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a b s t r a c t 

Multipath forwarding has been recently proposed to improve utilization in data centers leveraged by its 

redundant network design. However, most multipath proposals require significant modifications to the 

tenants’ network stack and therefore are only feasible in private clouds. In this paper, we propose the 

Two-Phase Multipath (TPM) forwarding scheme for public clouds. The proposal improves tenants’ net- 

work throughput, whereas keeping unmodified network stack on tenants. Our scheme is composed of a 

smart offline configuration phase that discover optimal disjoint paths, and a fast online path selection 

phase that improves flow throughput at run time. A logically centralized manager uses a genetic algo- 

rithm to generate and install sets of paths, summarized into trees, during multipath configuration, and a 

local controller performs the multipath selection based on network usage. We analyze TPM for different 

workloads and topologies under several scenarios of usage database locations and update policies. The 

results show that our proposal yields up to 77% throughput gains over previously proposed approaches. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

In cloud computing, data centers share their infrastructure with

several tenants having distinct application requirements [1] . This

application diversity within data centers leads to multiple chal-

lenges for network design in terms of volume, predictability, and

utilization. First, traffic between Top-of-Rack (ToR) switches is cur-

rently estimated to be 4x higher than incoming/outgoing traffic [2] .

This high traffic volume requires specific network topologies for

data centers in order to guarantee full bisection bandwidth and

to provide fault tolerance [2–5] . Second, the random arrival and

departure of virtual machines from multiple tenants result in an

unpredictable traffic workload, making it hard to provide manual

solutions for traffic management. Therefore, automated solutions

that respond quickly to changes are required to efficiently allocate

the network resources. Finally, in order to avoid forwarding loops,
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egacy network protocols, such as the Spanning Tree Protocol (STP)

6] , are usually employed to disable certain network links. This en-

ures that every pair of ToR switches communicates over a single

ath and that the network is loop-free; however, it also restricts

he switches from taking advantage of the multiple available paths

n data center topologies. 

Whereas volume and predictability are inherent to the traffic

ature of the application, network utilization can be significantly

mproved by multipath forwarding. The idea is to split traffic at

ow-level granularity among different paths in order to fully uti-

ize the available capacity. Although promising, most approaches

ely on heavy modifications to the network stack of end hosts,

anging from explicit congestion notification (ECN) [7,8] to mul-

ipath congestion control [9] . These modifications are not an is-

ue on private clouds, whose sole purpose is to provide services

ithin a single domain. However, in infrastructure-as-a-service

IaaS) clouds, in which tenants rent virtual machines and have

omplete control of their network stacks [10] , these solutions are

ot feasible. Therefore, solutions that only enhance the network in-

rastructure while not touching the end hosts are required. 

A well-known approach for deploying multipath forwarding

ithout modifying the end host is Equal Cost MultiPath (ECMP),

ommonly adopted in data-centers [2,3,11–13] . Network switches

upporting ECMP find multiple paths with the same cost and
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hoose between them applying a hash function to fields of the

acket header in order to find the next hop. ECMP is expected to

venly distribute the flows among the multiple paths and thus pre-

ent network congestion. Nevertheless, since hash-based path se-

ection does not keep track of path utilization, ECMP commonly

auses load imbalances when long-lived flows are present on se-

ected paths [14] . Similarly, in Valiant Load-Balancing (VLB), the

ow source sends traffic to a random intermediate node which, in

urn, forwards it to the destination. As ECMP, this also achieves

niform flow distribution on paths; however, due to the state-

ess selection of the intermediate node, VLB suffers from the same

roblems as ECMP. Moreover, ECMP as well as VLB choose the next

op without taking into account the utilization of the links. 

In this paper, we propose a Two-Phase Multipath (TPM) for-

arding scheme that calculates multiple trees on the network, and

eeps track of the usage of all trees. Our proposal is based on the

ey properties: 

• No modifications at end hosts: TPM is an in-network load bal-

ancing scheme that does not require modifications to the end

hosts. This is required in multitenant clouds where the provider

does not have any access whatsoever to the tenants’ network

stack. 

• No modifications in hardware: TPM increases the performance

of the data center with no hardware modifications and avoids

changes to the infrastructure fabric. In addition, it also requires

only a handful of configurable features to keep the implemen-

tation cost low. 

• Robustness to path and topology asymmetries: TPM handles

path asymmetry due to link failures and topology design. It can

also be deployed in arbitrary topologies and covers the entire

spectrum of data center topologies. 

• Incremental deployment: TPM can be deployed in only part

of the data center, and work with other segments of the data

center. 

The proposed TPM multipath scheme separates the forwarding

unctionality into two distinct phases, namely, multipath configu-

ation and multipath selection. Multipath configuration is the of-

ine phase that computes the best possible paths and configures

witches when the network is not yet operational. It creates sev-

ral VLAN trees interconnecting all ToR switches, and therefore the

ath selection can be performed by simply tagging packets with

he proper VLAN ID at the outgoing ToR switch. To find these trees,

he multipath configuration phase uses network topology informa-

ion to reduce path lengths and increase link usage. In particular,

e propose and formulate a genetic algorithm to find an optimal

et of trees with disjoint links. Finding the optimized configuration

f a datacenter network is a complex task and, for some datacenter

opologies, it is an unstructured problem. Thus, it needs a back-end

upport for optimizing the VLAN tree configuration and to assure

hat all configured VLAN trees are correct [15] . The genetic algo-

ithm formulation answers to these needs. Multipath selection is

he online phase that chooses the best path for a new flow. The

election is based on path utilization in order to select the least

sed path. 

The key idea of the proposal is to keep track of the usage of

ultiple disjoint paths on the network. We summarize a set of

aths that shares links into a tree and, thus, the problem of cal-

ulating disjoint paths for all pairs of hosts is reduced to calcu-

ate disjoint trees that contain all hosts. We optimize the gener-

tion of trees, maximizing the diversity of links used by differ-

nt trees through a genetic algorithm. The proposed genetic algo-

ithm model achieves up to 100% of diversity between the calcu-

ated trees, i.e., the calculated trees do not share any link. More-

ver, we develop a discrete-event simulator at flow-level granular-

ty to model the data center to evaluate our proposed approaches
or selecting a tree to forward a new flow. We test several sce-

arios inspired in realistic traffic workloads [16] . The results show

hat TPM always performs better than the traditional forwarding

chemes with gains up to 77%. 

The rest of the paper is structured as follows. Section 2 presents

he architecture of TPM and our design choices. Section 3 describes

he offline multipath configuration phase and Section 4 presents

he online multipath selection phase. We simulate different scenar-

os and topologies and present the results in Section 5 . We present

he related work in Section 6 and conclusions in Section 7 . 

. Architecture of the Two-Phase Multipath scheme 

The proposed Two-Phase Multipath (TPM) scheme explores the

ath diversity of the network to load balance flows using an in-

etwork approach, without requiring any modification to the ten-

nts’ protocol stack. As previously explained, this is performed in

wo phases: The multipath configuration phase and the multipath

election phase. 

TPM requires two types of devices to manage the entire net-

ork: a global logically centralized manager responsible for the

ultipath configuration phase, and local controllers responsible for

he multipath selection phase. In essence, the global manager col-

ects network topology information, calculates the available paths,

nd sends them to the network devices to be used later during on-

ine path selection. The path computation is performed before the

etwork becomes operational and also upon any topology change.

o obtain the topology, the global manager may use either the

imple Network Management Protocol (SNMP) for topology discov-

ry [17] or OpenFlow [18] . The VLAN for each tree can also be con-

gured using either approach, which guarantees that most com-

ercial off-the-shelf (COTS) devices are suitable to be used with

PM. 

In order to exploit multiple paths without having to mod-

fy the network core, TPM uses VLANs (IEEE 802.1Q). Each VLAN

ses a subset of aggregation/core switches to interconnect all ToR

witches in a tree topology. 

