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a b s t r a c t 

Cloud-based big data platforms are being widely adopted in industry, due to their advantages of fa- 

cilitating the implementation of big data processing and enabling elastic service frameworks. With the 

widespread adoption of cloud-based MapReduce frameworks, a series of solutions have been proposed to 

improve the performance of big data services over cloud. The majority of the existing studies concentrate 

on optimizing the task scheduling or resource provisioning mechanisms, to improve the data processing 

rate or data transmission rate of the platform separately, without an overall consideration of both the 

performance factors. Moreover, these studies seldom consider the impact of virtual network topologies 

on the performance of the cloud-based MapReduce workflows. The purpose of this work is to optimize 

the topologies of virtual networks used in cloud-based MapReduce frameworks. We formulate both the 

data transmission and data processing overhead of a specific cloud-based big data application, describe 

the optimal deployment of virtual networks as an optimization problem and then design algorithms to 

solve this problem. Experimental results show that our topology optimization mechanism improves the 

overall performance of cloud-based big data applications effectively. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the immense proliferation of cloud-based data intensive

applications, rapid and efficient processing of large-scale datasets

generated by cloud platforms has become a challenge. To address

this problem, some large enterprises have deployed big data pro-

cessing services on their cloud platforms, such as Google’s Big-

Query [1] , Amazon’s EMR [2] , etc. The flexible virtual resources,

as the fundamental advantage of cloud platforms, make the cloud-

based big data applications more scalable and cost effective, by

implementing an elastic service framework and enabling a pay-as-

you-go manner to the users [3] . Moreover, these cloud-based big

data platforms make it practical for smaller enterprises to access

massive computing resources for short, semi-predictable time peri-

ods without having to deploy and manage their own big data plat-

forms [4] . 

As one of the most widely used big data processing frame-

works, MapReduce/Hadoop [5,6] has been adopted extensively in
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loud-based big data systems. Correspondingly, optimizing these

loud-based MapReduce frameworks has attracted increasing at-

ention and a series of solutions have been proposed to improve

he performance of the MapReduce operations. However, the ma-

ority of these studies focused on optimizing the scheduling mech-

nisms of MapReduce jobs or tasks in local environment [7–12] ,

nly a few studies discussed the impact of cloud environment on

apReduce workflows. 

The two dominant factors that affect the performance of a

apReduce workflow are data transmission latency between Vir-

ual Machines (VMs) and data processing rate of a specific VM. To

he best of our knowledge, the existing cloud platform optimiza-

ion mechanisms concentrate on optimizing each performance fac-

or (data transmission latency or data processing rate) separately,

hile they seldom take an overall consideration of both the per-

ormance factors. When considering the optimization of data pro-

essing rate, the researchers focus on analyzing the impact of cloud

nvironment on the performance of each VM, and optimizing the

rovisioning or placement of VMs in a cloud platform [3, 13, 14] ;

hile they hardly address the optimization of data transmission la-

ency. Similarly, the data processing rate of each VM is also omit-

ed in the existing data transmission latency optimization mecha-

isms [16, 19] . Moreover, different from the traditional MapReduce
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O  
ramework, the data transmission latency of a cloud-based MapRe-

uce workflow is determined not only by the physical network

opology, but also by the topologies of virtual networks in a cloud

latform: after transmitted to an end node of a physical network

a server), a data chunk will suffer an additional transmission delay

n virtual networks to reach its destination slave (a VM). The ex-

sting data transmission latency optimization mechanisms, which

nly minimize data transmission time in physical networks, are

ot applicable to cloud-based MapReduce frameworks since they

eglect the transmission time spent in virtual networks. 

This paper focuses on optimizing the topologies of virtual net-

orks in data centers to improve the overall performance of cloud-

ased MapReduce frameworks. We deploy a MapReduce frame-

ork which is based on our cloud platform built using open source

oftware OpenStack Havana [20] , and analyze the detailed oper-

ting procedure of a cloud-based MapReduce workflow. To eval-

ate the performance of a cloud-based MapReduce framework, we

resent a performance model that precisely capture the expected

ata transmission latency and data processing rate in the Map and

educe operations. Based on the modeling results, we further pro-

ose an optimization model and corresponding algorithms to de-

ermine the optimal topologies of virtual networks embedded in

hysical cloud platforms. Our focus is to strike the right balance

etween data transmission latency and data processing rate to im-

rove the overall performance of cloud-based MapReduce work-

ows. 

The main contributions of this paper are as follows: 

• We propose a novel mechanism that considers the optimization

of both the data transmission latency and data processing rate,

and strikes the right balance between the two performance fac-

tors. 

• We optimize the topologies of virtual networks embedded in

physical data centers, which can be considered as an extension

of the existing data transmission latency optimization mecha-

nisms. 

• We take the first step towards providing optimal deployment

mechanism of multi-host virtual networks based on OpenStack

Neutron (of releases Grizzly and Havana). 

The rest of this paper is organized as follows. Section 2 sum-

arizes the existing performance optimization mechanisms of

apReduce frameworks, and introduces multi-host based virtual

etworks built using OpenStack software. Section 3 studies the

etailed operating procedure of a cloud-based MapReduce work-

ow and puts forward a performance model to formulate the data

ransmission and data processing latency. Section 4 proposes an

ptimization model to describe the topology optimization problem,

nd designs a novel mechanism TOMON to determine the optimal

irtual network topology based on the modeling results. Section

 evaluates our topology optimization mechanism in simulation

nvironment as well as in a real cloud computing platform. Section

 concludes the paper and gives directions for our future work. 

. Related work 

.1. Performance optimization of MapReduce workflows 

Improving the performance of MapReduce applications has

een attracting the attentions of researchers. The majority of the

xisting studies focus on optimizing the scheduling mechanisms

f MapReduce jobs or tasks. M. Zaharia et al. [7] present an im-

roved task scheduling scheme, LATE, which reduces the applica-

ion completion time by executing tasks that will finish farthest

nto the future. H. Chang et al. [8] devise approximation algorithms

hich generate feasible schedules of MapReduce jobs, and keep a
ob’s completion time within a small constant factor of the spec-

lative optimal value. F. Chen et al. [9] delve into task level and

evelop constant factor approximation algorithms for minimizing

he weighted task completion time. Network bottlenecks of the

apReduce clusters have also been considered in [10–12] , and ju-

icious task placement and scheduling methods have been pro-

osed to further improve the data transmission time of MapRe-

uce jobs. However, these solutions omit the impacts of cloud en-

ironment on the performance of MapReduce operations, which

re more applicable to big data applications in local environment. 

