and users’activities, such as weather conditions, walk-

ng, and cycling. Therefore, we point out that mobility events can

e obtained using alternatives to GPS (Global Positioning System).

hus, the PPR does not enable forwarding based on geographic lo-

ation; it mitigates privacy issues using the size of the social links

et (not the identity of social links) and the time registered for

obility events, instead of users’geographic coordinates. 

Urban scenarios can provide a large number of users with dif-

erent patterns of mobility. The PPR exploits this feature during

ritical hours, creating ephemeral copies of messages, a kind of

eplica forwarded to nodes with lower PeR and higher mobility

 �M j > �M i ). Messages flagged as ephemeral are forwarded nor-

ally, nevertheless with TTL = min ( T m 

, H n ), where T m 

is the orig-

nal TTL of the message and H n the end of the critical hour. 

. Performance evaluation 

In this section, we present the network model used for simulat-

ng the opportunistic communications, the connectivity graph, and

he network performance of the PervasivePeopleRank algorithm. 

.1. Network model 

Node mobility is determined according to the definition given

n Section 3.1 . Thereby, given two data samples s mi and s mj ∈ T ,

he settings of opportunistic communication experiments consider

n encounter and network connection event between users u i and

 j when: 

• the distance dt ≤ DT range between positions p i and p j ; 

• the contact interval c ij ≤ C time between time stamps t i and t j ; 

where the DT range is the distance threshold, defined as 50 m

usually reached by Bluetooth or WiFi Direct technologies), and in-

erval C time was experienced as a parameter that varied between

 mi and one hour. The encounters are formally described as a

etwork contact graph G ( V, E ), in which the stochastic process of
chanism for mobile social networks, Computer Networks (2016), 
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Table 1 

Values for the simulation parameters. 

Parameter Value 

Network Contact interval 

( C time ) 

5, 30 and 60 min 

communication range 50 m 

area 25 .15 x 24.01 km 

# of nodes 12 ,854 ≤ n ≤ 18,315 

Message creation Each data sample 

and random 

n ≤ C time minutes 

Spray and Wait (S&W) Replicas ( λ) 10 0 0 

Expected Encounter 

Routing (EER) 

Replicas ( λ) 10 0 0 

Re-encounter time 

frame 

48 h 

PeopleRank (PeR) Damping factor ( d ) 0 .8 

PervasivePeoplerank (PPR) Damping factor ( d ) 0 .8 

Social link lifetime 

( τ ) 

48 h 

dLife Re-encounter time 

frame 

48 h 
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Fig. 6. Contact graphs. 

Fig. 7. Distribution of short path. 

5

 

o  

w  

E  

d  

a  
ncounter between two nodes i, j ∈ V is modeled as an edge e ( i,

 ) ∈ E . We assume that the network contact graph is undirected,

herefore node i contacts j whenever j contacts i . 

The simulation parameters are described in Table 1 . The fixed

umber of replicas used in EER and S&W simulations is enough to

ompare with related work, as shown in Section 5.3 . The damping

actor used by PeR and PPR are defined as shown in [15,24] to pro-

ide significant relevance to social links. The lifetime of social links

efined by τ and the re-encounter time frame were defined con-

idering time series used in simulations composed of seven days. 

.2. Contact graph analysis 

The network analysis takes into account the contact graphs G ct 

ormed during the trace-based simulations, and the observed envi-

onmental temperatures. The graphs are grouped into 4 configura-

ions of C time . Fig. 6 a shows the size of the giant component of the

ontact graph for simulations of different durations and tempera-

ures. Observe that the size of the giant component, when tem-

eratures are inside the transition phase, is reduced by up to 19.1%

hen compared to other phases. The differences in size are no-

iceable in simulations with C time of 5 and 15 min, which repre-

ent 10.1% and 28.3% of all observed encounters in the dataset, re-

pectively. Additionally, results show that C time equal to 15 min is

nough to connect more than half of the nodes in the giant com-

onent for most scenarios. 

Fig. 6 b shows the average degree of nodes, according to con-

act graphs and C time configurations. The results showed that the

emperature shift from -5 °C to 0 °C signals the most significant

hanges in the network structure, where the degree of nodes de-

reases by an average of 32.2%. Fig. 7 shows the Complementary

umulative Distribution (CCDF) of the shortest path between any i

nd j ∈ G ct using C time as 60 min. The changes in graph structure

re characterized by the specific range of temperatures defined in

he transition phase. The metrics showed the positive and negative

hases as well connected, which provide efficient communication;

owever, the temperatures of the transition phase indicated sparse

onnectivity and longer paths. Thus, adaptive approaches to for-

arding mechanisms are required to deal with the variations of

he network structure, in addition, the environment can character-

ze the changes and provide early-warnings signals [35] . 
Please cite this article as: K. Machado et al., Pervasive forwarding me
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.3. Network performance 

To evaluate the effects of environment and human behavior

n MSN applications and on the proposed forwarding mechanism,

e compared PervasivePeopleRank (PPR) with 5 other mechanisms:

ER [17] , PeopleRank [15] (PeR), Spray-and-Wait (S&W) [13] ,

Life [20] , and Epidemic. The opportunistic communication results

re presented with a confidence interval of 95% in terms of deliv-
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Fig. 8. Delivery ratio and average cost according to temperature variation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Average of hops and CCDF of latency. 
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ery probability (ratio between the number of delivered messages

and the number of messages that should be delivered), delay (time

elapsed between message creation and delivery), cost (amount of

replicas available in the network at the moment of delivery) and

hops. The network traffic is generated based on time and mobil-

ity. The messages are created for random destinations in two mo-

ments: when a node publishes a new data sample (usually chang-

ing its position), and after random n minutes since the last pub-

lished data sample, where n ≤ C time . 

