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Abstract

In this contribution a global and linear method for controlling the surface mesh quality during node-based shape
optimization is presented. In this method, an artificial stress is applied on the surface mesh and the global linear system
of equations is solved for the equilibrium state by finite elements. The applied stress adapts each element towards a desired
predefined template geometry and at the end a globally smooth mesh is achieved. In this way both the shape and the size of
each element is controlled. Some examples, as well as possible fields of application are shown. At the end, the strength of
the method in shape optimization of computational fluid dynamics problems is described.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Optimal shape design receives great attention in aerospace, marine and automotive industry where the aim
is to minimize a functional that describes mechanical characteristics of the design. A key element in this
process is the definition of the parametrization of the shape. Inspired from engineering design, Computer
Aided Geometric Design (CAGD) methods have been commonly used to represent the shape for both
structure and fluid problems. In this instance, the design parameters of the CAD are the design variables
of the optimization problem. The limited number of design variables allows efficient computation of direct
sensitivities. In contrary, the low number of design variables restricts the design space not being able to
produce all the shape modes needed to capture the optimum.

Adjoint methods provide sensitivity values on every discretization element (cell, point, etc.) almost by the
same cost as the primal problem [1,2]. This motivates the use of enriched design spaces with larger number of
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design variables. In contrast to CAD methods, the node-based shape optimization approach regards the
design space to be as large as possible by considering directly the node positions as design variables. Hence,
the discretization of the design surface is also used to describe the geometry and provides the vertex coordi-
nates as design variables for the optimization problem.

This method suffers from mesh dependent results and non-smooth derivatives which almost always lead to
unphysical and jagged shapes [3]. For this reason various projection methods are suggested which smoothen
the variation of the shape in the “out of plane” direction [4–7]. However, updating the discrete surface only in
the normal direction without regarding any changes in the tangent to the surface direction can lead to high
distortion of the surface elements [5,8,9]. As a result, an “in-plane” regularization step is also required to
ensure the quality of the surface discretization during optimization.

Generally, in the field of mesh quality control there are two main classes of problems: the mesh quality
improvement and the mesh motion problems. In mesh smoothing, the goal is to improve the quality of a
2D or 3D mesh [10–13] whereas in mesh motion problems the resulting 2D or 3D mesh is seeked after moving
a 1D or a 2D boundary respectively [14–16]. In both fields the ideas are similar. As the mesh motion solvers
advance, bigger boundary updates can take place. These larger modifications of the design surface give rise to
the mesh distortion problem of the boundary. For this reason, in-plane regularization methods are required
which deal with retaining the surface mesh quality during the evolution of the shape [5,8].

Within this contribution, a global method which regularizes the surface mesh to a desired condition is pre-
sented. In this method, an artificial stress field is applied on the surface or on the volume mesh and a global
linear system for the equilibrium is solved. The applied stress adapts the shape of each element towards a
desired predefined template geometry and at the end a globally smooth mesh is achieved. In this way, both
shape and size of each element is controlled. The method can be applied on both structured and unstructured
grids since there is no additional assumption on the mesh topology.

The remainder of this article is organized as follows: Section 2 introduces the shape optimization problem
and the in-plane regularization term of the augmented problem. In Section 3, a short overview is given on the
methods used so far for mesh smoothing and mesh quality control. The proposed in-plane regularization
method is discussed in Section 4 and in the next section, the role of the fundamental components of the
method is demonstrated. Finally, numerical results of minimization of power loss in a ducted flow and con-
clusions are presented in sections 6 and 7, respectively.
2. The optimization problem

In general, in node-based shape optimization the shape is described only by the discretization and no other
geometrical link is established. Therefore, the coordinates of the surface nodes are considered to be the design
variables of the optimization problem, since changing the position of the internal nodes will not alter the
shape. More precisely, the position of the surface point can be decomposed into two components, normal
and tangential to the surface, as follows:
xl ¼ xl;n � nþ xl;t � t ¼ sl � nþ rl � t; l ¼ 1; . . . ; ns: ð1Þ
ns is the number of surface nodes and n and t are the unit vectors normal and tangential to the surface at
node l.

Neglecting the discretization error and the finite step size of the optimization, small variations of xl;n in the
“out of plane” direction will cause a change in the shape, while small variation of xl;t in the “in-plane”

direction will only alter the discretization. In other words, xl;n is the shape relevant component sl, while xl;t

is the mesh relevant component rl. For this reason only the normal component sl is regarded as design variable
and consequently in each optimization step only the out of plane direction is updated. However, during this
process the quality of elements could deteriorate and severely distorted elements might appear. In extreme
cases, the elements become degenerate and further progress of analysis is restricted. Hence, a correction in
the “in-plane” direction is required.