There are also a few researches which address the practical per-

ormance of MapReduce frameworks on cloud platforms. K. Kam-

atla et al. [13] compare resource consumption of different cloud-

ased applications, and optimize the configurations of cloud re-

ources for these applications. Y. Geng et al. [14] devise a model

o theoretically analyze data allocation problems in virtual envi-

onment, and design a location-aware file block allocation strategy

o retain the compatibility of cloud platforms with native Hadoop

rameworks. H. Herodotou et al. [21] analyze the impact of virtual

luster scale on the data processing rate of cloud applications, and

urther optimize the scale of virtual clusters to improve the per-

ormance of data-intensive cloud-based applications. Y. Yuan et al.

3] re-model the resource provisioning problem in cloud-based big

ata systems and present an interference-aware solution. Z. Zhang

t al. [22] focus on predicting the completion time of MapReduce

obs in heterogeneous environment. 

Different from the former studies, some researchers focus on

mproving the data transmission performance of cloud-based ap-

lications. M. Alicherry et al. [23] introduce “VM communica-

ion latency” as a new performance factor to the traditional re-

ource provisioning mechanisms, and put forward a novel network

ware resource provisioning mechanism. M. Li et al. [15] couple

he data placement, VM placement, and task placement to system-

tically improve data locality of cloud-based MapReduce applica-

ions. Novel VM placement and resource provisioning mechanisms

re proposed in [16–18] to improve the data transmission or pro-

essing latencies of cloud-based big data applications on the ba-

is of workloads. There are also some researches concentrating on

tudying the “Virtual Network Embedding (VNE)” problem: M. Yu

t al. [24] design greedy embedding policy to embed VMs to the

hysical server with the lightest load first; X. Cheng et al. [25] and

. Zhang et al. [26] design “topology-aware” virtual network em-

edding mechanisms to improve the communication performance

f virtual clusters; J. Lu et al. [27] concentrate on embedding vir-

ual networks of backbone-star topologies into physical clusters; L.

ong et al. [28] propose a novel metric –global resource capac-

ty (GRC), to quantify the embedding potential of each substrate

ode, and propose an efficient heuristic virtual network embed-

ing (VNE) algorithm; I. Houidi et al. [29,30] propose distributed

irtual network embedding mechanisms to improve the scalability

f the traditional centralized embedding mechanisms. 

These studies optimize data processing or data transmission

erformance separately, without an overall consideration of both

he performance factors. 

.2. Multi-host virtual network based on OpenStack neutron 

OpenStack [20] has become one of the most widely used open

ources to build cloud platform, since it shows great advantages in

ayered architecture, SOA (Service Oriented Architecture), compo-

entization, openness, etc. Neutron is an OpenStack component to

rovide “networking as a service” between interface devices (e.g.,

NICs (Virtual Network Interface Cards)), which enables the estab-

ishment of virtual networks in physical data centers. 

Using the single-host based virtual network architecture in

penStack release Folsom, the communication agent (L3 agent,
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Fig. 1. Single-host and multi-host deployment of virtual networks using OpenStack neutron. 
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which enables the data transmission between VMs) must be de-

ployed on a single server (named network node). Thus, only cen-

tralized virtual network topology can be realized based on Open-

Stack Folsom as is shown in Fig. 1 A, and the performance and

availability of these virtual networks are affected by the perfor-

mance bottleneck and the SpoF (Single point of Failure) problem

of the single communication agent. 

To counteract the problems caused by single-host virtual net-

works, multi-host deployment of communication agents are en-

abled in the later OpenStack releases Grizzly and Havana. As

shown in Fig. 1 B, the additional network node is unnecessary in

multi-host based virtual networks, and the communication agents

can be deployed on any of the compute nodes. Therefore any com-

pute node can act as a network node, which improves the scalabil-

ity and performance of virtual networks. However, detailed virtual

network deployment mechanisms have not been provided in the

latest releases of OpenStack, and our research takes the first step

towards providing optimal deployment mechanism of multi-host

virtual networks based on OpenStack Neutron. 

3. Performance evaluation of cloud-based MapReduce 

workflows 

In this section, we present the detailed operating procedure of a

cloud-based MapReduce application in a multi-host virtual cluster,

and propose a corresponding model to formulate the performance

of the cloud-based MapReduce framework. Some important nota-

tions and definitions used in the model are illustrated in Table 1 .

For analytic tractability, we assume that the physical cloud plat-

form satisfies centralized architecture, and our focus is to optimize

the topologies of the overlying virtual networks. 

3.1. Baseline experiment 

To accurately capture the performance of a cloud-based MapRe-

duce workflow, firstly we need to analyze the impact of cloud en-

vironment on the data processing rate and data transmission la-

tency. Fig. 2 A and B show the impact of server load and VM lo-

cation on VMs’ data processing and communication performance

respectively. 
First, we analyze the impact of server load on VMs’ data pro-

essing performance. We gradually increase the number of co-

ocated VMs on the same server while processing the same in-

ut data, and record the average data processing rate of these co-

ocated VMs in different scenarios. We can see from Fig. 2 A that

he average data processing rate of the co-located VMs shows a

inear decline as the server load increases, which is consistent with

he result shown in [7] . Moreover, if the VMs co-locate with a com-

unication agent (L3 agent in our experiment), they will suffer

erformance degradation at a constant rate. Performance function

f VM j on server i can be approximately expressed as: 

i j = 

[
μ0 − μ0 

n 

max 
i 

+ 1 

( n i − 1) 

]
· [1 − x i (1 − γ )] (1)

As is shown in Fig. 2 A, our performance function accurately de-

cribes the changing trend of average data processing rate, which

an be used in the following performance model. 

Next, we analyze the impacts of VM locations and virtual net-

ork topologies on the data transmission rate between VMs. Fig.

 B shows the data transmission latencies between two VMs at dif-

erent locations, under different virtual network topologies. Similar

o the result shown in [23] , we find that the communication over-

ead between co-located VMs can be neglected compared with

Ms located on different servers. Thus, to improve the overall com-

unication performance of a virtual cluster, an optimal deploy-

ent mechanism should avoid cross-server data transmissions. 

Comparing the results shown in Fig. 2 A and B, we find that con-

icts exist for optimizing the two performance factors (data trans-

ission latency and data processing rate): according to Fig. 2 A, to

aximize the data processing rate of each VM, the optimal deploy-

ent mechanism should allocate VMs on different servers to re-

uce the amount of co-located VMs; however, according to Fig. 2 B,

o minimize the total data transmission latency, the VMs should

e placed closely to each other to reduce the cross-server com-

unications, which is a worst deployment mechanism to optimize

he data processing performance according to Fig. 2 A. Therefore, a

ovel mechanism is needed to strike the right balance between the

wo performance factors, and to improve the overall performance

f cloud-based MapReduce applications. 
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Table 1 

Summary of key notations and definitions. 

