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a b s t r a c t 

Software Defined Networking (SDN) decouples control and data planes. The separation arises a prob- 

lem known as the controller placement, i.e., how many and where controllers should be deployed. Cur- 

rently, most works defined this problem as the multi-objective combinatorial optimization problem and 

used heuristic algorithms to search the optimal solution. However, these heuristic algorithms have the 

drawback of being easily trapped in local optimal solutions and consuming high time. In this paper, we 

propose an approach named as Density Based Controller Placement (DBCP), which uses a density-based 

switch clustering algorithm to split the network into several sub-networks. As switches are tightly con- 

nected within the same sub-network and less connected from the switches in other sub-networks, we 

deploy one controller in each sub-network. In DBCP, the size of each sub-network can be decided by the 

capacity of the controller deployed. Moreover, the optimal number of controllers is obtained according to 

the density-based clustering. We evaluate DBCP’s performance on a set of 262 publicly available network 

topologies. The experimental results show that DBCP provides better performance than the state-of-the- 

art approaches in terms of time consumption, propagation latency, and fault tolerance. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the introduction of Software Defined Networking (SDN),

the separation of control plane and data plane simplifies the net-

working management and improves its scalability [1] . The con-

troller in control plane manages switches by providing them with

rules that dictate their packet handling behavior. In a large-scale

network, a good placement best utilizes existing network connec-

tivity among the switches [2] . A fast response and reliable con-

nection between the switch and the associated controller is a key

point for SDN networks [3] . A single controller is hard to control

all the switches in a large-scale SDN network, because the capa-

bility of the controller is limited and the propagation latency be-

tween the controller and switches is very large [3] . Currently, most

researches aim to deploy multiple controllers at different locations

to corporately control the whole data plane [2,4–6] . In this kind

of architectures, the placement of multiple controllers becomes a

critical problem. 
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As discussed in some related work, the controller placement

s a complexity optimization problem [7,8] , where the following

actors should be taken into consideration whenever designing a

lacement strategy: 

1) The latency of control signaling. The switches receive the in-

structions on how to forward the new flows. Whenever the la-

tency between controllers and switches reaches a threshold, the

latency on the whole network will increase substantially. In this

case, the controller processing latency is a non-negligible factor

in the total round-trip latency [4] . 

2) The server capacity limitation. Due to the constraints of the

resources such as processors, memory, and access bandwidth,

a commodity server only has the capacity to manage a limited

number of switches. On the other hand, the overload of con-

trollers may decrease the performance of SDN [5] . 

3) The required number of controllers. In large-scale SDN net-

works, a large amount of switches in data plane construct a

complex networks. It is difficult for administrators to figure out

how many controllers should be deployed. Some work uses the

traversal searching method to iteratively find the best perfor-

mance number, which may lead to high time consumption [6] . 

4) Fault tolerance. Unlike the traditional network architecture, the

switches do not have control ability due to the split architec-

ture of SDN. Each switch is assigned a controller. Therefore,

http://dx.doi.org/10.1016/j.comnet.2016.10.014
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Fig. 1. Two examples of controller placement:(a) a star topology data plane and one controller. (b) a three star topologies constructed data plane and three controllers. The 

dotted curves represent the switches clustering result. 
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whenever a switch loses the connection to its controller, it will

no longer receive any new routing instructions and thus drop

all packets [2] . 

5) Inter-controller communication. In multi-controller SDNs, 

each switch is controlled by a specific controller. If a controller

wants to send messages to a switch controlled by another con-

troller, the controllers need to communicate with each other

[9] . Therefore, the inter-controller communication affects the

performance in end-to-end communication between disparate

switches controlled by different controllers. 

To our best knowledge, there is no strategy to take into ac-

ount all these factors for solving the controller placement prob-

em. A well-known controller placement strategy, which is intro-

uced in [3] , motivated by minimizing the propagation latency be-

ween switches and controllers. Without considering the capac-

ty limitation of the controller, this strategy is not always appli-

able. A good placement should minimize the propagation latency,

hereas the load of each controller should not exceed its capacity.

ao et al. [5] defined a Capacitated Controller Placement Problem

CCPP) to consider the controller’s capacity while minimizing the

verage propagation latency. Recently, some work, such as Pareto-

ased Optimal COntroller placement (POCO) [7] and Min-cut strat-

gy [2] , considered the reliability analysis of the networks. How-

ver, these methods cannot be applied to the CCPP problem. 

Actually, the structure of the data plan is an important clue to

nd the optimal placement. As shown in Fig. 1 a, a controller is

eployed at the center switch in a star topology network, which

s the optimal placement. In Fig. 1 b, a data plane is constructed

y three star topologies. In this network, the placement with three

ontrollers is optimal in terms of latency and reliability. 

For this purpose, we propose a new placement approach named

s Density Based Controller Placement (DBCP) to solve the above

roblems. In this approach, we maintain a table of all the switch

ensities and the relevant information, which are newly defined in

his article and will be discussed in detail at Section 3 . Based on

his table, the network is split into several sub-networks by suing

 density-based clustering method [10] according to the network

rchitecture. Then, the best placements of controllers can be se-

ected by traveling all the candidate locations in each sub-network,

nd the SDN network is constructed by connecting all switches to

heir nearest controllers. Our proposed algorithm is a fast response

nd stable solution, which can be easily applied in real networks.

ur critical contributions are as follows: 

1) We use a fast density-based clustering method to cluster the

data plane, where an optimal required number of controllers

can be given. This method is faster for clustering, compared

with the conventional iteration based clustering methods, such

as k-means. 
2) We propose a new strategy, which significantly improves the

performance of control plane. Our experiment results show our

approach is better than the state-of-the-art approaches. 