Instead of assigning a VLAN to each path, TPM uses a VLAN for

ach tree in order to aggregate multiple paths into a single VLAN

D, thus saving precious VLAN ID space (each VLAN ID has only

2 bits). Assuming a data center with n ToR switches, each tree

ontains n (n − 1) / 2 symmetric paths; our approach is then able

o support up to n (n − 1)2 11 different paths between every pair

f ToR switches. This increases the path availability by a factor of

t least n (n − 1) / 2 when compared to the case of using a VLAN

er path. In addition to increasing path availability, VLAN trees do

ot require a routing protocol, since there is only a single path be-

ween any pair of ToR switches in each VLAN. 

The trees of each VLAN are not entirely disjoint, and thus each

ink may belong to multiple trees. During the multipath configura-

ion phase, however, the trees are selected to be as disjoint as pos-

ible in order to ensure maximum path availability between any

air of ToR switches. To find a set of trees that share the lowest

umber of links, we propose a genetic algorithm in Section 3 . 

We assume that each physical machine in a rack has a vir-

ual switch [19,20] connected to the same local controller. Dur-

ng packet forwarding, the virtual switch inserts a VLAN tag into

ach outgoing packet and also removes the VLAN tag from each

ncoming packet [10] . Upon arrival of a new outgoing flow, the vir-

ual switch contacts the controller to select an available path for

t. The controller then queries a database with network usage in-

ormation to determine the least congested path for the new flow,

s explained later in Section 4 . Once the path (and its correspond-

ng VLAN) is selected, the local controller installs an OpenFlow rule

n the virtual switch to handle future packets of this flow. Each
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subsequent packet then receives the assigned VLAN tag and does

not require contacting the local controller again. 

Since the VLAN tag insertion/removal is performed at the edge

by virtual switches, the ToR, aggregation, and core switches are

oblivious to the existence of TPM and only forward packets based

on their respective VLAN tag and destination MAC address. This de-

sign choice allows TPM to be backwards compatible with existing

data center infrastructure and reduce its adoption costs. Addition-

ally, TPM can also be incrementally deployed. All devices run the

default STP protocol to create a single untagged tree to ensure the

interconnection of all ToR switches, and therefore of all physical

machines. In order to send packets to devices that do not support

TPM, the controller instructs the virtual switches to not insert a

VLAN tag into these packets. 

3. Multipath configuration 

The multipath configuration phase is responsible for calculat-

ing and installing the VLAN trees in the network devices. The chal-

lenge here is to provide enough path diversity for each pair of ToR

switches to improve network utilization. However, it is not known

a priori how many trees (and therefore paths) TPM should use in

total to achieve this. In addition, it is important that the chosen

trees be as disjoint as possible to provide multiple independent

paths for each pair of ToR switches. 

In this section, we propose a genetic algorithm to find the best

tree set using two objective functions. Defining the size of a tree

as the number of its nodes, then one objective function minimizes

the tree size in order to avoid long paths; and the other objec-

tive function minimizes the link reutilization by the trees to cre-

ate disjoint trees. The algorithm optimize both objective functions

considering Pareto dominance group and number of individuals in

the population. Considering both objective functions, the algorithm

searches for the set of minimum trees that reaches the most of

diverse paths on the network. To calculate the trees, the global

manager first acquires the network topology, runs the proposed ge-

netic algorithm, and, then, installs the VLAN trees in the network

devices. These operations are performed offline, and at each long-

term modification of the network, such as the installation of new

devices. Link failures do not trigger the calculation and installation

of new trees; instead, they are detected by local controllers that

blacklist the affected paths. 

Genetic algorithms (GAs) are a stochastic optimal search tech-

nique inspired by the natural selection process during biological

evolution. Its methodology consists of: (i) modeling each feasible

solution as an individual, in which multiple individuals compose a

population, i.e., a set of trees in our case; (ii) selecting an initial

random population; (iii) calculating the phenotype of each indi-

vidual, i.e. the evaluation of a solution; (iv) selecting parents ac-

cording to their phenotype; (v) recombining the selected parents

to form new children; (vi) mutating individuals to form new chil-

dren; (vii) selecting the best children to survive to the next gen-

eration, and (viii) go to step (iii) and repeat until a good enough

solution is found [21] . The selection of parents and children forces

the GA to prioritize the best solutions. The recombination, step (v),

creates new children taking the qualities of the parents, and the

mutation, step (vi), drastically changes the individuals to avoid lo-

cal optima. Next, we describe each of these steps in detail. 

(i) Individual model: In our application, each individual is a tree

interconnecting all ToR switches 2 . More specifically, given the

network graph G = (V, E) , where V is the set of switches of the
2 For the sake of simplicity, we name switch all network devices that forward 

packets on the data-center network. When we are referring to a specific type of 

switch, we always highlight it as core, aggregation or top-of-the-rack (ToR) switch. 

(i  

 

 

 

network and E is the set of edges, we define the population as

the set P = { I 1 , I 2 , . . . , I n } , where each individual I k ⊆E is a sub-

set of edges interconnecting all ToR switches in a tree topology.

We define the genotype of an individual I k as an ordered vec-

tor s k = 

[
s k 

1 
s k 

2 
· · · s k m 

]
containing the switches that be-

long to the tree in I k . The order of the switch vector s k is im-

portant because it is used to find the tree that s k represents, as

showed next. 

ii) Initial population: In order to start the genetic algorithm, we

need an initial population P composed of a few trees. Our gen-

eral strategy to form a tree is starting from a random switch

and adding one additional switch at a time. Fig. 1 depicts the

proposed tree creation procedure. The procedure starts with

a random switch, which forms the first subtree, shown in

Fig. 1 (a). For ease of presentation, we drop the superscript in-

dex k and represent the switch vector simply as s = 

[
s 1 

]
. Then,

we select another switch at random and, if it has a link to any

of the already picked switches, that link is added to the tree

and the switch is added to the genotype. Fig. 1 (b)–(d) show this

process, after which we have s = 

[
s 1 s 2 s 5 s 6 

]
. If the se-

lected switch has no link to any of the switches in s , it forms a

new subtree, but it is still added to the genotype, as shown in

Fig. 1 (e) with s = 

[
s 1 s 2 s 5 s 6 s 7 

]
. If the chosen switch

has links to more than one switch in s , then there are two pos-

sible cases. First, if the switches are in different subtrees, the

new switch connects to all of them and forms a single subtree,

as shown in Fig. 1 (f). Second, if the new switch has links to

more than one switch in the same subtree, it connects to the

first switch that appears in s . This is shown in Fig. 1 (f); s 4 con-

nects to s 1 instead of s 5 because it is the first switch in s to

which s 4 has a link. This procedure is repeated until all ToR

switches are connected in a single tree. 

ii) The individual phenotype: While the genotype s of individual I

provides a unique representation of its tree, its phenotype pro-

vides a way to quantitatively compare two individuals. Our goal

is to provide a higher phenotype value to an individual I with

smaller tree sizes and higher link diversity. 

With this goal in mind, we first define the function x ( e, I ) to

indicate whether individual I contains edge e , i.e., 

x (e, I) = 

{
1 , if e ∈ I 
0 , otherwise. 

(1)

If we define the individual objective functions 

f 1 (I) = −| I| (2)

and 

f 2 (I) = 

∑ 

e ∈ I 

1 ∑ 

I ′ ∈ P x (e, I ′ ) , (3)

then, the individual phenotype is defined as the two-

dimensional vector f (I) = 

[
f 1 (I) f 2 (I) 

]
. Function f 1 ( I ) in Eq.