Notations Definitions 

N Total number of avaiable VMs in a cloud platform 

m Total number of available physical servers 

n i Number of available VMs on server i 

n max 
i 

Maximum number of VMs can be co-located on server i 

S Expected total size of input big data during a fixed time period 

B Average data transmission rate between any two servers 

t map 
i j 

Execution latency of VM j located on server i in map phase 

t reduce 
i j 

Execution latency of VM j located on server i in reduce phase 

x i Binary variable, set to 1 if an agent is deployed on server i , set to 0 otherwise 

μ0 Average data processing rate of a VM at empty load 

γ Average performance degradation rate of a VM, when co-located with a communication agent on a server 

μij Average data processing rate of VM j located on server i 

s ij Total size of data chunks allocated to VM j located on server i during a fixed time period 

n r Total number of selected reducers 

S r Average size of intermediate results generated on a VM after map phase 

k Total number of deployed communication agents 

l ( i ) Physical location of agent i 

V ( i ) Set of VMs assigned to agent located on server i 

A ij Agent responsible for the communication of VM j located on server i 

N a Total number of VMs co-located with communication agents 

Fig. 2. Impact of cloud environment on VMs’ data processing and communication performance. 
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.2. Performance model for the map phase 

In the map phase, the input data is split into small chunks and

ssigned to the mappers (VMs located on servers) for processing.

he mappers read the data chunks and produce intermediate re-

ults. Fig. 3 describes the detailed operation procedure of the map

hase in a multi-host virtual network based on OpenStack Neutron.

The procedure of the map operation can be divided into three

ub-phases: 

• The input data is split into small chunks and assigned to the

communication agents (L3 agent in our scenario). 

• Communication agents forward the small data chunks to the

destination VMs. 

• VMs (mappers) process the data blocks and produce intermedi-

ate results. 

Thus the execution latency of VM j located on server i in the

ap phase can be expressed as: 

 

map 
i j 

= t assign 
i j 

+ t f orward 
i j 

+ t process 
i j 

(2)
The time spent in the assignment sub-phase is determined by

he size of input data and the data transmission latency of each

erver. Assume the total size of the input data is S during a fixed

ime period in the steady state, then we get t 
as s ign 
i j 

= S/B . 

A VM’s data processing latency is determined by the total size

f data chunks forwarded to the VM and the VM’s data process-

ng rate. Under the most commonly used FIFO (first in first out)

ask scheduler, the total size of data chunks assigned to a VM is

roportional to the VM’s processing rate. Therefore, a VM’s data

rocessing latency in the map phase can be formulated as: 

 

process 
i j 

= s i j / μi j = 

( 

S · μi j 

/ m ∑ 

i =1 

n i ∑ 

j=1 

μi j 

) / 

μi j = S 

/ m ∑ 

i =1 

n i ∑ 

j=1 

μi j 

As aforementioned, an optimal virtual network topology should

inimize cross-server communications. In order to minimize

ross-server communications between VMs and agents, if a com-

unication agent is deployed on a server, all the co-located VMs

n the same server should be assigned to this agent. Thus, if a VM

s co-located with a communication agent on the same server, the

ata forwarding overhead of this VM can be neglected according
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Fig. 3. Operating procedure of map phase in a multi-host virtual network. 
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to the result shown in Fig. 2 B. Thus, the lower bound of the trans-

mission overhead is determined by the total size of data chunks in

cross-server transmissions. So, we get: 

 

f orward 
i j 

= (1 − x i ) ·
( 

V u v ∈ V ( A i j ) ∑ 

u, v 
s u v −

n l( A i j ) ∑ 

v =1 

s u v 

) 

/B 

Substituting the expressions t 
assign 
i j 

, t 
f orward 

i j 
and t 

process 
i j 

into ( 2 ),

we can calculate the total execution latency of a VM in the map

phase. Moreover, by adding the execution latency of each VM, we

get the overall performance of a cloud-based MapReduce cluster

with the scale of m servers, N VMs and k agents: 

T map 

total 
= 

m ∑ 

i =1 

n i ∑ 

j=1 

t map 
i j 

= N · S 

B 

+ 

∑ x i =0 
i 

∑ n i 
j=1 

μi j ∑ m 

i =1 

∑ n i 
j=1 

μi j 

· S 

kB 

+ 

NS ∑ m 

i =1 

∑ n i 
j=1 

μi j 

= N · S 

B 

+ 

S N a 

kBNγ
+ 

NS ∑ m 

i =1 

∑ n i 
j=1 

μi j 

(3)

3.3. Performance model for the reduce phase 

In the reduce phase, the MapReduce framework shuffles the in-

termediate data generated in the map phase and moves them to

the destination VMs (reducers) for processing. After that, the re-

ducers process the intermediate data and generate final results.

Detailed operating procedure of the reduce phase in a multi-host

virtual network is shown in Fig. 4. 

The data forwarding process in the reduce phase can be divided

into three steps: step 1, the mappers transmit the intermediate

data to their communication agents; step 2, all the communica-

tion agents forward their data to the destination agents which han-

dle the communications of reducers; step 3, the destination agents

transmit their data to the reducers for processing. 

Data transmission in each step can be an intra-server trans-

mission or a cross-server transmission, depending on the locations

of the source and destination VMs. Correspondingly, the transmis-

sion latency of a specific VM in the reduce phase has four possi-

ble values. For the best case, the source VM, destination VM and

their communication agents are co-located on the same server,

and the transmission latency is close to 0. For the worst case, the

source and destination VMs are located on different servers with-

out agents deployed, and handled by different agents, and then

they will have to suffer three cross-server transmissions. 
Correspondingly, the transmission latency from VM j located on

erver i , to reducer v located on server u can be formulated as: 

 

reduce 
i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

3 S r 
B 

i f A i j � = i and A u v � = u and l( A i j ) � = l( A u v ) 
2 S r 
B 

i f A i j � = i and A u v � = u and l( A i j ) = l( A u v ) 
or A i j = i and A u v � = u and l( A i j ) � = l( A u v ) 
or A i j � = i and A u v = u and l( A i j ) � = l( A u v ) 

S r 
B 

i f A i j � = i and A u v = u and l( A i j ) = l( A u v ) 
or A i j = i and A u v � = u and l( A i j ) = l( A u v ) 
or A i j = i and A u v = u and l( A i j ) � = l( A u v ) 

0 i f A i j = i and A u v = u and l( A i j ) = l( A u v ) 

(4)

Suppose the reducers are randomly selected among the existing

Ms, to get the accurate total execution latency, first we need to

alculate the expected number of communication agents that han-

le the communications of the reducers, and the expected number

f the reducers co-located with their agents. 