The remainder of this paper is organized as follows:

ection 2 surveys the related work. Section 3 defines the problem

nd proposes the design of DBCP. Section 4 presents some analysis

egarding the recommended controller numbers and parameter.

ection 5 provides the experiment results. Finally, discussions and

onclusions are presented in Section 6 . 

. Related work 

Since Onix [11] , Hyperflow [12] , and Devoflow [13] were used

s the distributed control architecture to solve the problem of scal-

bility and reliability of SDN, more and more researchers have

tudied the controller placement problem. The controller place-

ent problem (CPP) was first defined in [3] . The CPP problem

ainly concerns on two questions: how many and where con-

rollers should be deployed. It was proved as a NP-hard problem

3] . 

Heller et. al. [3] studied the best controller placement solu-

ions that minimize the controller-to-switch propagation latency,

hich includes the average latency and the worst-case latency (or

aximum latency). Sallahi et. al. [4] considered the cost of con-

rollers, such as the cost of installing controllers, lining the con-

rollers, and linking the controllers together. Both in [3] and [4] ,

hey all used a traversal method to search all the candidate solu-

ions to find the optimal one. Traversal-based methods can pro-

ide the best performance solutions. However, the time consump-

ion is extremely high in a large-scale network. As described in

heir papers, there are a lot of topologies that cannot be solved

ithin 30 hours. Besides, Yao et. al. [5] considered that the load

f the controller should not exceed its capacity, and defined a ca-

acitated controller placement problem (CCPP). To solve the CCPP

roblem, they proposed an advanced capacity K-center algorithm

14] to search the best placement solutions, which travels differ- 

nt k values to find a least k to meet the capacity requirements.

n [15] , Yao et. al. found that the controller placement problem is

 pre-planning problem, where the flow is varied. With the varied

ow, some of the controllers may be overloaded. They proposed

 method to place the controllers at hotspot where the switches

arry the most flow. The switches with low flow can dynamically

igrate from an overloaded controller to the other controller. 

Some other works of CPP considered the reliability of networks.

n [16] , the authors defined a fault tolerant controller placement

roblem (FTCP) and found that the required controller number is

ositively correlated with the number of spokes (nodes with de-

ree one) in a network. Based on these, they adopted a heuristic
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algorithm to compute the placements to meet the reliability and

gave an upper bound on the number of controllers. For the same

problem, Zhang et. al. [2] used a Min-cut method [17] to compute

the maximal disjoint paths to separate the network into several

sub-networks. Given an initial bisection of the network, they try

to find a sequence of switch pair exchanges that leads to a reduc-

tion of the cut size. The cut size is calculated as the number of

links need to be cut to split the network. This process runs recur-

sively until no further reduction can be obtained by changing any

pairs. Then, the controllers are deployed to the centroid in each

sub-network respectively. 

In [18] , Guo et. al. firstly divided a generated hierarchical tree

[19] of nodes into k clusters, each of which is a sub-network man-

aged by a controller. Then, they selected a node with the maxi-

mal closeness to all the other nodes in the sub-network to deploy

the controllers. In [20] , they defined two problems, the controller

placement under comprehensive network state problem (CPCNS)

and the controller placement under single link failure problem (CP-

SLF), to evaluate the reliability of networks, where a traversal algo-

rithm and a greedy-based algorithm are used to find the best so-

lution to meet the requirement of these two problems. In addition,

Hu et. al. [21] compared different methods to solve the reliability

problem, such as l-w-greedy, simulated annealing [22] , and brute

force. They found that the brute force is the best solution without

considering the time consumption. 

Some works solved the CPP with more than one metrics, e.g.

latency and reliability. In [7,8] , they used the heuristics based algo-

rithm [23] to search all the candidate solutions of Pareto-optimal

placements with respect to different performance metrics. Lange

et. al. [7] proposed a framework named as Pareto-based Optimal

COntroller placement (POCO). It explores a subset of the search

space by Pareto simulated annealing (PSA) and return the Pareto

frontier of this subset. The PSA explores search space by moving to

the neighbor placement with a slow decrease in the probability of

adding worse placement to the search space. The multiple objec-

tives and case specific requirements can be added into the evalu-

ation process. The benefit of multiple objectives is that the more

appropriate choices could be obtained by varying the trade-off. 

Most of these works are based on a given number of con-

trollers. However, it is impossible to know, in advance, how many

controllers are required in a large-scale network. The only way to

find this number is to compare the results by traversing all the

candidate numbers, which is infeasible in a large-scale network. 

3. Solution 

The data plane network topology G ( S, L ) contains a set of

switches S and a set of bi-directional links L . In this paper, we de-

fine a link l ij between switch s i and s j as: 

l i j = 

{
1 , if there is a link between s i and s j ; 
0 , otherwise. 