(2) provides the negative number of edges in the tree of indi-

vidual I , and it has a higher value for smaller tree sizes. Func-

tion f 2 ( I ) in Eq. (3) provides the sum of the count of each edge

e ∈ I , considering all individuals in the population P . It has a

higher value if I counts links that are not counted by other in-

dividuals in P . 

As both characteristics are important, we consider the Pareto

dominance to compare individuals. Thus, an individual I j is bet-

ter than other individual I k , noted as F ( I j ) �F ( I k ), if f i ( I j ) ≥ f i ( I k ),

for i ∈ {1, 2} and if ∃ i such that f i ( I j ) > f i ( I k ), where F ( I j ) denotes

Pareto evaluation of all objective functions for an individual I j . 

v) Selection of parents: In order to create the next generation, the

first step is to select certain individuals to be parents. Each in-

dividual in the population P is then assigned a selection proba-

bility based on its phenotype value, such that individuals with a
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Fig. 1. The execution of the proposed tree creation procedure to connect all ToR switches. Highlighted nodes and edges are part of the tree. The switch vector s is shown 

below the graph. (a) The procedure first picks a random switch forming the first subtree, i.e., s = [ s 1 ] . (b)–(d) A new random switch is selected and, if it has a link to any 

switch in s , then this link and switch are added to the tree, resulting in s = [ s 1 s 2 s 5 s 6 ] . (e) If the selected switch has no link to other switches in s , it forms a new subtree, 

but it is still added to the switch vector. (f) If the selected switch has links with switches in different subtrees, it connects to all of them to form a larger tree, resulting in 

s = [ s 1 s 2 s 5 s 6 s 7 s 4 ] . The procedure in (b)–(f) is repeated until all ToR switches are connected in a single tree. 
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higher phenotype have a higher selection probability. Each pair

of individuals sampled from P becomes the parents of two new

descendants. The number of sampled pairs is therefore | P |/2.

The same individual can be sampled multiple times and par-

ticipate in different pairs. When all parents are chosen, the ge-

netic algorithm begins the recombination of parents, as shown

in step (v). 

To calculate the selection probability of each individual, we

first find the best individual I b in our population P , i.e., I b =
arg max I∈ P F (I) . Then, for each individual I ∈ P , we compute

its Euclidean distance to I b as d(I) = ‖ f (I) − f (I b ) ‖ . We define

the worst individual I w 

= arg max I∈ P d(I) as the individual that

is the furthest away from I b . Since we want nodes closer to I b 
to have a higher chance of being sampled, we define the non-

normalized selection probability as ˜ p (I) = (1 + ε) d(I w 

) − d(I) ,

where ε > 0 is a small constant to ensure that ˜ p (I w 

) > 0 . Fi-

nally, we use ˜ p (I) to obtain the normalized selection probability

p ( I ) as 

p(I) = 

˜ p (I) ∑ 

I ′ ∈ P ˜ p (I ′ ) . (4) 

v) Recombination of parents: Each pair of parents sampled

in step (iv) must be recombined to pass their genotype

to two descendants. Let s a = 

[
a 1 a 2 · · · a m 

]
and s b =[

b 1 b 2 · · · b n 
]

be the genotypes of parents I a and I b ,

respectively. The recombination procedure starts by picking

a random position r ∈ [1, min (| I a |, | I b |)] of the parents’

genotypes, and splitting them into a radical and a suffix.

Fig. 2 (a) shows this case for r = 1 . The suffixes of the par-

ents are then exchanged, forming two new individuals I u and
I v , with genotypes s u = 

[
a 1 · · · a r b r+1 · · · b n 

]
and

s v = 

[
b 1 · · · b r a r+1 · · · a m 

]
. These genotypes, how- 

ever, do not necessarily form a tree and thus we run a proce-

dure to ensure the coherence of the descendants. The proce-

dure is similar to the tree creation procedure in step (ii), but

the new switches are selected from the suffix of the other par-

ent. Fig. 2 shows a step-by-step example of this recombination

of two parents to generate two descendants. There are only two

differences to the previous tree creating procedure. First, if a

switch in the new suffix is already in the tree, then it is ig-

nored, as shown in Fig. 2 (d). Second, after processing the new

suffix, ToR switches not connected to the tree are added in ran-

dom order, as shown in Fig. 2 (f). 

i) Mutation of descendants: After the recombination of par-

ents, each descendant may mutate and generate another in-

dividual. This occurs with probability p m 

= 0 . 10 . This param-

eter is selected based on the convergence analysis of our

genetic algorithm [22] and it is a tradeoff between search

space coverage and avoiding local minima. The mutation pro-

cedure uses the genotype of a descendant I y to generate a

mutated individual I z , such that the genetic algorithm in-

creases the search space and avoids premature convergence.

Similar to the recombination, the mutation procedure sam-

ples a random integer r ∈ [1, | I y |] as an index on the de-

scendant’s genotype s y = 

[
s 1 s 2 · · · s m 

]
. Then, the switch

at that position is removed and the genotype is divided

in a radical and a suffix. The resulting genotype is s y =[
s 1 s 2 · · · s r−1 s r+1 · · · s m 

]
. As in the recombina- 

tion procedure, the switches in the suffix are added one at time

to form the new mutated individual coherently, and any ToR
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Fig. 2. Recombination of two parents to generate two descendants. The procedure is similar to the tree creation procedure, except that new switches are selected from the 

suffix of the other parent. (a) The two trees are shown with their respective genotypes. The random integer r = 1 is selected and separates the genotypes in radicals and 

suffixes, which will be exchanged. (b)–(f) The two descendants are generated in parallel. The dark shadowed nodes belong to the first descendant and the light shadowed 

nodes belong to second descendant. 
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switch that is not present in at the end is included in random

order. We present the mutation procedure in Fig. 3 . 

ii) Survivor selection and population size mutation: After the

aforementioned operations, we have a set of the original in-

dividuals, the descendants, and the mutated individuals. It is

then required to select which of these individuals will survive

to the next generation. First, we remove all duplicate individu-

als to ensure that each individual is a different tree. Next, we

must determine the size of the new population, since the opti-

mal size is unknown beforehand. We sample the number of in-

dividuals of the new population P ′ from a normal distribution

N (| P |, σ ) centered in the current population size | P | and hav-

ing standard deviation σ . The result is rounded to the nearest

integer. Once the new population size is determined, then the

individuals are ordered according to their phenotype and the

individuals with the highest phenotype are selected to survive

to the next generation P ′ . 

After the new generation P ′ is created, we compare it to P to

determine if the new generation is better. Recalling that each indi-

vidual I ⊆E is a subset of edges, we define a function G ( P ) to quan-

tify a population P as 

G (P ) = 

∣∣∣∣∣
n ⋃ 

i =1 

I i 

∣∣∣∣∣. (5)

The value of G ( P ) is the number of links used by all individuals

in P and thus it serves as a diversity index for the population.

In essence, populations that use more links are considered better
han those that use fewer links. If G ( P ′ ) > G ( P ), then we classify P ′
s a successful generation of P . 

To update σ , we use Rechenberg one-fifth success rule [23] .

his rule introduces a self-adaptation strategy to genetic algo-

ithms in order to not constrained in local minima. This mecha-

ism changes the parameters of the genetic algorithm based on

he feedback from the search. As we model our population size as

 normal distribution, using the Rechenberg one-fifth success rule,

e let the size of the population be self-adapted according to the

eedback of the search. We observe a certain number of genera-

ions and compute the fraction q of successful generations. Let c ∈
0.817, 1] be a constant, then σ is updated as follows 

= 

{ 

σ/c, q > 1 / 5 

σ · c, q < 1 / 5 

σ, q = 1 / 5 . 

(6)

he idea behind Rechenberg one-fifth success rule is that, if q is

oo large, we may be approaching a local minimum and therefore

ncreasing σ is beneficial to increase the search space in the pop-

lation size. Likewise, if q is too low, the search space may be too

arge and we must narrow it down. 