The total data transmission latency of step 1 is determined by

he number of VMs co-located with their communication agents,

ince these VMs need not to suffer additional cross-server com-

unications in step 1. Suppose the number of VMs co-located with

heir agents is N a , then the expression of N a is: 

 a = n l(1) + n l(2) + ... + n l(k ) 

The total data transmission latency of step 2 is determined by

he number of the reducers’ communication agents. These agents

re the destination agents of the transmissions. The probability of

ach one of the k agents to be chosen as the destination agent can

e calculated as: 

p = 1 − C (k −1) −1 

n r +(k −1) −1 
/C k −1 

n r + k −1 
= 

n r 

n r + k − 1 

Let k r be the number of the VMs co-located with the destina-

ion agents in step 2. Then, these VMs do not suffer the additional

ross-server communications in step 2. The expected value of k r is:

( k r ) = 

k ∑ 

i =1 

n l(i ) · p = 

n r N a 

n r + k − 1 

(5)

The total data transmission latency of step 3 is determined by

he number of the reducers co-located with their agents, as the

ransmission latency between these reducers and agents can be

eglected. Since the reducers are randomly selected, each reducer

as the probability N a / N to co-locate with its agent. We define n a 
s the number of the reducers co-located with their agents among
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Fig. 4. Operating procedure of reduce phase in a multi-host virtual network. 
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ll the n r reducers. The expected value of n a can be calculated as:

( n a ) = 

N a n r 

N 

(6) 

Combining ( 4 )–( 6 ), we can calculate the accurate execution la-

ency of each step. Furthermore, based on the inclusion-exclusion

rinciple, we get the total execution latency of all the reduce

asks: 

 

reduce 
total = 

m ∑ 

i =1 

n i ∑ 

j=1 

t reduce 
i j 

= 

(N − N a ) S r n r 

kB 

+ 

N S r 

B 

· (1 − N a 

N 

) n r 

+ 

[
N S r n r 

B 

− (N − N a ) S r 
kB 

· n r k 

n r + k − 1 

− N a S r n r 

B ( n r + k − 1) 

]

= 

[(2 k + 1) N − (k + 1) N a ] S r n r 

kB 

− (N − 2 N a ) S r n r 

B ( n r + k − 1) 
(7) 

Note that a MapReduce workflow will suffer an additional exe-

ution latency, waiting for the reducers to process the intermediate

ata and produce the final results. However, the communication

gents do not work in this sub-phase and hence the performance

f the reducers are not affected by the distribution of the agents,

hich means that the total execution latency of this sub-phase is

rrelevant to the virtual network topology. Therefore, we omit this

ub-phase in our performance model. 

. Topology optimization mechanism 

Based on the modeling results shown in Section 3 , we put

orward a virtual network topology optimization mechanism –

OMON (Topology Optimization Mechanism based on OpenStack

eutron) to improve the performance of cloud-based MapReduce

rameworks. TOMON is composed of three strategies, determining

he following factors in a data center respectively: 

• The optimal number of communication agents 

• The optimal placement of each communication agent 
• The optimal matching strategy between VMs and agents v
.1. Performance optimization model for cloud-based MapReduce 

orkflows 

The main purpose of our work is to optimize the performance

f MapReduce workflows. Specifically, we aim to minimize the to-

al task execution time as well as the time span of a specific

apReduce workflow. 

in T total = T map 

total 
+ T reduce 

total ∀ i ∈ [1 , m ] ∀ j ∈ [1 , n i ] 

 in T span = M ax 
(
t map 

i j 
+ t reduce 

i j 

) ∀ i ∈ [1 , m ] ∀ j ∈ [1 , n i ] 

Combining ( 3 ) and ( 7 ), ( 2 ) and ( 4 ), we get the expressions of

 total and T span respectively: 

 total = T map 

total 
+ T reduce 

total 

= 

NS 

B 

+ 

S ( N − γ N a ) ( N − N a ) 

kBNγ
+ 

N 

2 S 
m ∑ 

i =1 

n i ∑ 

j=1 

μi j [ N − ( 1 − γ ) N a ] 

+ 

[(2 k + 1) N − (k + 1) N a ] S r n r 

kB 

− (N − 2 N a ) S r n r 

B ( n r + k − 1) 
(8) 

 span = Max 
(
t map 

i j 
+ t reduce 

i j 

)
= 

S + 3 S r 

B 

+ S/ 

m ∑ 

i =1 

n i ∑ 

j=1 

μi j 

+ Max 

{ ( 

V u v ∈ V ( A i j ) ∑ 

u, v 
s u v −

n l( A i j ) ∑ 

v =1 

s u v 

) /
B 

} 

(9) 

Next, we gradually determine the values of the optimization

actors in TOMON by solving this optimization problem. 

.2. Optimal number of communication agents 

The optimal number of communication agents deployed in a

pecific cloud platform is determined by calculating the minimum

alue of ( 8 ): 
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{ ∂ T total 

∂k 
= 0 , 

∂ T total 

∂ N a 
= 0 

∂ 2 T total 

∂ k 2 
· ∂ 2 T total 

∂ N a 
2 −

(
∂ 2 T total 

∂ k∂ N a 

)2 

> 0 

⇒ k optimal = 

NS n r μ0 γ
| BS(1 −γ ) −( n r +1) N S r μ0 γ |

N 

optimal 
a = N + 

(k +1) N S r n r 
2 S 

+ 

kN S r n r 
2 S( n r + k −1) 

− kB (1 −γ ) 
2 μ0 γ

(10)

Thus, the optimal number of communication agents should be

[ k optimal ]. 

Note it is possible that value of k optimal exceeds m when

S � S r n r , and then the optimal agent number is N , which indi-

cates the scenario that the data transmission overhead is much

more than the data processing overhead as discussed in [31] ,

and the data transmission time may dominate the total execution

time. Thus, the topology optimization mechanism should deploy

as many agents as possible to maximize the platform’s communi-

cation performance. 

4.3. Optimal placement of each communication agent 

The optimal placement of each communication agent is also de-

termined by minimizing the value of ( 8 ). Once the number of the

communication agents ( k ) is determined, to minimize the total ex-

ecution latency, the number of VMs co-located with the k agents

should be as close to N 

optimal 
a as possible. Therefore, the optimal lo-

cations of the k agents L = { l (1), l (2), …, l ( k )} should satisfy: 

OP T (L ) = { l (1) ...l (k ) ∈ [1 , m ] | Min | n l(1) + n l(2) 

+ ... + n l(k ) − N 

optimal 
a |} 

The placement optimization problem can be viewed as an ex-

tension of the classical 0-1 Knapsack problem [32] . We design a

dynamic programming algorithm to determine the optimal loca-

tion of each communication agent, as shown in Algorithm 1 . 