(1)

Different from other methods, we analyze the topology struc-

tures and split the networks into several sub-networks. Obviously,

the switches should have close connections within the same sub-

network, while they should have relatively few connections to the

switches in other sub-networks. The sub-network should be the

least separable network. After splitting, the sub-network has high

fault tolerant performance. At the same time, the sub-network

latency performance cannot be increased dramatically by finer

grained separation. In summary, we can benefit from the network

splitting in the following several points: 

First, we can obtain the optimal number of controllers to be

placed in an arbitrary network. 
Second, we can obtain the relatively stable sub-networks. This

eans we can decrease the probability of deploying a controller at

igh-risk locations. 

Last, the multiple-controller placement problem can be simpli-

ed as the one-controller placement problem, which is easy to

olve. 

.1. Split the network 

In DBCP, we split the network by clustering the switches. For

ach switch s i , we compute two quantities: its local density ρ i and

ts distance δi to switches with higher density. These quantities

nly depend on the distances between switches. The local density

i of switch s i is defined as: 

i = 

∑ 

j 

χ(d i j − d c ) (2)

here the d ij represents the distance between switches d i and d j .

he d c is a threshold distance. Only the distance between switches

ower than d c will be considered as a closed switch. And the func-

ion χ is defined as: 

(x ) = 

{
1 , if x < 0 ; 
0 , otherwise. 

(3)

Basically, ρ i is equal to the number of switches whose distances

o switch s i are less than d c . For large-scale networks, d c is defined

s 0.3 times the graph diameter, which is discussed in detail at

ection 4.2 . 

δi is measured by computing the minimum distance between

witch s i and any other switch with higher density: 

i = min 

j: ρ j >ρi 

(d i j ) (4)

For the switch with the highest density, we conventionally take

i = max j (d i j ) . Thus, the cluster centers are the switches whose δ
re anomalously large. Algorithm 1 shows the details of finding the

lgorithm 1 Analyzing process. 

1. input : G = (S, L ) , d c 

2. k = 0 

3. for s in S: 

4. ρs =GetNumberOfNodesWithinDistance( s , d c , G ) 

5. end for 

6. for s in S: 

7. δs =MinDistanceToHigherDensityNode( s , ρ , G ) 

8. δ̄ = 

1 
| S| 

∑ 

s ∈ S δs 

9. if δs > δ̄: 

10. k + = 1 

11. end if 

12. end for 

13. return k 

ptimal number of controllers, where k represents the optimal rec-

mmended controller number. 

Here, we can set any number of clusters. If the number is

maller than k , the switches with higher ρ and δ will have the

riority of being set as the cluster centers. If the number is greater
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(b) Switch clustering result
for CPP problem
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(c) Switch clustering result 
for CCPP problem

Fig. 2. The clustering results performed by proposed method for different scenarios in the Internet2 OS3E. (The colors represent the clusters.). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

The ρ and δ values of switches in Fig. 2 a. 

Switch number ρ δ Switch number ρ δ

1 4 1 18 7 1 

2 8 1 19 6 1 

3 6 1 20 5 1 

4 6 1 21 7 1 

5 9 3 22 5 1 

6 8 1 23 8 3 

7 6 1 24 6 1 

8 7 1 25 3 1 

9 6 1 26 6 1 

10 6 1 27 6 2 

11 8 1 28 8 1 

12 9 3 29 5 1 

13 7 1 30 5 1 

14 9 1 31 5 1 

15 6 1 32 4 1 

16 10 3 33 4 1 

17 6 1 34 8 1 

Fig. 3. Observation graph for the data in Table. 1 . (The values of ρ are integers, we 

stagger them in order to observation.) 
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c
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c  
han k , all the switches with δ > δ̄ will be set as the cluster centers

nd the other switches with higher ρ will have the priority of be-

oming the cluster centers. After the cluster centers are obtained,

ach remaining point is assigned to the same cluster as its near-

st neighbor with higher density. Here, we assume that the capac-

ty of controllers is not considered, and the cluster assignment can

e performed directly. Algorithm 2 shows the details of clustering

lgorithm 2 Clustering process. 

1. input : G = (S, L ) , ρ , δ

2. input : the number of controller k 

3. max k S=FindTheNodesAsClusterCenter( k, ρ , δ, G ) 

4. for s in S: 

5. if s ∈ max k S: 

6. s belongs to a new cluster 

7. else : 

8. s belongs to the cluster of nearest higher density node 

9. end if 

10. end for 

rocess. 

We use a set of switches shown in Fig. 2 a as an example, which

s named as Internet2 OS2E network 1 with 34 nodes and 41 edges.

ach node represents a switch and each line between switches

epresents the link in Fig. 2 a. We assume that the bandwidths

re the same, so the distances between switches are defined as

he number of the shortest path hops. We set d c = 2 here, which

eans we only consider the switches within 2-hop radius. The ρ
nd δ values of switches are calculated by (2) and (4) respectively.

he results are shown in Table 1 and Fig. 3 . We can see that the

witches 5, 12, 16, and 23 have the highest δ and a relatively high

. So we identify them as the cluster centers. The value of δ and

for switch 27 are higher than the average value, so switch 27

an also be identified as a cluster center. We can cluster the net-

ork into 5 clusters, which means 5 controllers are needed. Some

witches, such as switches 11 and 23, have similar ρ but different

. The switches with lower value of δ are assigned to the same

luster as the close switch with higher ρ value. The higher value

f δ indicates that these switches are far away from the cluster

enter, thus they should be assigned a new cluster center. After

he cluster centers are obtained, the other switches are assigned to
1 Internet2 open science, scholarship and services exchange. http://www. 

nternet2.edu/network/ose/ . 