To evaluate the algorithm performance, we use the diversity

ndex, defined in the Eq. (5) , normalized by the total number of

inks on the network | E |. The normalized diversity index is calcu-

ated between the trees, thus the closer the index is to 1, the more

iverse are the links used on the calculated trees. Moreover, we

lso evaluate the Number of VLAN trees that identifies how many

rees are selected into each generation. Fig. 4 shows our results of

hree topologies where we run our genetic algorithm. We identify
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Fig. 3. Mutation of an individual to form a new individual. (a) The switch vector of the original descendant and the random integer r indexing the switch to be removed. 

(b)–(e) The formation of the new mutated individual by adding the switches in the suffix one at a time. Although the mutated individual has the same switch set, the two 

trees are different due to the order of the switches in the vector. 
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wo different populations, the population that is being evaluated

n each generation, and the best population that the algorithm has

lready found. Running our algorithm over a Fattree topology, com-

osed with 4-port switches, it converges into less than 25 genera-

ions, shown in Fig. 4 (a). By its turns, when running the algorithm

ver a Cisco 3-Tiers topology, it requires up to 30 0 0 generations to

each the optimal value for population entropy. Besides, when con-

idering a randomized topology, in our experiments we considered

 Jellyfish topology with 20 4-port switches, our algorithm reaches

 sub-optimal solution after 500 generation. It is worth noting that

he algorithm always finds sub-optimal solution in a short period

f time, although after some generations, the solution is enhanced.

ig. 4 also highlights that the proposed genetic algorithm achieves

he two objective function as it finds the minimal set of VLAN tree

hat generates the maximum diversity between all used links on

he network. 

The fast convergence and the quality of the solution found by

ur genetic algorithm are mainly due to the proposed method of

enerating the trees and representing them as a 2-dimension vec-

or, and also due to the usage of the Rechenberg rule to grow and

o shrink the population size according to the success rate. The

roposed tree generation provides a good initial solution to the

enetic algorithm. Moreover, the initial solution has already a ran-

omized pattern thanks to generation phase. As the mutation and

ecombination operators keep the same principles of the tree gen-

ration method, operating over the trees keeps a randomized link

election method. Therefore, it enables the genetic algorithm to ex-

lore a bigger search space in a few generations. The Rechenberg

ne-fifth rule helps to define the size of the search space for each

nteraction. As the best population is a subset of an actual popu-
 w  
ation, the population size may grow, but the number of selected

ndividuals for the best population is just the ones that contribute

o enhancing the diversity index. 

. Multipath selection 

The multipath selection phase occurs online whenever a new

ow departs from a virtual switch. In this case, the virtual switch

ontacts its local controller to assign a path (and therefore a VLAN)

o the new flow. All possible VLAN trees are computed and in-

talled during the multipath configuration phase, and are available

o each controller. In order to compute the path, the local con-

roller accesses a database (cf. Section 4.2 ) containing the active

ows and their corresponding paths to select a path. Once this is

one, the controller installs a rule, such as OpenFlow, on the vir-

ual switch in order to tag each outgoing packet of this flow with

he assigned VLAN ID. Likewise, another rule is installed to untag

ach incoming packet of this flow before forwarding them on to

he proper virtual machine. 

Each local controller manages the flows originated at in a sin-

le rack to determine when a flow finishes, the local controller

requently queries the flow statistics of the virtual switches (cf.

ection 4.3 ). To detect and cope with link and devices failures in

aths, the local controller senses when a flow stops to transmit,

hich is considered a path failure in that tree and the flow is

escheduled to use a different path. 

The proposed TPM scheme assumes two different con-

rol/management levels in the network. First, a centralized man-

ger is responsible for calculating and installing all trees in the net-

ork devices. Second, each edge host has its own local controller
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Fig. 4. Performance evaluation of our two objective functions genetic algorithm for 

three topologies. The Population Diversity is the diversity index of the cur- 

rent population, given by Eq (5) , while Best Population Diversity is the 

same index for the best subset of the population that the algorithm has already 

calculated. Population VLAN Trees and Best Population VLAN Trees 
stand for the number of VLAN Trees used in each population. a) The proposed algo- 

rithm finds two VLAN trees that reach 100% of diversity between links in a Fattree 

topology. b) The algorithm finds the optimal solution, 100% of diversity between 

links, with 2 VLAN trees, in a Cisco 3-tier topology. c) The best solution for a Jelly- 

fish topology is a near-optimal solution with 3 VLANs. 
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for selecting the least overloaded tree to forward each new flow.

The global manager installs the trees and VLANs before the net-

work becomes operational. The local controller then controls the

virtual switch of its own host to select the best VLAN tree. This

two-level approach for controlling and managing the network en-

ables the local controller to always know a priori the end-to-end

path of a packet, even though it does not control any switch other

than its local virtual switch. 

4.1. Selection heuristics 

To select a path for each new flow, the local controller selects

the path with the least used links ( lul ) [1] . In order to keep track

of link usage, for each link e ∈ E , the database stores the link rate

r ( e ) and the number of flows u ( e ) concurrently using each link. The

link cost is then computed as the ratio u ( e )/ r ( e ), such that a link
ith a higher number of flows and lower rate has a higher cost.

he path cost is then computed as the maximum link cost along

he path, and the path with the lower cost is selected for a new

ow. After the selection, the link usage u ( e ) for all links in the path

re incremented. Similarly, when the flow finishes, all link costs of

he path are decremented. 

.2. Database location 

We consider two extreme cases for the network usage database

ocation. First, we consider a single global database that is ac-

essed by all local controllers. In addition, we also consider each

ocal controller having its own local database to store the link us-

ge of the paths used by its flows. These two cases (i.e., centralized

nd distributed) are in opposite sides of the spectrum and should

e enough to predict the performance of any hybrid solution, if re-

uired. 

The global database stores information of all active flows in

he network; therefore, local controllers have accurate knowledge

f the network congestion. However, this requires that all local

ontrollers frequently query and update the database. If the traf-

c workload is high, the database would have to answer queries

nd update entries at a high rate, which could thwart the task

r would require an elastic data store to keep up with the

uery/update rate. In addition, all local controllers must commu-

icate with the central database, which may have a high over-

ead depending the query/update frequency. On the other hand,

f the database is local and co-located with the local controller,

hen all communication remain local. Nevertheless, the database

oes not have global knowledge of the network usage and may as-

ume that a path is free when in fact it is not due to the limited

isibility. 

.3. Flow tracking policy 

As link costs are used for the path selection, the cost informa-

ion should be up-to-date to prevent avoidable collisions. Hence, in

ddition to updating the costs when a flow starts, it is also impor-

ant to update them when a flow finishes in order to free network

esources for new flows. The aforementioned heuristics determines

hen the flow finishes at the cost of the local controller con-

tantly monitoring the flows. To loosen this requirement, we pro-

ose a few alternative policies to update the link costs when a flow

nds. 

In the first policy, the link costs are updated immediately when

he flow ends ( dec-end ). This approach can be implemented using

otifications from the virtual switches to their local controllers. We

onsider this approach as a guideline. 

The second policy simply does not update the costs when the

ows end ( no-end ). Although simplistic, this approach has some

nowledge of the congestion, because it accumulates the informa-

ion selection of paths over time. 

The third policy schedules a timeout when the flow starts, re-

ardless of the actual flow duration (scheduled fixed end – sfe ).

his approach sets a duration for each flow and decrements its

ost regardless of the actual flow duration. Therefore, it does not

equire tracking of each of the existing flows. Nevertheless, it must

stimate the duration of the flows a priori . In our simulations, we

se a fixed end timeout value for all flows. 