The key recursive function of our algorithm is defined as fol-

lows: 

S(m, k, N a ) = 

{ 

S(m − 1 , k, N a ) i f | S(m − 1 , k, N a ) − N a | 
≤ | S(m − 1 , k − 1 , N a − n i ) + n m 

− N a | 
S (m − 1 , k − 1 , N a − n m 

) + n m 

else 

Suppose S ( m, k, N a ) is the value (amount of VMs) of the optimal

solution to the problem “Select k servers among all the m servers,

to make the amount of VMs allocated on the k servers as close to

N a as possible”, then the value of S ( m, k, N a ) can be calcutated by

solving two sub-problems: 

1. If server m is not included in the optimal location set of all the

communication agents (Set L ), then the k servers are selected

from the first m −1 servers (server 1 ∼ server m − 1). In this

case, the solution to the problem “Select k servers among all

the m servers, to make the amount of VMs allocated on the k

servers as close to N a as possible” is the same as the solution to

the sub-problem “Select k servers from server 1 ∼server m −1,

to make the amount of VMs allocated on the k servers as close

to N a as possible”. The value of S ( m, k, N a ) in this case can be

calculated as: S ( m, k, N a ) = S ( m −1, k, N a ). 

2. If server m is included in the optimal location set of all the

communication agents (Set L ), then k −1 servers are selected

from the first m −1 servers (server 1 ∼ server m −1). In this

case, the solution to the problem “Select k servers from all

the m servers, to make the amount of VMs allocated on the

k servers as close to N a as possible” is the sum of the solu-

tion to the sub-problem “Select k −1 servers among the first

m −1 servers, to make the amount of VMs allocated on the k −1

servers as close to N a - n m 

as possible” and the amount of VMs

allocated on server m ( n m 

). The value of S ( m,k,N a ) in this case
can be calculated as: S ( m, k, N a ) = S ( m −1, k −1, N a −n m 

) + n m 

. t
Which sub-problem will be entered during the recursive proce-

ure is determined by which value is closer to N a , S ( m −1, k, N a )

r S ( m −1, k −1, N a −n m 

) + n m 

. 

Consider a more general case, the value of the solution to the

ub-problem “Select j servers from the first i servers, to make the

mount of VMs allocated on the j servers as close to q as possible”

 S ( i, j, q )) can be calculated as: 

(i, j, q ) = 

{ 

S(i − 1 , j, q ) i f | S(i − 1 , j, q ) − q | 
≤ | S(i − 1 , j − 1 , q − n i ) + n i − q | 

S (i − 1 , j − 1 , q − n i ) + n i else 

The terminations of the recursive procedure (calculating the

alue of S ( i, j, q )) include the following three cases: 

1. If the number of the undeployed communication agents is

equal to the number of the candidate servers ( i = j ), then all the

remaining candidate servers are included in the optimal agent

location set (Set L ): 

S(i, i, 0) = ... = S(i, i, N a ) = n 1 + n 2 + ... + n i ∀ 1 ≤ i ≤ k 

2. Suppose the number of VMs located on each server is se-

quenced in ascending order, thus n 1 ≤ n 2 ≤ … ≤ n m 

. If the

target value ( q ) of the current function ( S ( i, j, q )) is less than

n 1 , to make the value of S ( i, j, q ) as close to n 1 as possible, the

optimal deployment mechanism should minimize the value of

S ( i, j, q ). In this case, all the j communication agents should be

deployed on the first j servers (server 1 ∼ server j ). Hence we

get: 

S(i, j, 0) = S(i, j, 1) ... = S(i, j, n 1 ) = n 1 + n 2 + ... + n j 

3. If there exists only 1 undeployed communication agent, we can

determine the location of this agent directly, according to the

number of VMs located on the current candidate servers. Thus:

S(i, 1 , j) = Min {| n 1 − j| , | n 2 − j| , ..., | n i − j|} 
The optimal agent placement algorithm will repeat the recur-

ive procedure, until it reaches one of the three terminations. More

pecifically, the algorithm is composed of two parts: the first part

steps 3–6) initializes the values of Knapsack solutions in some

pecific scenarios, which are the terminations of the recursion; the

econd part (step 7) is the recursive procedure, calculating the so-

ution S ( m, k, N a ). The algorithm outputs the optimal location set

f all the communication agents (Set L ). 

.4. Optimal matching between VMs and communication agents 

The optimal matching between VMs and communication agents

s determined by minimizing the time span of a MapReduce work-

ow ( T span ). According to ( 9 ), the time span of a MapReduce work-

ow is determined by the cross-server data transmission latency of

he slowest communication agent in the map phase: 

ax 

{ ( 

V u v ∈ V ( A i j ) ∑ 

u, v 
s u v −

n l( A i j ) ∑ 

v =1 

s u v 

) /
B 

} 

Once the number and locations of the communication agents

re determined, the total cross-server traffic is fixed. Thus, to min-

mize the maximum transmission overhead of all the agents, the

ptimal matching strategy should assign the total cross-server traf-

c equally to the k agents. 

Finding the absolute optimal solution to the uniform distribu-

ion of cross-server traffic is an NP-hard problem. As is shown in

lgorithm 2 , we propose a greedy algorithm to solve this prob-

em and provide approximate optimal matching between VMs and

gents. The general idea of this algorithm is to assign the VM with

he maximum transmission volume to the agent with the lightest

ransmission load. 
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Table 2 

Detailed information of cloud servers. 

Server quantity Server configuration 

CPU Memory Disk 

2 24 96 GB 4 TB 

4 16 32 GB 150 GB 

12 8 8 GB 500 GB 

3 4 8 GB 300 GB 
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Next we prove that our algorithm is 1.5-approximation for the

verage case. 

Suppose the time span of a cloud-based MapReduce application

nder the absolute optimal matching mechanism is T OPT , and the

ime span of the i th VM is t i . Since the optimal matching mech-

nism is no better than the absolute even distribution of trans-

ission volume (the total transmission volume cannot be evenly

ssigned to the k communication agents all the time, due to the

nequal sizes of the data chunks), hence we get: 

 OPT ≥
h ∑ 

i =1 

t i /k (11) 

Each communication agent is mapped with at least one VM,

ence the time span of the whole MapReduce application is longer

han or equal to the longest time span of all the h ( h = N −N a )

Ms: 

 OPT ≥ Max { t 1 , t 2 , ..., t h } 
Suppose the h VMs are sequenced in descending order accord-

ng to their transmission volume, thus: s 1 ≥ s 2 ≥ … ≥ s h . The trans-

ission time span of a VM is correlated to its transmission volume,

hus: t 1 ≥ t 2 ≥ … ≥ t h . 