θ  

l  

l  

c  
he same cluster as its nearest neighbor with higher density. The

esult clusters are shown in Fig. 2 b. In this figure, we can see that

he network is split into 5 parts, and the switches with the same

olor represent a cluster. 

.2. Split the network considering capacity 

In physical networks, the load of controllers also influences the

etwork performance. A Capacitated-DBCP (CDBCP) can be used to

olve the CCPP problem. 

Considering the capacity of controllers, the main problem is the

lusters can’t be as large as it should be. Assuming each controller

has a capacity L ( θ ). The load of controlling switch s is denoted by

 ( s ). L ( θ ) and l ( s ) could be considered as the number of controller

ookups, proactive and reactive flow installation schemes, or the

ombination of them. Then the constraint condition is defined as

http://www.internet2.edu/network/ose/
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Algorithm 3 Clustering process for CCPP problem. 

1. input : G = (S, L ) , ρ , δ

2. input : the capacity of controllers L (θ ) 

3. for s in S: 

4. σs =GetTheBorderlineBasedOnNeighbors(s,G) 

5. end for 

6. sort S according to σ in ascending order 

7. Each switch s forms a cluster N(s ) 

8. for s in S: 

9. Get the neighbor switches with higher or equal ρ of s as 

UL (s ) 

10. sort UL (s ) according to ρ in descending order 

11. for s ′ in UL (s ) 

12. Get the current cluster N(s ) and N(s ′ ) that contain s and 

s ′ respectively 

13. if L (θ ) ≥ ∑ 

s i ∈ (N(s )+ N(s ′ )) l(s i ) : 

14. s belongs to the cluster N(s ′ ) 

15. break 

16. end if 

17. end for 

18. end for 

Table 2 

The ρ , δ, and σ values of switches in Fig. 2 a. 

Switch number ρ δ σ Switch number ρ δ σ

1 4 1 0 .0 18 7 1 0 .0 

2 8 1 0 .0 19 6 1 0 .0 

3 6 1 0 .98 20 5 1 0 .99 

4 6 1 0 .98 21 7 1 0 .0 

5 9 3 0 .0 22 5 1 0 .99 

6 8 1 1 .0 23 8 3 0 .0 

7 6 1 0 .98 24 6 1 0 .99 

8 7 1 0 .0 25 3 1 0 .0 

9 6 1 0 .99 26 6 1 0 .98 

10 6 1 1 .0 27 6 2 0 .0 

11 8 1 0 .0 28 8 1 0 .99 

12 9 3 0 .0 29 5 1 0 .96 

13 7 1 1 .0 30 5 1 0 .99 

14 9 1 0 .0 31 5 1 0 .0 

15 6 1 0 .95 32 4 1 0 .99 

16 10 3 0 .0 33 4 1 0 .91 

17 6 1 0 .0 34 8 1 0 .0 

p  

t

 

c

π  

3

 

t  

n  

p  
follows: 

L (θ ) ≥
∑ 

s ∈ S (θ ) 

l(s ) , ∀ θ ∈ � (5)

where S (θ ) represents the collection of switches in the sub-

network which are controlled by controller θ , and � represents

all the controllers. 

If a cluster contain enough load of controlling and cannot ex-

pand any switches according to the constraints, the other switches

consider the other adjacent clusters or become a new cluster. In or-

der to keep the attribute of the switches in same cluster are closely

connected, we priority considering to assigned the closely con-

nected switches into a same cluster, and the switches which are

at cluster border as candidate switches to fill the clusters which

can expand the size. 

To find the switches at cluster border, we compute another

quantity for each switch: its borderline indexing σ , which repre-

sents the uncertainty of a switch belonging to different clusters.

For each switch, it can be assigned to the linked switch with equal

or higher density . If the densities of equal or higher density neigh-

bors are similar, the σ of the switch is higher, which means it is a

border switch. We use the information entropy theory to calculate

σ i for switch s i as follows: 

d i = 

s j ∈ UL (s i ) ∑ 

j 

ρ j (6)

σi = 

s j ∈ UL (s i ) ∑ 

j 

ρ j 

td i 
log | UL (s i ) | 

ρ j 

td i 
(7)

where the UL ( s i ) represents the set of higher and equal density

switches linked to s i . 

In our clustering assignment, the switches with lower value of

σ have priority. The switch is assigned to the same cluster as its

nearest neighbor with higher density, unless the load of switches

in this cluster exceeds the capacity of the controller. If there is no

cluster to be assigned, the switch becomes a new cluster with it-

self. Algorithm 3 shows the details of clustering the network con-

sidering the capacity. 