Finally, the last policy periodically monitors the virtual switches

n servers to get the number of active flows (periodic monitoring –

m ). This approach requires the local controller to constantly mon-

tor the virtual switches, which can be costly. 
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Fig. 5. Fattree topology with four-port switches used in our simulations. There are 

four different paths to any ToR switch in another pod, and two different paths to a 

switch in the same pod. 
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3 A link that is not utilized carries no traffic during the simulation period; a link 

that is under-utilized is a link that does not use all of its capacity during the simu- 

lation. 
. Simulations results 

The simulations compare the well-known multipath schemes

panning Tree Protocol ( stp ) and Equal Cost MultiPath ( ecmp ) with

he proposed Two-Phase Multipath ( tpm ) forwarding scheme. 

.1. Simulation model 

In the simulations, all servers send and receive flows through

 ToR switch. Thus, we only consider ToR switches as source and

estination, since the path from the ToR switch to the physical ma-

hine is unique. We compute the flow transmission rate at a given

ime as the fair share of the most contended traversed link using

 max-min fairness algorithm, which is an optimistic flow model,

.e., it assumes flows immediately increase/decrease their rate due

o the arrival/departure of other flows in the path. 

The workload model consists of two random variables, the

ow size X s and the flow inter-arrival interval X t . Larger flows

equire a longer time to be transmitted and, thus, they have

 higher probability of sharing the link bandwidth with other

ows. The flow size X s follows a lognormal distribution ln N ( μs ,

s ). We choose μs = 7 and σs = 2 . 8 , such that the cumula-

ive density function (CDF) presents the following values F (x ) =
 

≈ 0 . 5 | x = 10 0 0 , ≈ 0 . 95 | x = 10 0 , 0 0 0 } , according to empirical data 

enter measures published by Benson et al. [16] . The second ran-

om variable characterizing the workload, the inter-arrival time X t ,

irectly affects the data center load. Smaller inter-arrival times in-

rease the flow arrival rate and, consequently, increase the network

ink usage. The inter-arrival time (in microseconds) also follows a

ognormal distribution ln N ( μt , σ t ) with σt = 2 and μt varying to

ecrease the workload. We chose different values for μt in order to

ave the median t a within the set {1, 2, 5, 10, 15, 20, 30}, in mil-

iseconds. We use the median instead of the mean to avoid depen-

ency on the standard deviation σ t . The inter-arrival time forms

 heavy tailed distribution, and the t a values are chosen to have

 similar distribution to the empirical measures of Benson et al.

16] . As t a increases, the expected time between flow arrivals also

ncreases and the load decreases. 

We compare our proposed scheme with the Spanning Tree Pro-

ocol ( stp ) and with Equal Cost MultiPath ( ecmp ), because these

orwarding schemes are widely adopted and do not change the

enants’ network stack. Moreover, Ethernet networks, mainly for

atacenters, and for MPLS relies on ECMP for multipath forwarding

24] . 

Spanning Tree Protocol ( STP ): the switches create a single tree

o forward all traffic. Thus, there is a single path between each pair

f ToR switches. 

Equal Cost MultiPath ( ECMP ): link state routing protocols iden-

ify the multiple paths with the same costs between each pair of

oR switches. At each hop, a hash function is applied on certain

elds of the packet header to uniformly distribute the flows over

he paths, and to ensure that all packets of a flow traverse the

ame path [12] . We model ECMP as a uniform random variable to

elect paths and the costs of the paths are the hop count from

ource to destination. 

.2. Fattree 4 topology 

We first run simulations using the Fattree topology with 4-port

witches [25] , which presents four different paths between any

air of pods, and two different paths between any pair of ToR

witches in the same pod, as depicted in Fig. 5 . The destinations

f the flows are uniformly selected to evenly distribute the traffic

cross the data center. 

We present the results using the flow completion time (FCT), a

etric that indicates the quality of the forwarding scheme of the
ata center network. For a particular forwarding scheme, the FCT

s the flow duration when multiple flows are present normalized

y the flow duration when there is no other concurrent flow in

he data center, and thus transmitted at line speed. A good for-

arding scheme offers the maximum bandwidth for the flows and

CT approximates one. Fig. 6 (a) show the FCT CDF for stp . For high

nter-arrival times (e.g., t a > 15 ms), more than 80% of flows have

he minimum FCT of one, and a small percentage of flows has an

CT larger than one. Nevertheless, by decreasing the inter-arrival

ime ( t a ≤ 10 ms), a higher percentage of the flows has an FCT

arger than 2. In the heavier workload scenario ( t a = 1 ms), very

ew flows have an FCT of 1, and around 30% of flows have an FCT

arger than 10. This trend is shown in Fig. 6 (b), which shows the

xpected FCT as a function of the inter-arrival time. The results re-

eal a low flow completion time because of link bottlenecks due to

panning tree algorithm. Nevertheless, Fig. 7 (a) shows that the net-

ork still have forwarding resources that are not utilized or under-

tilized 

3 . 

To understand the STP performance, we investigate the core and

ggregation link usage. Fig. 7 (a) shows the fraction of time that

inks are not utilized, are underutilized due to a bottleneck in an-

ther link along the path, and are fully utilized at line rate. As the

orkload increases ( t a decreases), the fraction of time that links

re utilized is greater, but flows cannot exploit the capacity of most

inks. All flows whose destination is in another pod share the same

ore links, and thus we expect that the core links are more heavily

sed. We observe that most of the time, core links are not utilized.

s stp uses a single tree to forward traffic, all links not belonging

o this tree are free. Moreover, the core links in the tree have active

ows only for part of the time; however, the bandwidth sharing is

neven and flows cannot use all available bandwidth. 

In addition to low link usage, the high expected flow comple-

ion time is also caused by the high the number of active flows

haring the same link. We see from Fig. 7 (a) that links have no

ctive flows most of the time, but as the workload increases ( t a 
ecreases), several active flows share the link bandwidth reducing

he expected FCT. Fig. 7 (b) shows the fraction of time that links are

sed by a single flow or by more than one flow. For each link, we

nly consider the time that it has at least one active flow. We see

hat both core and aggregation links have more than one flow for

ore than 20% of the time when t a = 10 ms and this is even worse

ith t a < 10 ms, with a direct impact on FCT. 

We now compare the performance of the same Fattree topol-

gy for stp , ecmp , and the proposed tpm using the least used links

 lul ) heuristic for path selection and local database location. We

lso present results using a global database location with entire

nowledge of the network just as a performance baseline, but do
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Fig. 6. FCT of STP. (a) The FCT CDF as a function of inter-arrival time median t a . For t a = 1 ms, 30% of flows last more than 10 × the line data-rate time transfer. (b) The 

expected FCT value of STP decreases when t a increases because congestion is less likely to occur in links. 

Fig. 7. (a) Link usage at core and aggregation links. stp wastes significant network 

resources by using only a single tree to connect all ToR switches. (b) Number of 

active flows per link, considering that at least one flow is active. At higher work- 

loads, multiple flows share the same link and reduce the available per-flow rate. At 

higher workloads, almost 80% of the utilized resources is overloaded, even when 

more than 70% of the total network resources is idle. 

Fig. 8. Expected flow completion time under different workload scenarios ( t a val- 

ues) for the multipath selection heuristics for Spanning Tree Protocol ( stp ), Equal 

Cost MultiPath Protocol ( ecmp ), and the proposed Two-Phase Multipath ( tpm ) with 

different heuristics Least Used Tree ( lut ), Least Used Path ( lup ), and Least Used 

Links ( lul ) with global ( global ) and local ( local ) database locations for Fattree 4 

ports. 
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ot consider the communication nor the query/update overheads

f this approach. In addition, we also present results using previ-

usly proposed path selection heuristics, namely, least used tree

 lut ) and least used path ( lup ) [1] . In lut , we track the number

f flows using each VLAN tree and use this as the cost of the tree.

very time a path of this tree is selected for a new flow, the tree

ost is incremented. Similarly, when a flow finishes, the tree cost

s decremented. In lup , the number of flows is tracked on a per-

ath basis instead of a per-tree basis. Different than the proposed

ul heuristic, both lut and lup cannot be applied when links have

ultiple bit rates because these heuristics only track the number

f flows using the resource (a tree for lut and a path for lup ).

herefore, in order to provide a fair comparison, we use in our

imulations the same rate for all links of the data center. 