Normally, the amount of VMs is much larger than the amount

f communication agents in a virtual cluster. According to the Pi-

eon Hole Principle , at least two VMs are matched to the same

ommunication agent. Suppose the f th and g th VM are matched

o the same agent, then we can calculate another lower bound of

 OPT as: 

 OPT ≥ t f + t g ≥ 2 t h (12) 

Suppose the time span of the cloud-based MapReduce applica-

ion under TOMON mechanism is T TOM 

. In the “Agent-VM” match-

ng phase of TOMON, the VM with the heaviest transmission vol-

me will be scehduled to take precedence over any other VM.

ince the h VMs are sequenced in descending order according

o their transmission volume, they will be scheduled sequentially

rom V 1 to V h . 

In the average case, the transmission volume of each VM is rel-

tively fixed (the configruations of all the VMs are the same); and

hen the overall time span is determined by the communication

gent which handles the most VMs, i.e. the communication agent

f V h . Suppose V h is mapped to A p under TOMON, then the trans-

ission time span of A p can be viewed as the overall time span of

he MapReduce application ( T TOM 

). 

Consider the time point when the matching of V h -1 is deter-

ined, and A p is the agent with the lightest transmission load at

his time point. Since each VM is assigned to the agent with the

ightest transmission load at each step, and V h is matched to A p at

he h th step; hence A p is the agent with the lightest transmission

oad after the ( h −1)th step. The total transmission timespan of A p 

fter the ( h −1)th step is T TOM 

− t h . Thus we get: 

 ( T T OM 

− t h ) ≤
h −1 ∑ 

i =1 

t i = 

h ∑ 

i =1 

t i − t h (13) 

Subsituting ( 11 ) and ( 12 ) into ( 13 ), we can calculate the upper

ound of T TOM 

as follows: 

 ( T T OM 

− t h ) ≤
h ∑ 

i =1 

t i − t h 

⇒ T T OM 

≤
h ∑ 

i =1 

t i /k + 

(
1 − 1 

k 

)
· t h 

⇒ T T OM 

≤ T OPT + 

(
1 − 1 

k 

)
· T OPT 

2 
⇒ T T OM 

≤
(

3 

2 

− 1 

2 k 

)
· T OPT 

Therefore, the “Agent-VM” matching policy in TOMON is 1.5-

pproximation for the average case. 

. Experiment 

This section evaluates TOMON in simulation environment as

ell as real cloud platform. By comparing the performance of

he same cloud-based MapReduce application under different vir-

ual network topologies, we validate TOMON mechanism and ana-

yze the impacts of the three optimization factors (agent number,

gent placement and matching strategy) on the performance of the

apReduce application. 

.1. Evaluation of TOMON in real cloud platform 

In this experiment, we deploy a local cloud computing plat-

orm using OpenStack software (release Havana), and construct a

apReduce testbed based on this cloud platform. After that, we

enerate big data processing jobs to our testbed in accordance with

he real job arrival rate shown in [33] , and evaluate the perfor-

ance of the same cloud-based MapReduce application under dif-

erent virtual network topologies. 

Our cloud computing platform is built using 21 physical servers.

ome of the servers have high-end configuration of 24 core

.30 GHz CPU, 96 GB memory, 4T Disk and 4 NICs. The detailed in-

ormation of each server is illustrated in Table 2. 

As shown in Fig. 5 , centralized architecture is used to de-

loy the physical cluster: one server is used as the cloud con-

roller which installs all the OpenStack Nova services; the other 20

ervers are installed with OpenStack Nova-compute service, which

ct as compute nodes to provide virtual resources. Each compute

ode may host several VMs, and the controller is responsible for

onitoring the status of the VMs allocated on the compute nodes.

ll the servers are connected to a single switch. Our cloud-based

apReduce testbed platform is deployed using 100 VMs allocated

n the 20 compute nodes. The configurations of all the VMs in the

loud-based MapReduce cluster are the same (1VCPU, 1 GB mem-

ry, 20 GB disk). We employ WordCount as the MapReduce job

o test the performance of our testbed, and apply the document

ackage from Wikipedia as the input data. The sizes of our input

atasets range from 10 GB to 100 GB. 

Using the Restful APIs (e.g. Create Network, Schedule router

o L3 agent, etc.) provided by OpenStack, we implement TOMON

echanism and integrate TOMON into OpenStack Neutron compo-

ent to automatically construct virtual networks in our physical

latform. In Software Code 1 , an example of Python code to re-

lize optimal matching strategy in TOMON is presented. The open

ource of TOMON is in progress. 

We generate input data to our cloud-based MapReduce testbed

n accordance with the task arrival rate shown in real records [33] .

he size of the input data generated at each time point is propor-

ional to the task execution latency in the records. Using OpenStack

eutron, we deploy virtual networks with different topologies on
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Fig. 5. Centralized physical architecture of the cloud computing platform. 

Software Code 1. Example of Python code used to realize optimal matching strategy in TOMON. 
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the same physical cluster. Average size of the input data generated

during 1 h is about 200 GB, and we evaluate the steady-state per-

formance of our testbed platform under this workload. 

Fig. 6 A shows the performance of a cloud-based MapReduce ap-

plication under different virtual network topologies. The input data

is the same in each scenario. We change the amount of agents de-

ployed in our platform, and once the agent number is determined,

two different virtual networks are deployed for performance evalu-

ation: one virtual network is deployed using TOMON (both optimal

placement and matching strategies are used), the other is deployed

using optimal placement strategy only (VMs are randomly assigned

to agents). 

Applying TOMON to our cloud-based MapReduce testbed, we

theoretically calculate the optimal number of communication

agents to be deployed in our platform, which is [ k optimal ] = 8. From

Fig. 6 A, we can see that the cloud-based MapReduce cluster attains

optimal performance when k = 8 using TOMON, which is consis-

tent with the theoretical modeling result. Increasing or decreasing

the number of agents ( k = 15 and k = 5) will improve the platform’s

data transmission rate or data processing rate respectively; how-

ever, it will damage the right balance between the data transmis-

sion and data processing rate of a virtual cluster, and consequently

the overall performance of the cloud-based MapReduce application

is not optimal as shown in Fig. 6 A. Moreover, the testbed platform
ttains better performance (up to 40% speedup in the best case)

n almost all the scenarios when the virtual network is built us-

ng TOMON, since our optimal matching strategy minimizes the

verall cross-server communications as well as the time span of

 cloud-based MapReduce application. The experiment results val-

date both the optimal agent number and optimal matching strat-

gy of TOMON. 

To further evaluate the two factors (optimal agent number and

ptimal matching strategy) individually, we analyze the perfor-

ance of our MapReduce testbed with different input data sizes.

our virtual networks are deployed in our physical platform using

ifferent mechanisms: (a) single-host virtual network; (b) multi-

ost virtual network constructed using five agents and optimal

atching strategy; (c) multi-host virtual network constructed us-

ng optimal number of agents and random matching strategy; (d)

ulti-host virtual network constructed using TOMON. The size of

he input data increases from 50 GB to 500 GB, and the total exe-

ution latency of each MapReduce application is shown in Fig. 6 B. 