Assuming the load of controlling a switch is the same and each

controller can control 6 switches maximum. In Fig. 2 c, we show an

example of switch clustering for the CCPP problem. 34 switches are

split into 7 different clusters, where switches of different clusters

are labeled with different colors. Switch 13 is a single switch in

its cluster, because its neighbor clusters are full and it can not be

assigned to any of them. (Table 2) 

3.3. Controller placement 

After splitting the network, we should place the controllers for

all sub-networks. Note that in each sub-network, only a single con-

troller is deployed. We use the combination of optimal solutions

for each sub-network to approximate the optimal solution for the

whole network. The placement of controllers can be decided ac-

cording to different objective functions. More generally, the latency

and reliability are used. 

3.3.1. Controller-to-switch latency 

For a sub-network graph, the average propagation latency for

the placement location v of controller θ is calculated as: 

π a v glatency (S (θ )) = min 

v ∈ S (θ ) 

1 

| S (θ ) | 
∑ 

s ∈ S (θ ) 

d(v , s ) (8)

where d ( v, s ) is the latency from the controller location v to switch

s , which is defined as the number of hops between them in this
aper. S (θ ) represents the collection of switches should be con-

rolled by controller θ . 

The objective function of the worst-case latency with respect to

ontroller θ is calculated as: 

maxlatency (S (θ )) = min 

v ∈ S (θ ) 
max 
s ∈ S (θ ) 

d(v , s ) (9)

.3.2. Inter-controller latency 

To reduce the communication cost among controllers, the con-

rollers should be deployed as closely as possible. Intuitively, we

eed to minimize the latency among them. However, they are de-

loyed independently. The latency of inter-controller communica-
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Fig. 4. Average latency decreasing ratios of different category topologies at different 

numbers of controller. 

Fig. 5. Worst-case latency decreasing ratios of different category topologies at dif- 

ferent numbers of controller. 
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ion cannot be directly measured by computing the latency among

hem. 

To minimize the latency from a controller to other controllers,

e should deploy that controller as closely as to other sub-

etworks. The latency from a controller to the switch of other sub-

etworks can be measured. So, the minimum latency from a con-

roller to other controllers could be measured by calculating the

atency from its placement to all the other sub-network’s switches.

he objective function of the inter-controller latency with respect

o controller θ is calculated as: 

inter−control l er (S (θ )) = min 

v ∈ S (θ ) 

1 

| S| 
∑ 

s ∈ (S−S (θ )) 

d(v , s ) (10)

here S represents all the switches in the network. 

.3.3. Network reliability 

To evaluate the network’s reliability, we use a failure objective

unction to calculate the average and the worst-case number of

witches that lose their connections to the controller when one or

wo links faults occur. A link fault means that the traffic travers-

ng the link can no longer be transferred over the link. We assume

hat all the links fail independently. The objective function of the

verage controller-loss switch π avgloss is defined as: 

a v gloss (S (θ )) = min 

v ∈ S (θ ) 

1 

| P | 
∑ 

p∈ P 

1 

| S| 
∑ 

s ∈ S (θ ) 

e p v ,s (11) 

here P represents all the link faults. e 
p 
v ,s represents whether or

ot switch s loses its connection 

2 to controller location v and it is

efined as: 

 

p 
v ,s = 

{
1 , if network fault at p, s loss connection to v ; 
0 , otherwise. 

(12) 

he objective function of the worst-case controller-loss switches
maxloss is defined as: 

maxloss (S (θ )) = min 

v ∈ S (θ ) 
max 

p∈ P 

∑ 

s ∈ S (θ ) 

e p v ,s (13) 

One or multiple, possible conflict, objective functions can be

sed to evaluate each switch in a sub-network. We can either find

 best placement or a set of Pareto-optimal placements by using a

raversal method within each sub-network. 

. Analysis on DBCP 

In this section, we analyze the performance of DBCP by using

undreds of topologies in the Internet Topology Zoo, which are

 collection of annotated network graphs derived from the public

etwork maps [24] . We employ this data set because it covers a di-

erse range of geographic areas (regional, continental, and global),

etwork sizes (8–200 nodes), and topologies (line, ring, hub-and-

poke, tree, and mesh). The graphs in the Zoo do not conform

o any single model. All the isolated nodes are removed in these

opologies. 

.1. Evaluation of k 

Since the controller placement was first talked in [3] , the ques-

ion of “how many controllers are needed” is not well solved.

ome works solved this problem by using the least number of con-

rollers to meet the given limitations, such as the controller capac-

ty and the reliability standard. As the controller placement is a
2 Loss the connection is defined as there is no available path between the switch 

nd the controller in whole network. 

t  

r  

c  

t  
ulti-objective combinatorial optimization (MOCO) problem [7] . It

s hard to obtain the optimal number of controllers to be placed

n a network. Generally, if we place more controllers in a net-

ork, the performance will be better. However, an efficient number

f controllers, i.e., the least number of controllers with relatively

est performance, is very important for the controller placement

roblem [3] . To find the point of diminishing return, DBCP divides

he switches into different sub-networks according to the network

tructure. In the following, we analyze how many sub-networks

re needed in a network, and give a recommended number of con-

rollers. 