Fig. 8 shows the expected FCT for each of the aforementioned

echniques. tpm clearly outperforms STP and ECMP by a significant

argin, especially when the data center is overloaded. In particu-

ar, when t a is 5 ms, tpm-local reduces approximately 11% of the

ptimal flow completion time when compared to ecmp and ap-

roximately 54% when compared to stp . If the data center has an

ven higher load at t a = 1 ms, then tpm-local roughly reduces 31%

ver ecmp and 4.4 × over stp . If a global database is used instead,

hen these gains are even more pronounced. At t a = 5 ms, tpm-
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Fig. 9. (a) Link usage at core and aggregation links for stp , ecmp and tpm for both 

global and local database placements. (b) Number of active flows per link, consid- 

ering that at least one flow is active. For the same workloads, the proposed mul- 

tipath scheme allocates for a shorter period the network resources, because flows 

are completed earlier as links are used up to 90% of the time by just one flow. 

Fig. 10. Expected FCT varying the proportion of small and large flows by changing 

the standard deviation σ s of the lognormal distribution of flow sizes, with μs = 7 

and t a = 5 ms. 
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t  

s  
lobal reduces 20% of the optimal flow completion time over ecmp

nd more than 64% over stp . In the highest workload scenario of

 a = 1 ms, tpm-global reduces approximately 50% over ecmp and

.6x over stp . It is worth noting that the proposed heuristics intro-

uces a trade-off between knowledge about the flow behavior and

he gains on the flow completion time. The more knowledge the

ocal controller has about the network state, the greater is the tpm

ain. Nevertheless, even when considering just the local knowl-

dge, the proposed scheme achieves a reduction of up to 20% of

he FCT over ecmp and 3.4 × over stp . This result shows that the

alculation of the trees in tpm installs substantially disjoint trees

hat are able to significantly reduce the FCT even without global

nowledge. 

Fig. 8 also presents results for different path selection heuristics

nd database locations. We see that lup is an optimistic approach

ince it assumes that all paths are disjoint. However, as this is not

he case in data centers, lup suffers from selecting paths with al-

eady congested links. In contrast, lut is a pessimistic approach,

ecause it assumes that all flows in a tree share the same links. lut

chieves reasonable performance, reducing FCT up to 22% of the

ptimal flow completion time compared to ecmp . Our lul heuristic,

owever, presents the most fine-grained knowledge of link usage

nd it has therefore the best performance. With regard to database

ocation, both lut and lul benefit from the global knowledge,

ince the local database is unaware of the true path usage. How-

ver, this is not the case for lup , because paths originated by a

articular ToR switch are not shared with other switches. There-

ore, path usage information is contained in the local database and

 global database does not improve the performance. 

To further investigate the performance of the schemes, we again

easure the core and aggregate link usage as well as the number

f active flows per link. Fig. 9 (a) shows the utilization of core and

ggregation links for 1 ms ≤ t a ≤ 10 ms. 

Clearly, stp presents the worse performance because it shares

 single tree for all flows. Additionally, most links are often un-

erutilized, reducing even more the performance. stp core links

re highly utilized with more than 25% in the highest workload

cenario and become bottlenecks. In contrast, ECMP and TPM use

ultiple paths for each pair of ToR switches. As a result, the bot-

leneck becomes the aggregation links because fattree topologies

ffer less disjoint paths to ToR switches in the same pod. Fig. 9 (b)

hows the number of flows per link, when links are used by one or

ore flows. The number of active flows in STP is high due to the

imited path diversity, reducing its performance. ecmp randomizes

ath selection and does not take network usage information into

ccount, resulting in path collision even though there are other

nloaded paths available. Similar to ecmp , tpm creates trees that

esult in the same paths as ecmp in a Fattree 4 topology. Neverthe-

ess, as tpm has the network utilization information available dur-

ng path selection, its performance is higher even with only a lo-

al database. In this case, tpm reduces link underutilization as well

s the number of flows sharing the same path. These results high-

ight the efficiency of the proposed tpm selection phase, because,

ven when ecmp and tpm calculate the same trees, the tpm selec-

ion phase reduces the underutilization of the network resources,

ctually, the proposed tpm selection phase chooses the least con-

ested tree instead of randomizing the choice because it knows the

tate of the network. 

Small and large flows relationship: 

The workload used in the simulations so far uses a fixed rela-

ionship between small and large flows provided by the parame-

ers μs = 7 and σs = 2 . 8 . Considering flows with less than 100 kB

s small and flows with more than 10 MB as large, the percentage

f small and large flows in this workload are 94.86% and 0.0 0 02%,

espectively. To analyze the impact of the percentage of small and

arge flows, we vary σ s in the interval [2, 4], which varies the per-
entage of small flows from 98.86% to 87.17% and the percentage

f large flows from 0.0 0 02% to 1.09%. We keep t a fixed at 5 ms for

ifferent σ s values to provide the same load across experiments. 

As σ s increases, there is more variance on the flow size and

herefore we have more flows sharing the same links, which

everely impacts FCT as shown by Fig. 10 . The FCT can be up
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Fig. 11. Core and aggregation link utilization of σ s ∈ [2, 4] for ecmp and tpm for 

both global and local database placements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Expected FCT for Fattree with 6-port switches. 

Fig. 13. Expected FCT for Fattree with 8-port switches. 

Fig. 14. The Cisco 3-tier topology, composed of the same 20 switches as in the 

previous Fattree 4 topology. The main goal of this topology is the vertical commu- 

nication. 
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50 times worse due to the long-lived flows. Fig. 11 shows both

the utilization and the number of flows per aggregation and core

link. When σs = 4 , approximately 1% of the flows are large, but

this drastically changes the workload traffic. In particular, links are

much more overloaded and used by several flows most of the time,

as shown in Fig. 11 . Although the relative increase of large to the

small degrades the performance, tpm can still improve the perfor-

mance when compared to ecmp . 

5.3. Larger fattree topologies 

To analyze the performance of larger Fattree topologies, we

also provide results using Fattree topologies using 6- and 8-port

switches. The Fattree 6 topology is composed of 6 pods, 9 core

switches, and 54 servers, while Fattree 8 is composed of 8 pods,

16 core switches and 128 servers. Figs. 12 and 13 show the FCT

achieved in both topologies. Considering the Fattree with 4-port

switches, Fattree with 6-port and 8-port switches reduces the over-

all FCT. Although there are more servers (and ToR switches) in

these larger topologies, there are also more available paths to

transmit the additional workload. This difference is visible when
omparing Figs. 12 and 13 . Additionally, the extra available paths

enefits tpm even more, because it has more options to balance

he traffic. However, in larger topologies, the local information be-

omes less relevant and, as a consequence, local database ap-

roaches do not perform as well as a global database. The trend

s that ecmp has a similar behavior to local database approaches

s the topology gets larger. This trend is explained by the fact that

ocal database approaches only take into consideration the knowl-

dge of the creation of flows in a single ToR swtich and, thus, ig-

ores the reutilization of links in the core of the network. In turn,

cmp randomizes the path selection of at each switch on the net-

ork, avoiding flows of different ToR switches to deliberately share

he same links on the core. This results from the local information

eing less relevant as the topology enlarges. 