In regards to node buffers, the default TTL of messages is 72 h

to attend the usual sparsity nature of opportunistic networks. In

addition, we defined messages as generic packets independent of

content to focus on message diffusion. Each message represents a

unit on buffer, with a capacity for 10 0 0 unique messages. Figs. 8

and 9 present the simulation results using C time as 60 min and λ
as 10 0 0 replicas. The delivery results in Fig. 8 a show decreasing

performance in temperatures inside of the transition phase. Nev-

ertheless, PPR algorithm delivered at least 57.8% more messages

than the remaining related protocols for the same phase. In the

simulations with temperatures corresponding to the positive phase,

the improvement is 69%. Messages delivered during critical hours

of encounters increased 48.2% using PPR. The average number of

replicas presented in Fig. 8 b shows the constant value for proto-

cols EER and S&W, which are based on the replica limit λ. The

increased number of replicas at higher temperatures using PPR oc-

curs as a result of the higher number of contacts provided through
Please cite this article as: K. Machado et al., Pervasive forwarding me
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obility. The average interval between mobility events �M n de-

reases by 11.7% in these temperatures. 

Fig. 9 shows the average number of hops and the CCDF of la-

ency. With respect to these results, it is worth emphasizing that

imulations of urban areas, such as NYC, can provide a large num-

er of single encounters (in other words, encounters with just one

ccurrence). In addition, these application scenarios provide sub-

ets of nodes with few connections or low mobility, that is, nodes

alking in small sub-areas or visiting unpopular places. Nodes

ith these features are accessible mainly through long paths or

pecific nodes, such as bridge nodes, responsible for connecting

ifferent communities and areas [20] . For this reason, Epidemic

ith the simple flood technique provides the best performance of

elivery ratio and high average of hops. Actually, the related proto-

ols select relay nodes primarily considering centrality and social

spects, in an attempt to use short paths and lower delay. How-

ver, in large geographic areas these approaches limit the num-

er of feasible encounters to message transfer to a set of low-

requency events, and negatively affect delivery. That is, the re-

ated protocols quickly reach the well-connected nodes ( Fig. 9 a);

onetheless, the messages are replicated or forwarded to another

ode with higher centrality, another node that had previously met

he destination, or directly to the destination. In case of few con-

ected destinations or low relay node mobility, more time may be

equired before a more suitable candidate for relaying the node is

ncountered, or a node from the destination social group is found.
chanism for mobile social networks, Computer Networks (2016), 
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Fig. 10. Delivery ratio considering different C time . 
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dLife and PeR use 85.8% fewer replicas because the messages

re usually forwarded to the high centrality nodes, but the infre-

uent encounters with feasible relay nodes, according to their re-

pective decision mechanisms, stops the diffusion. Hence, the de-

ivery rate is 76.4% less than PPR. The greedy approach of PPR

eaches distant nodes and improves the delivery ratio, but natu-

ally increases the overall number of hops. Nevertheless, PPR de-

ivers 20.1% more messages using 15% fewer replicas than EER and

&W. 

Fig. 10 presents the delivery results, using C time as 30 and

 min, and the performance is proportionately similar. Observe

hat the delivery rate in these scenarios decreases as temperatures

all in the transition phase. Nevertheless, the delivery rate using the

roposed protocol is 54.4% and 47.9% better than related proposals

n these scenarios, respectively. Considering all scenarios, the de-

ivery rate is improved by at least 54.1% and 61.4%. 

. Conclusion 

In this paper, we investigated the seasonal patterns of urban

obility and their features facing thermal variation. Our obser-

ations indicated some effects of spatiotemporal features in hu-

an mobility and encounters in a MSN application. The social

edia data used in our investigation presented a fluctuation in

enue popularity and of probable encounters between peers. Re-

ults showed that temperature can explain 74% of the variance in
Please cite this article as: K. Machado et al., Pervasive forwarding me

http://dx.doi.org/10.1016/j.comnet.2016.08.022 
he popularity of venues. Moreover, we showed that distinct pat-

erns of encounters can be characterized by 3 ranges of tempera-

ures. The changes in environmental variables provided the identi-

cation of distinguished behaviors observable by the spatial distri-

ution of users, an important feature for the design of message for-

arding mechanisms for people-centric approaches and large geo-

raphic areas. 

In addition, we used the spatiotemporal insights to propose the

ervasivePeopleRank , a cyber-physical message forwarding mecha-

ism for Mobile Social Networks. The mechanism improves deliv-

ry by an average of 57.8% by distributing multiple replicas of mes-

ages according to node centrality, mobility and seasonal aspects. 

Finally, our results indicate that environmental factors can char-

cterize the state of the network, providing insights about the dy-

amism of urban scenarios. Specifically, temperature was shown

o be a relevant feature in assisting the forwarding decision pro-

ess for networks based on physical proximity and susceptible to

uman behavior. 
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