To evaluate whether the recommended number k is the point

f diminishing return, we test the best average latencies and the

orst-case latencies under different numbers of controllers de-

loyed for all the topologies. The topologies are categorized ac-

ording to the k . Figs. 4 and 5 show the variation of decreas-

ng ratio at different conditions. The decreasing ratio is defined

s (a v glat i −1 /a v glat i ) , where avglat i represents the average latency

hen i controllers are deployed. The closer to 1 the ratio is, the

ower benefit the additional controller brings. In Fig. 4 , the ratios of

 = 1 topologies are closer to 1 after setting the controller number

o be more than 1. The ratio of k = 2 topology is smaller than 0.8

ith two controllers, and is quickly close to 0.9 after setting the

ontroller number to be more than 2. We observe the same phe-

omena in all categories of topologies. When the number of con-

rollers is smaller than k , the corresponding topology ratio is still

elatively small. However, when the number of controllers comes

lose to k , the ratio becomes relatively close to 1. In Fig. 5 , the ra-

io is defined as (maxl at i −1 /maxl at i ) , where the maxlat i represents
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Fig. 6. The number of cluster variation at different d c . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison on time consumption. The required controller numbers are set 

as 2 and 3 to POCO respectively. 
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the worst-case latency when i controllers are deployed. Similar re-

sults prove that k is a reasonable value for the controller number

in all topologies. 

4.2. Evaluation of d c 

The value of d c , the only parameter in our algorithm, affects the

clustering performance of DBCP. To estimate the relationship be-

tween the clustering performance and d c , we set d c to be the val-

ues from 1 to the network diameter to compare the performance

of DBCP. Fig. 6 shows how the number of clusters varies under dif-

ferent d c . Each line represents a topology and the cluster number

uses our recommended k . The value of k is large when d c is too

large or too small. This is because if d c is too small, the density of

each switch is limited in a short radius, which causes switches to

have similar densities and makes the size of the cluster small. If

it is too large, the switches density will approximate to the num-

ber of all the switches, which also makes the size of cluster much

small. When setting d c from 0.3 times diameter to 0.5 times diam-

eter, the results are relatively constant. So, the optimal value of d c 
is from 0.3 times diameter to 0.5 times diameter. Since small d c 
decreases the search time, we set it to be 0.3 times diameter in

our experiments. 

5. Experiment 

In order to evaluate the performance of DBCP, various evalu-

ation experiments are carried out. In the following part, we first

compare the performance among DBCP, Min-cut [2] , and POCO

[7] for the CPP problem. The metrics include time consumption,

latency, and fault tolerance. Then, we compare the performance

between CDBCP and capacity K-center algorithm [5] for the CCPP

problem. We focus on the required number of controllers to meet

the capacity limitation. We do not compare with Min-cut and

POCO, because both of them cannot deal with this problem. The

topology set we adopted is the Internet Topology Zoo, which are

used in last section. 

5.1. Performance of time consumption 

The time consumption of DBCP can be separated into 4 parts:

calculating the density, finding the nearest switch with higher den-

sity, clustering, and finding the controller placements. The time

complexity of density calculation is affected by d c , and the num-

ber of switches n in a network. The high d c leads to a high aver-

age density ρ̄ and high search time, the complexity of this part is

calculated as: O ( ̄ρn ) . The time complexity of finding the nearest

switch with higher density is approximate to O ( n ), because most
witches are close to the switch with higher density and only sev-

ral switches are far from the switch with higher density. For the

lustering part, DBCP traverses all the nodes and assigns the node

o the cluster of its nearest switch with higher density. So the time

omplexity of clustering is O ( n ). To select the best controller place-

ent, we need to traverse all the switches within the cluster, the

orst-case time complexity is O ( n 2 ). The total time complexity ap-

roaches to O ( ̄ρn + n + n + n 2 ) . 

To compare the time consumption of different methods, we

erform DBCP, Min-cut, and POCO at different sizes of network

t the same computing platform. The time consumption of DBCP

nd Min-cut are not changed by varying the controller number

 . As shown in Fig. 7 , the Min-cut and DBCP have similar result.

he time consumption of POCO method is affected by the num-

er of controller dramatically. If only 2 controllers are placed, the

esponse of POCO is very fast. When the number of controller in-

reases, POCO will cost much more time than Min-cut and DBCP.

n addition, both Min-cut and POCO need to traverse all the candi-

ate controller numbers to find the optimal one, so DBCP is much

aster. 

.2. Performance of latency 

.2.1. Controller-to-switch and inter-controller communication 

Firstly, we study two controller-to-switch latency metrics: av-

rage latency and worst-case latency, and one inter-controller la-

ency metric: average inter-controller latency. In the Biznet and

sSignal networks, the Pareto-optimal curves are shown in Figs. 8

nd 9 with 4 and 3 controllers respectively. In these two networks,

BCP and Min-cut approaches achieve better performance than

OCO on the controller-to-switch latency. The POCO achieves the

est performance on inter-controller latency. This is because DBCP

nd Min-cut deploy the controllers in different sub-networks, the

ontrollers cannot be deployed as closely as POCO. However, POCO

educes the inter-controller latency by increasing the latency be-

ween controllers and switches. 

In Fig. 10 , we show the results for all the topologies in Topology

oo on the latency performance between controller and switch.

he points with different colors and shapes represent the results

f the corresponding approaches. All the topology solutions are

hown in the figure. The result of Min-cut is more close to DBCP,

ut it still cannot exceed the result of DBCP. 