.4. Cisco 3-tier topology 

We also used Cisco 3-tier topology [26] having three aggrega-

ion modules, each with four access switches, as shown as Fig. 14 .

ll network devices operate only on the link layer and, thus, tpm

s able to install the required VLANs. The topology is composed

f 12 ToR, 6 aggregation, and 2 core switches, totaling the same

0 switches as in the Fattree 4 topology. Although the redundant
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Fig. 15. Expected FCT for the Cisco 3-tier topology. Although under high horizontal 

communication the overall performance degrades when compared to Fattree 4, the 

topology benefits by using tpm forwarding scheme. 
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Fig. 16. Randomly generated Jellyfish topology with 20 4-port switches. This topol- 

ogy is similar to the Fattree 4 topology, thus 8 switches are ToR with two servers 

each. 

Fig. 17. Expected FCT for the Jellyfish topology. Connections between two ToR 

switches benefit communication between the two racks, but degrade communica- 

tion with other ToR switches. Still, tpm improves FCT when compared to ecmp . 

Fig. 18. Randomly generated Jellyfish topology with 20 4-port switches, out of 

which 16 are ToR switches. This topology also uses 20 switches, but allows servers 

to communicate with fewer hops, increasing the overall end-to-end throughput. 
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o  
aths are mostly used for fault tolerance in the Cisco 3-tier topol-

gy, we allowed all links to be equally selected for forwarding. 

Fig. 15 shows the expected FCT for the Cisco 3-tier topology.

he performance of this topology is worse than the Fattree 4 topol-

gy because it has less disjoint paths, even though it has the same

umber of switches and less ToR switches generating traffic. The

-tier topology main goal is the vertical communication, and un-

er high horizontal communication, the overall performance de-

rades. Nevertheless, the Cisco 3-tier topology benefits significantly

ith tpm , achieving an FCT reduction of 33% under the highest

orkload when compared to ecmp . When compared to the Fattree

 topology, the overall performance of the Cisco 3-tier topology

egrades because the Cisco topology benefits the communication

f hosts belonging to the same aggregation module. Nevertheless,

hen using tpm , all traffic always traverses one of the previously

alculated trees. Sending traffic over a tree favors vertical commu-

ication instead of horizontal communication. As a result, tpm is

ore suitable for vertical communication topologies, such as Fat-

ree, because it introduces more redundant links on the network

ore than on the aggregation layers. Therefore, for highly horizon-

al connected topologies, such as Cisco 3-tier, tpm may underutilize

he links horizontally connecting aggregation switches as this links

re not mainly selected to the calculated VLAN trees. 

.5. Jellyfish topology 

One of the data-center design problems is managing the growth

f the infrastructure to support an increase in demand. Structured

ata-center designs do not allow the addition of few devices to

upply the increasing demand; instead, the addition of an en-

ire overprovisioned new module with several devices is required.

ingla et al. [27] proposed the Jellyfish network topology to allow

ncremental infrastructure expansions in data centers. Jellyfish is

 degree-bounded random regular graph interconnecting the ToR

witches. Jellyfish uses a simple iterative procedure to create a suf-

ciently uniform random regular graph, solving efficiently a com-

lex graph theory problem. The network is initially assumed to

ave no links. At each step, a pair of switches with free ports is

elected and interconnected, repeating this procedure until no fur-

her links can be added. If in the end there is still a switch s i with

ore than one free ports, then a random existing link ( s j , s k ) is re-

oved, and two links ( s i , s j ) and ( s i , s k ) are created instead. Fig. 16

hows the Jellyfish topology used in our simulations, which has

ight 4-port ToR switches that use two of those ports to connect

o servers. 

Fig. 17 shows the expected FCT for the Jellyfish topology. The

CT values of all forwarding schemes are higher than both Cisco

-tier and Fattree 4 topology. In particular, this occurs because the

enerated Jellyfish topology has the majority of ToR switches con-

ected to two core switches, but some ToR switches are directly

onnected to other ToR switches. Although this benefits the com-
unication between the two racks, it degrades the communication

ith other racks. In spite of this problem, performance still im-

roves by using tpm , achieving a 29% of FCT reduction compared

o ecmp . 

We also used another configuration for the 20 4-port switch

ellyfish topology to investigate how the increase in number of

inks affects network performance. Fig. 18 shows a second Jellyfish

opology, which has 16 ToR switches using one port to connect to a

erver and the other three ports to connect to the network infras-

ructure. As each ToR has half of the number of servers, we halved

he inter-arrival time to fairly compare it to the previous Jellyfish

opology. 

Fig. 19 shows the expected FCT for the second Jellyfish topol-

gy with 16 ToR switches. As we can see, each ToR switch uses



48 L.H.G. Ferraz et al. / Computer Networks 112 (2017) 36–51 

Fig. 19. Expected FCT for the Jellyfish topology with 16 ToR switches. The presence 

of more ToR ports for communication between other switches improves the overall 

performance. 

Fig. 20. Expected FCT for different flow tracking policies for tpm with a global 

database in Fattree 4 topology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Expected FCT for different flow tracking policies for tpm with a local 

database in Fattree 4 topology. 
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one more port to connect to the other network devices, which cre-

ates the possibility of shorter paths. As ecmp always use the short-

est paths, the presence of direct paths between ToR switches in-

creases ecmp performance. Additionally, as tpm-global has knowl-

edge of all network usage, it chooses the best path, which in this

scenario presented slightly better results than ecmp . In contrast,

the local database has little knowledge of the network condi-

tions, and since the several paths use the outbound paths of other

ToR switches, it highly impacts the overall performance. Therefore,

a less structured topology, such as Jellyfish, enhances the ability

of growing the datacenter infrastructure on demand, but intro-

duces a trade-off between multipath performance and flexibility.

Because of the randomized and non-structured pattern of the Jel-

lyfish topology, all structured multipath schemes, such as tpm , suf-

fer from a lower performance gain when compared to ecmp that

randomizes the path selection and is able to use shortest paths

between ToR switches. Nevertheless, our results show that, even

in the worst scenario for tpm , our proposal with global database

outperforms ecmp . 

5.6. Flow tracking policy 

The path selection for a flow increases the cost of the links

along this path. When a flow finishes, it is required to reduce the

link costs such that future flows can properly use the available net-

work resources. We analyze the performance of four policies to de-

crease the link cost: (i) immediately when each flow finishes (no

special name), (ii) never ( noend ), (iii) prescheduling a fixed timer

for the flows ( sfe ), and (iv) by periodically monitoring to sense

the active flows ( pm ). We present the simulation results for tpm

with both a global and local database for the highest workload

( t a = 1 ms). Fig. 20 shows the results of a global database. Policy

noend does not know when flows end and thus it balances the

traffic by prioritizing paths whose links have been less selected.

Policy sfe avoids active monitoring, but the correct tuning of the

flow duration is crucial for performance. In the simulations, the

flows durations vary from few microseconds to several seconds

with an expected duration of roughly 1 ms. Thus, the scheduled
ow end for 1 ms presents the best performance, but it is more

omplex and presents a performance comparable to never decre-

enting the costs noend . The pm policy actively monitors the vir-

ual switches, and can accurately estimate the link usage. As ex-

ected, the more frequent the monitoring rate, the better the per-

ormance of the selection heuristic. 

Fig. 21 presents the equivalent results using the proposed lo-

al database placement. The results show that a short monitor-

ng period does not provide too much advantage under the local

atabase placement. In particular, this occurs because the informa-

ion is only local and a higher polling rate is not enough to im-

rove performance. The results are similar to the noend policy. 

The noend policy acts as a round-robin policy between all

aths. Considering both global and local database locations,

e identify that the noend policy is the one that provides the

est tradeoff between monitoring overload and networking perfor-

ance. The scheduled flow end approach ( sfe ) depends on moni-

oring the network to profile the expected flow ending period. In-

eed, the noend policy is the only policy that introduces no moni-

oring overload and reaches a FCT comparable to the most frequent

onitoring policy (0.1 ms) in the local approach. 