We can see from the figure that multi-host deployment mecha-

ism improves the perfomormance of the virtual cluster, especially

hen the input data size is large. The virtual MapReduce clus-

er attains around 150% −300% performance improvement under

he multi-host deployment compared with the single-host deploy-

ent. Comparing the perfomance changing trends of the MapRe-
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Fig. 6. Performance of real MapReduce applications in different virtual network topologies. 
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uce clusters under mechanisms (b) and (c), we find that, when

he input data size is small (less than 200 GB), the impact of

atching strategy on the overall performance is more obvious

ompared with agent number. However, as the size of the input

ata becomes larger (over 300 GB), the agent number gradually

ecomes the dominant factor that affects the overall performance

f a cloud-based MapReduce cluster; thus, the perfomance of the

apReduce cluster under mechanism (c) is better than mechanism

b) as shown in Fig. 6 B. 

This phenomenon is caused by the time distribution of different

apReduce operations. When the size of the input data is small,

he data loading operation (the first sub-phase in the map phase,

s described in Section 3.2 ) from local storage systems to the

loud-based HDFS (Hadoop Distributed File System) does not take

o much time, and the data transmission latency of a cloud-based

apReduce application is mainly determined by the shuffling op-

rations [3] . In this scenario, the optimal deployment mechanism

hould balance the load of each agent first, to minimize the oper-

tion time span. Thus, the optimal matching strategy improves the

verall performance of the MapReduce testbed more significantly.

owever, when the size of the input data is large enough, com-

ared with the data transmission time spent in the shuffling oper-

tions, the time used in loading data into the cloud-based HDFS is

uch longer, and the optimal deployment mechanism should in-

rease the number of the communication agents to minimize the

ata loading latency first. Therefore, the agent number becomes

he dominant factor in this scenario. 

.2. Evaluation of TOMON in simulation environment 

To make our topology optimization mechanism more convinci-

le, we further validate our agent placement policy in simulation

nvironment. We simulate the scenario where MapReduce appli-

ations are executed on a cloud computing platform composed of

00 servers. The tasks simulated here are also WordCount. 1500

Ms with the same configuration are allocated on the 100 servers

o deploy the cloud-based MapReduce cluster. The maximum num-

er of VMs can be co-located on a large-type server is 100, on a

edian-type server is 30, and on a small-type server is 10. Among

he 100 servers, 15 are large-type servers, 35 are median-type

ervers, 50 are small-type servers. The load of each server is set

andomly between 0.25 and 0.75, and the performance degrada-
ion trend of the co-located VMs is simulated using formula ( 1 ).

hysical architecture of this simulated cloud platform is also cen-

ralized. We perform the virtual network construction procedures

e.g. deploy L3 agents, deploy ovs plugins, construct virtual net-

orks, etc.) based on OpenStack Neutron in our simulator, and

ecord the time used to construct a virtual network using TOMON

or scalability analysis. This paper concentrates on the evaluation

f network deployment mechanisms; thus, our simulator only per-

orms the operating procedures of the Neutron component. The

ther OpenStack components (e.g. Nova, Glance, etc.) are not re-

onstructed in our simulator. We assume that the VMs have al-

eady been allocated on the physical servers based on OpenStack

ova and Glance components, and we focus on analyzing the vir-

ual network deployment procedures based on OpenStack Neu-

ron. In order to evaluate the optimal agent placement mecha-

ism in TOMON, we establish four virtual networks using different

gent placement mechanisms: (a) random deployment of agents;

b) deploy communication agents on the servers with the max-

mum number of VMs: greedy policy that takes the data trans-

ission latency into first consideration; (c) deploy communication

gents on the servers with the minimum number of VMs: another

ind of greedy policy, in which data processing latency tends to

ominate all the other factors; (d) optimal agent placement policy

n TOMON. By comparing the performance of the platform under

echanisms (b), (c) and (d), we further evaluate whether the op-

imal agent placement strategy in TOMON has optimally balanced

he effects of the two dominant but competing factors: data pro-

essing rate and data transmission latency. 

Fig. 7 A shows the total execution latencies of the same cloud-

ased MapReduce application under the four different agent place-

ent policies. Since both the data transmission latency and data

rocessing latency are considered and optimized, the testbed plat-

orm attains better performance (up to 36% performance improve-

ent when k = [ k optimal ] = 61) using TOMON. We also find from the

gure that when the amount of deployed agents is small (less than

0), compared with TOMON, the platform gains equal performance

sing the greedy policy (b). The reason is that the communication

erformance is the bottleneck performance of the platform when

he deployed communication agents are scarce, and the optimal

gent placement mechanism should maximize the communication

erformance of the platform at first; thus the optimal agent place-

ent strategy in TOMON is the same as that in the greedy deploy-



204 C. Xu et al. / Computer Networks 112 (2017) 194–207 

Fig. 7. Performance of the cloud-based MapReduce frameworks in simulation environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Optimal placement algorithm of agents. 

1: Input : S r , S, μ0 , γ , B, m, n r , k , { n 1 , n 2 , ... n k } 

2: Output : Optimal locations of communication agents: L 

Value of optimal solution S ( m, k, N a ) 

3: Initialize: L ← φ; calculate N a according to ( 10 ) 

4: Initialize: S ( i, i , 0) = ... S ( i, i, N a ) = n 1 + n 2 + ... + n i 
5: Initialize: ∀ i ∈ [1 , m ] ∀ j ∈ [1 , n i ] 

S ( i, j , 0) = S ( i, j , 1)... = S ( i, j, n 1 ) = n 1 + n 2 + ... + n j 
6: Initialize: ∀ i ∈ [1 , m − k + 1] ∀ j ∈ [1 , N a ] 

S ( i , 1, j ) = Min {| n 1 − j |, | n 2 − j |, ..., | n i − j |} 

7: Extended Knapsack recursion: 

for q : = N a to n 1 do 

if | S ( i −1, j, q ) −q | ≤ | S ( i −1, j −1, q −n i ) + n i −q | then 

S ( i, j, q ) = S ( i −1, j, q ) 

else S ( i, j, q ) = S ( i −1, j −1, q −n i ) + n i L ← L ∪ { l ( i )} 
end for 

8: return L and S ( m, k, N a ) 

Algorithm 2 Approximate optimal matching algorithm. 

1: Input : h : number of VMs that are not co-located with their agents. 