.2.2. End-to-end communication 

Here, we study the latency of end-to-end communication be-

ween different switches. It could be separated into 3 successive

arts: the switch-to-controller communication (when a new flow
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Fig. 8. Pareto-optimal curves of Biznet. 

Fig. 9. Pareto-optimal curves of UsSignal. 

Fig. 10. Comparison on all controller placement solutions. (For interpretation of the 

references to color in the text, the reader is referred to the web version of this 

article.) 
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omes into a switch, the switch will send a packet-in packet to

he controller for instructions), the controller-to-controller com-

unication (it may occur if the flow should go through different

ub-networks), and controller-to-switch communication (the con-

roller would send the rule to all related switches). Given the de-

arture switch s i , which is controlled by controller v i and destina-

ion switch s j , the switches in the path between them are Path i, j .

ach switch s m 

in Path i, j is controlled by controller v m 

and the

ontrollers form the set V i, j . The metric to evaluate the latency

erformance is as follows: 

 

latency = 

1 

(| S| − 1) | S| 
∑ 

s i ,s j ∈ S,i � = j 

×{ d(s i , v i ) + max 
s m ∈ Path i, j 

(d(v i , v m 

) + d(v m 

, s m 

)) } (14) 
here S represents all the switches in the network. 

The approaches of Min-cut and DBCP both firstly split the net-

ork, we use the same objective function π latency to find the place-

ents in sub-networks. Given a controller θ and the switches in

he sub-network S (θ ) , the objective function of finding the con-

roller placement v is a combination of the π avglatency , πmaxlatency ,

nd π inter−control l er according to the proportion of 1:1:1, which is

alculated as: 

latency = π a v glatency + πmaxlatency + π inter−control l er 

= min 

v ∈ S (θ ) 

{ 

1 

| S (θ ) | 
∑ 

s ∈ S (θ ) 

d(v , s ) 

+ max 
s ∈ S (θ ) 

d (v , s ) + 

1 

| S| 
∑ 

s ∈ (S−S (θ )) 

d(v , s ) 

} 

(15) 

To the heuristic based approach, POCO, we directly use the

etric m 

latency to find the placements. The comparison results are

hown in Fig. 11 . DBCP achieves the best performance when the

etwork size is larger than 60 switches. When the size of net-

ork is less than 60 switches, POCO achieves better performance

han DBCP. Due to DBCP and Min-cut cannot deploy controllers

s closely as POCO, it decreases the inter-controller latency per-

ormance and affects the end-to-end communications. So the per-

ormance of POCO is better in small size networks. In a larger size

etwork, the number of candidate placements become extremely

arge. POCO is a kind of random global search algorithm, which

s easy to be trapped into the local optimal solution. Min-cut is

n algorithm to find the minimum cut of the network. It does not

onsider the sub-network structures and some switches in a sub-

etwork may not be very close. Therefore, DBCP is more suitable

n large scale networks. 
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Fig. 11. The comparison of average latency on end-to-end communication based on 

different approaches. 

Fig. 12. Average number of controller-loss switches at different sizes of network. 

Fig. 13. Worst-case number of controller-loss switches at different sizes of network. 

 

 

 

 

 

 

 

 

 

 

Fig. 14. An example on Sprint topology. (The blue nodes are the recommended lo- 

cations of controller, the grey node is additional node for increasing fault tolerate 

performance.). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Table 3 

The performance comparison on adding additional controller. 

plan er = 1 er = 2 

π avgloss πmaxloss π avgloss πmaxloss 

DBCP 0 .055 1 0 .143 2 

DBCP+Random 0 .055 1 0 .143 2 

DBCP+Spoke 0 .0 0 0 .019 1 
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5.3. Performance of fault tolerance 

We use the simulations to verify the benefit of DBCP in terms

of fault tolerance in Figs. 12 and 13 . The network fault may cause

some switches to lose their connection to the controllers. The

DBCP can decrease the risk for a network. 

The Fig. 12 shows the results of different methods under dif-

ferent number of faults. er = 1 represents a random link fault oc-

curred in the network. er = 2 represents two random link faults

occurred. The x-axis is the total number of network nodes, n . The

y-axis shows the corresponding π avgloss . A lower π avgloss indicates

a better performance of tolerating the network fault. All the meth-

ods use the same number of controllers, which is recommended
y DBCP. Both DBCP and Min-cut use the best average loss and

he worst-case loss placement solutions to compare with the best

ault tolerate solution of POCO. Generally, DBCP provides the best

olutions among different sizes of network. The value of π avgloss 

an be very high even in the relatively small size network (e.g. the

5 switches network). The network structure can also affect the

erformance of network fault tolerance. As discussed in [2] , com-

aring star, ring, and fat tree structure topologies with the same

umber of nodes, the fault tolerate performance is very different.

he star topology keeps a stable and relatively very low probability

f connectivity loss under different sizes. 

Different from the average connectivity loss, the worst-case

onnectivity loss evaluates the worst-case risk of fault in the net-

ork. A lower πmaxloss indicates that the worst-case risk is lower.

ig. 13 shows DBCP provides the best solutions. Sometimes, the

erformances of these three methods are the same. The πmaxloss 

ncreases with the size of the network and the performance of the

etwork with 75 switches is as bad as that of the network with

00 switches. This indicates the values of πmaxloss is affected by

he size and structure of the networks. 