. Related work 

Nakibly et al. argue that splitting network flows over multiple

aths is a complex problem that can be divided into two problems:

ecomposition with Minimum forwarding Overhead (DMO) and

outing with Minimum forwarding Overhead (RMO) [24] . Naki-

ly et al. prove that both problems are NP-hard and, thus, they

ropose two heuristics for solving them. The DMO problem may

e understood as a generalization of the selection phase of our

wo-Phase Multipath scheme, because both DMO and the selection

hase deal with selecting a disjoint path for each flow on the net-

ork. Besides, the RMO problem is comparable to the generation

hase of our proposal. The key idea of RMO is to minimize the

esource usage when configuring multiple paths on the network,

s our tree generation approach does. Our genetic algorithm pro-

osal deals with these two NP-hard problems when it calculates

ts multiple-objective cost function. 

A few proposals randomly select one of the multiple paths in

he data centers to distribute the network traffic [2,25,28] . Al-Fares

t al. [25] design a communication architecture for the Clos fattree

etwork topology. The solution has no end-host modification, but

equires moderate modifications in switch forwarding functions.

he authors propose an addressing scheme for switches and hosts

nd a two-level routing table, which splits traffic according to the

estination host. Greenberg et al. [2] propose VL2, a network ar-

hitecture that uses a Clos network topology to form a complete

ipartite graph between core and aggregation switches. VL2 ad-

ressing scheme uses two separate classes of IP addresses, one for

he infrastructure topology and another for the tenants’ applica-

ions. For packet forwarding, it uses valiant load balancing (VLB)
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o distribute the traffic among the different paths. The source en-

apsulates packets with another IP header to a random interme-

iate switch and ECMP distributes the flows among the paths to

his intermediate switch. Mudigonda et al. [28] introduces Net-

ord, a multi-tenant network architecture that encapsulates ten-

nts’ Layer-2 packets to provide full address-space virtualization.

he forwarding mechanism uses a so-called smart path assignment

n networks (SPAIN) [29] to distribute traffic among multiple paths.

ervers run an online algorithm to test the connectivity of the des-

ination and randomly select a path to send each flow. All afore-

entioned proposals rely on a random distribution of flows among

he available paths, which performs poorly in the presence of long-

ived (elephant) flows. The proposed TPM scheme avoids that by

mploying a path selection heuristic based on link utilization, sig-

ificantly reducing path selection collision and improving the over-

ll performance. 

Other multipath forwarding schemes were proposed in the con-

ext of software-defined networking (SDN) to manage and dis-

ribute data center traffic [30] . Al-Fares et al. [11] propose Hed-

ra, a centralized flow scheduling system that uses an OpenFlow

ontroller to gather information and manage switches. Hedera uses

CMP to distribute traffic among different paths and monitors their

uration over time. Hedera detects the presence of long-lived flows

nd periodically runs a simulated annealing algorithm to distribute

hese flows into different paths to maximize transmission rates. In

 similar approach, Curtis et al. [31] propose DevoFlow, which de-

olves the flow management to switches while the controller only

eeps track of a few targeted flows. DevoFlow uses local probabil-

ty distributions to select the next hop for each flow, and also can

se centralized algorithms to reschedule flow paths as in Hedera.

evertheless, the centralized algorithms are too slow to optimize

he variable data-center traffic. Our approach distributes the path

election to the virtual switches at the physical machines to avoid

uch constraints. 

Taking into consideration the traffic engineering on Software-

efined Networks, Luo et al. propose the Adaptive Dynamic Multi-

ath Computation Framework (ADMPCF) [32] . The key idea is to

evelop a framework, for networks with centralized control that

nables the network to rapidly respond to changes on the net-

ork topology and workload. The framework introduces datamin-

ng techniques to identify flow patterns and it also calculates on-

ine optimizations of multiple paths. The key challenges of this

roposal are the large computing overload and storage constrains

n the network controller. Our proposal avoids the overload on

he network controller by using a pre-calculated set of forward-

ng trees instead of calculating them online. Moreover, the TPM

roposal does not require a centralized controller online on the

etwork. The selection phase is supposed to be performed by lo-

al controllers with limited constrains on computing and storage

ower. 

Alizadeh et al. [14] propose a distributed global congestion-

ware balancing (CONGA) mechanism. Each source ToR switch en-

apsulates the tenants’ packets using a VXLAN header, and spine

witches update a congestion metric field in this header. The des-

ination ToR switch decapsulates the packets, forwards them to

he corresponding tenant, and stores the congestion metric of the

ncoming path. The congestion metric is opportunistically piggy-

acked in the VXLAN header when the destination ToR switch

ends packets back to the source ToR switch. Thus, ToR switches

onstantly receive the congestion metric for each path it sends

raffic, and choose the path which minimizes the congestion met-

ic. Conga utilizes an in-network approach, but it requires signifi-

ant modifications to the data-center fabric, which could be costly.

ojas et al. propose All-Path, a routing paradigm that uses reac-

ive approach to learn the paths in data-center, campus and enter-

rise networks [33] . Based on this paradigm, they propose a proto-
ol that learns low-latency paths on-demand based on broadcasted

ddress resolution protocol (ARP) messages from hosts. Switches

roadcast ARP request messages, and they store the port from

hich they received the first copy of the ARP request. The ARP

eply follows the learnt path, allowing switches store the path to

he destination. Thus, the approach frequently balances the flows

mong the low-latency paths. As Conga, All-Path also requires

ostly modifications on the switches. The proposed tpm scheme

an be currently deployed in data centers by only modifying the

oftware virtual switches at the physical machines. 

Even though these works contribute to key aspects of multi-

ath forwarding for cloud computing data centers, we claim that to

aintain scalability , the network infrastructure should be oblivi-

us to the multipath scheme. Hence, both encapsulation mecha-

ism and mapping system are always required. For this purpose,

e use VLAN trees, which enable multipath forwarding using con-

entional features of commercial off-the-shelf switches. The per-

ow management is easily implemented using distributed SDN

ontrollers to manage the virtual switches at the physical ma-

hines. 

. Conclusion 

The main goal of the proposed two-phase multipath ( tpm )

cheme is to improve the network performance of cloud comput-

ng data centers with no modification to the tenants’ network stack

equiring no modifications on the data-center infrastructure. We

ormulate the multipath forwarding problem as two different prob-

ems: generating disjoint multiple trees, and selecting the tree that

ontains the least used links to forward a new flow. We improve

he network performance summarizing a set of paths on VLAN

rees, taking advantage of the VLAN mechanism that is commonly

vailable in commercial off-the-shelf switches. tpm divides the for-

arding into two phases: an offline multipath configuration phase

hat calculates available multipaths and install them in the virtual

witches, and a fast online multipath selection phase to distribute

ows among the available paths. The multipath configuration is

ased on a genetic algorithm proposed to find disjoint VLAN trees

onnecting all ToR switches. Our formulation of the genetic algo-

ithm uses an innovative representation of trees as a 2-dimenson

ector, which enable a fast convergence of the algorithm. Our ini-

ial solution, before optimization, creates already randomized dis-

oint tree, which fasts the genetic algorithm into reaching the

ptimal solution. The fast online multipath selection phase uses

euristics based on network usage to select the path for a new

ow. The path selection heuristic may use either a local or a global

atabase to keep track of link usage. We demonstrate through sim-

lations that the proposed tpm scheme has better performance

han the conventional equal cost multipath ( ecmp ) scheme in high

orkload scenarios. The experiments show that our formulation of

enetic algorithm is able to find a set of completely disjoint trees,

00% disjoint trees, in typical datacenter topology within a few it-

rations. The simulation results show that the tpm achieves up to

7% and 27% gains when compared to stp and ecmp , respectively. 
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