( h = N - N a ) 

S = { s 1 , s 2 , ..., s h }: transmission volume of each VM 

2: Output : M : matching strategy between the agents A = { A 1 , A 2 , ..., A k } 

and VMs V = { V 1 , V 2 , ..., V h } 

3: Initialize: M ← φ, load (1) = load (2) = ... = load ( k ) = 0 

4: for i : = 1 to h do 

5: Find max value s i in S 

6: Find min load ( j ) in { load (1), load (2),…, load ( k )} 

7: M ← M ∪ { A j ↔ V i } 

8: load ( j ) = load ( j ) + s i , S ← S −{ s i } 

9: end for 

10: return M 
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t  
ment policy (b). However, as the number of the agents increases,

the communication performance of the paltform becomes better,

and the data processing rate plays an increasingly important role

in the overall performance optimization. Without considering the

data processing rate, the greedy deployment policy (b) is not ap-

plicable in this scenario. On the contrary, TOMON does well all the

time since it strikes the right balance between the data transmis-

sion and data processing performance, and optimizes bottleneck

performance of the virtual cluster in each scenario. The experi-

mental results validate both the optimal agent number and opti-

mal agent placement strategy in TOMON. 

Next, we evaluate the scalability of TOMON mechanism us-

ing different scales of physical clusters. We establish five virtual

networks based on different mechanisms: (1) single-host deploy-

ment mechanism; (2) OPRM mechanism: deploy the virtual net-

work based on the o ptimal agent placement and random matching

strategies; (3) RPOM mechanism: deploy the virtual network based

on the random agent placement and optimal matching strategies;

(4) TOMON mechanism: both the optimal agent placement and op-

timal matching strategies are used. Mechanisms (1)–(3) are used

as comparison mechanisms to evaluate the time complexity of the

optimal agent placement strategy and the optimal matching strat-

egy in TOMON. The scale of the physical cluster increases from 10

servers to 10 0 0 servers. 

Fig. 7 B shows the time used to generate a virtual network

topology under each deployment mechanism. The single-host

mechanism takes nearly constant time to generate virtual net-

work topologies, since it does not need to calculate the agent lo-

cations and the matching strategies; however, the performance of

the single-host virtual network is not acceptable when the size of

the input data is large, as shown in Fig. 6 B. The topology genera-

tion time of OPRM, RPOM and TOMON mechanisms increase with

the scale of the physical datacenter, since they need more platform

information to determine the virtual network topologies. However,

although additional information is required and more calculations

are executed in TOMON compared with OPRM and RPOM, the to-

tal execution latencies of the three mechanisms (OPRM, RPOM and

TOMON) do not show obvious time gaps. The reason is that both

optimal placement and optimal matching algorithms in TOMON

are with polynomial time complexities as shown in Algorithms 1

and 2 , and the additional calculations in TOMON do not increase
a  
he overall time complexity of this mechanism. Thus, TOMON is

calable enough to be used in large-scale data centers. 

.3. Importance evaluation of optimization factors in TOMON 

Next, we evaluate the importance of the three optimization fac-

ors (agent number, agent placement and matching strategy) in

OMON. We deploy four virtual networks in the same data center,

sing different deployment mechanisms: 1) random selection of all

he three optimization factors; 2) optimal agent number, random

gent placement and matching strategy; 3) optimal agent number
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Fig. 8. Importance evaluation of each optimization factor in TOMON. 
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nd placement, random matching strategy; 4) optimal agent num-

er, placement and matching strategy (TOMON). Each following

echanism optimizes one more factor based on its former mecha-

ism. 

Fig. 8 exhibits the total service execution latencies of the plat-

orm under the four deployment mechanisms and processes the

nput data with different sizes. We notice that the performance of

he platform is improved, whatever additional factor is optimized.

nd the performance improvement is more remarkable when the

ize of the input data becomes larger. Thus, larger size of input

ata makes the impacts of the three optimization factors on the

erformance of the platform more remarkable. Moreover, the per-

ormance improvement is more obvious when the agent number is

ptimized, which indicates that agent number is the most signifi-

ant factor in TOMON. 

.4. Applicability analysis of TOMON 

At last, we discuss the applicability of TOMON mechanism.

OMON mechanism is implemented based on the multi-host vir-

ual networking model provided by OpenStack Neutron of releases

rizzly and Havana. In the latest OpenStack releases (e.g. Juno

nd Kilo), multi-host deployment of the communication agents

re not supported by Neutron temporarily, since the stability of

he multi-host virtual networks cannot be guaranteed. Hence,

OMON cannot be integrated in OpenStack Neutron of the latest

eleases. However, in order to strengthen the support of OpenStack

o communication-intensive applications, multi-host networking 

odel has been realized in OpenStack Nova component of releases

uno and Kilo. Therefore, although our TOMON mechanism can-

ot be integrated into Neutron in the latest OpenStack releases, it

an be implemented based on the multi-host networking model

rovided by Nova as well. Different from the former implementa-

ions, in OpenStack Juno and Kilo release, TOMON is used to de-

ermine the optimal deployment of the nova-network plugins but

ot the communication agents. The optimal number and optimal

lacement of the nova-network plugins can also been calculated

n the same way. Thus, TOMON mechanism can be integrated into

ova component, when using OpenStack releases Juno and Kilo. 
. Conclusion and future work 

In this paper, we analyzed the impact of virtual network topolo-

ies on the performance of cloud-based big data applications,

tudied the detailed procedures of cloud-based MapReduce opera-

ions in multi-host virtual networks built using OpenStack, formu-

ated the data transmission and data processing overheads of the

apReduce workflows, and put forward TOMON mechanism to op-

imize the virtual network topologies. TOMON mechanism struck

he right balance between the data transmission latency and the

ata processing rate of a cloud-based MapReduce cluster, and fur-

her improve the performance of the cloud-based big data applica-

ions compared with other greedy deployment policies. Our work

ook the first step towards providing optimal deployment mecha-

ism of multi-host virtual networks based on OpenStack Neutron. 

In our future work, we plan to improve TOMON mechanism for

he optimal deployment of virtual networks on large-scale physi-

al data centers. Firstly, different from the evaluations of TOMON

n the centralized physical datacenters shown in this paper, we

ill further evaluate TOMON mechanism on the large-scale data

enters with hierarchical architectures. Secondly, by providing ad-

itional performance evaluation mechanisms, our future research

ill try to evaluate the largest scale of the physical data centers

hat OpenStack multi-host virtual network can support (When the

cale of the physical data center is large enough, the data trans-

ission latency between two physical servers will be long enough,

nd the virtual network topology may be not the dominant per-

ormance factor in this scenario). Finally, based on the experimen-

al results, we will revise TOMON mechanism to accommodate the

arge-scale data centers with more complex physical architectures.

e are also going to explore the properties of the heterogeneous

irtual MapReduce clusters, and introduce additional metrics into

OMON to improve this topology optimization mechanism. 
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