As discussed above, the DBCP provides the best solution to

uarantee a relatively better fault tolerate performance. However,

f a high quality support network is required, we need to add

ome additional controllers at some switches with high risk, such

s the switches with only one link. For example, a Sprint topol-

gy is shown in Fig. 14 , where each node represents a switch, and

he blue nodes are the locations of controllers that are obtained

y DBCP. Switch 2 is a switch with high risk since it only has

ne link, and if a fault occurs at this link, switch 2 can no longer

onnect to the controllers. So, we add an additional controller at

witch 2. The performance after adding the additional controller is

hown in Table 3 , where “DBCP” represents the original solution.

DBCP+Random” represents the placement after adding a controller

t a random place based on the original solution. “DBCP+Spoke”

epresents the placements after adding a controller at the switch

ith one link based on the original solution. In this table, we com-

are the performance under two scenarios: er = 1 and er = 2 . If we

andomly add an additional controller, it is useless to improve the

ault tolerate performance. On the other hand, if we add a con-

roller on the switch with high risk, the performance is improved
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Fig. 15. The optimal number of controller with the limitation of maximum switch 

number to be controlled by one controller. 
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Fig. 16. The optimal number of controller with the limitation of maximum flow to 

be controlled by one controller. 
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ramatically. When only one fault occurs, no switch loses its con-

ection to the controllers. 

.4. Performance of capacity controller placement 

We compare the CDBCP and capacity K-center algorithm [5] for

he capacity controller placement problem. We consider two kinds

f scenarios. The first scenario is based on the assumption that the

ows are evenly distributed. The capacity is defined as the max-

mum number of switches that can be controlled, which is cal-

ulated as L ( θ )/ l ( s ). The L ( θ ) represents the capacity of controller

nd the l ( s ) represents the load of controlling a switch. The sec-

nd scenario is the flows of links are different and 20% of switches

re randomly selected as popular destinations. The capacity is de-

ned as the maximum flows that can be controlled, which is con-

trained as L (θ ) ≥ ∑ 

s ∈ S (θ ) l(s ) . The S (θ ) represents the collection

f switches in the sub-network controlled by θ , and l ( s ) represents

he flows of controlling the switch s . 

In the experiments, we gradually increase the number of con-

rollers for capacity K-center approach until no overload happens.

DBCP directly uses the recommended number of controllers. We

se the fraction of topologies are not overload at the same number

f controllers to compare the different performance for the capac-

ty constraint. As the first scenario results illustrated in Fig. 15 , to

void overload, 5 controllers are required using CDBCP approach

or 50% of topologies, and at most 20 controllers for all the topolo-

ies, whereas using capacity K-center strategy requires 5 and 23

ontrollers correspondingly. We can see that CDBCP use fewer

ontrollers than capacitated K-center when the topologies require

ore than 5 controllers. In the second scenario, the performance

f CDBCP still better than capacity K-center to the large scale net-

orks. As shown in Fig. 16 , to avoid overload, at most 19 con-

rollers are required using CDBCP approaches for all the topologies,

hereas using capacity K-center approach requires 22. Therefore,

he CDBCP can provide better performance on Capacity Controller

lacement of large-scale networks. This is because the capacity K-

enter algorithm is also one of heuristic based algorithms, and its

ain idea is to iteratively find a node that is furthest from the cur-

ent center until k centers meeting the capacity requirement are

hosen [14] . The drawback of being easily trapped in the local op-

imal solution makes its performance worse than that of CDBCP. 

. Discussion and conclusion 

In this paper, we discuss the problem of controller placement

nd propose a general algorithm, named as Density Based Con-
roller Placement (DBCP), which finds the optimal controller num-

er based on the density clustering and then places the controllers.

e demonstrate that DBCP has several advantages compared with

ther methods. 

First, it provides the fast response and optimal solution. To

btain the solution of controller placement, DBCP only needs to

un the algorithm at one time. In contrary, most conventional ap-

roaches obtain the solutions using an iterative method. Thus, for

he large-scale network, the conventional approaches are infeasi-

le. DBCP uses the density based clustering to analyze the whole

etwork and separate the network into several internal tightly con-

ected sub-networks, which helps to find the global optimal solu-

ion. 

Second, it can be implemented for a variety of applications and

an be easily extended. DBCP only needs to configure one parame-

er d c , thus it can be implemented easily. Also, we can implement

BCP for different applications by changing the distance function

nd the placement objective functions. In this paper, the distance

etween two switches is the shortest path hops. In other applica-

ions, the distance function can be changed as the delay or physi-

al distance. Using different objective functions, DBCP can provide

ifferent solutions to meet the requirements. 

Third, it can be easily deployed in the SDN maintenance stage.

or a SDN network, a variety of reasons lead to the changes of net-

ork structure can occur due to different reasons. We can keep the

alue of ρ and δ, and update the value of the associated changed

odes to redeploy the networks within little cost. 

Additionally, the DBCP full code, which is available at https:

/github.com/hfsun/DBCP , provides a set of APIs to analyze other

etworks and a visualization of controller placement solutions. 
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