For this reason, the optimization problem with response function f, constraints ðgj; hkÞ and variable bounds
ðslower

l ; supper
l Þ for each surface node l is modified as follows:
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~f ðs; rÞ ¼ f ðs; rÞ þ Rðs; rÞ ! min;

s:t: gj ¼ gjðs; rÞ 6 0; j 2 1; . . . ;N j;

hk ¼ hkðs; rÞ ¼ 0; 8k 2 1; . . . ;Nk;

slower
l 6 sl 6 supper

l ; 8sl 2 R; l ¼ 1; . . . ; ns:

ð2Þ
~f is the augmented objective function of the original objective f modified by a regularization term R respon-
sible for retaining the mesh quality. The surface sensitivity of the augmented objective function ~f is:
d~f
ds
¼ df

ds
þ dR

ds
: ð3Þ
The augmented objective function should not alter the problem and since the only shape modifications occur
in the normal to the surface direction, the term R should be modeled such that the shape derivative of the
modified optimization problem is the same as the initial one, i.e.:
d~f
ds
¼ df

ds
: ð4Þ
Here, in order to prevent any influence from the mesh regularization term on the original optimization prob-
lem, we define R such that its derivative with respect to the normal direction is zero. Also, in absence of dis-
cretization errors it holds in the tangent space:
df
dr
¼ 0 and

d~f
dr
¼ dR

dr
: ð5Þ
Of course after discretization, the effects of s and r are not as clearly separated anymore and discretization
errors have to be accepted. Still the regularization term R controls the mesh quality. This term and its mod-
eling is the main focus of this paper.

3. Overview of elliptic mesh quality control methods

Generally, various methods have been developed for mesh smoothing (mesh relaxation) and mesh deforma-
tion. The ideas in these two fields are often similar. The proposed methods for this type of problems can be
geometrically, mechanically or mathematically motivated and the vast majority apply elliptic equations either
for smoothing the mesh or for propagating the motion of a boundary to the domain. Among the elliptic mesh
generators, the Amsden–Hirt and the Thompson–Thames–Mastin grid generators are broadly used [10,17] for
both structured and unstructured grids. Variations of the same operators apply also to mesh motion problems
[16,14].

In the Amsden–Hirt method, the transformation between a square logical domain and the physical surface
which needs to be discretized is sought. This transformation is considered to satisfy the following variational
form:
IAH ¼
1

2

Z Z 1

0

ðg1 � g1 þ g2 � g2ÞdA! min
r
; ð6Þ
where g1 and g2 are the covariant base vectors of the physical domain and the integration is performed over
the square logical domain. Minimization of this functional will lead to the Laplace equation of the transfor-
mation map from the logical to the physical domain. By solving this variational problem, the resulting trans-
formation may have zero Jacobian and non-folded meshes in non-convex domains are not guaranteed [11].
Solved in a local manner the equation reduces to the well know Laplacian smoother.

The Thompson–Thames–Mastin method guaranties non-zero Jacobians for the continuum problem by
solving the same Laplacian problem for the inverse of the aforementioned transformation. Thus, the func-
tional describing the method is the following:
ITTM ¼
Z

X
ðg1 � g1 þ g2 � g2Þda! min

r
; ð7Þ
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where g1 and g2 are the contravariant base vectors of the physical domain and the integration is performed
over the physical space. Unlike the Amsden–Hirt method, this equation leads to a nonlinear system of equa-
tions. Hansen et al. in [18] extended this method for mesh smoothing of unstructured meshes by discretizing
the resulting equation with finite elements and using a metric which incorporates influences from the neigh-
boring elements.

The regularization method presented in the next section is also an elliptic method and is mechanically moti-
vated. It will be shown that in special cases, it reduces to the Amsden–Hirt method.

4. The regularization method

The proposed mesh regularization method is inspired by form-finding which is a method to determine the
free-form equilibrium shape of membrane and shell structures subjected to a certain stress field [19–21]. In
other words, assuming a stress field applied on the resulting structure, the displacement field which brings
the system to equilibrium is seeked. Consequently, since no body forces and surface traction are regarded,
the weak form of equilibrium in the context of geometrical nonlinear analysis reduces to the internal virtual
work done by the predefined stress field:
dwðs; rÞ ¼ dwint ¼ t
Z

a
r0 : d�da ¼ 0: ð8Þ
r0 is the prescribed Cauchy stress tensor components acting on the resulting geometry with area a and � the
Euler–Almansi strain tensor [22]. The membrane stresses are considered constant through the thickness t.
Therefore, the integration is performed on the mid-surface of the structure. When constant isotropic stress
field is applied, the resulting surface is a minimal surface, which is the surface of minimal area content con-
necting given boundaries.

Since the desired internal stress field is given, there is no material description needed and the problem
reduces to a geometrical one even though the formulation is initiated by a mechanical equilibrium. Conse-
quently, the input parameters required for the solution of the form finding problem without external loading
is a set of Dirichlet boundary conditions on a boundary C and a stress field r0 defined on the deformed
geometry.

Again, optimal positions of the shape variables s have to be found. Typically, the tangential mesh related
variables r cannot be eliminated to allow for large changes of shape. They remain as unknowns in the formu-
lation. As a consequence, the resulting problem is singular with respect to the mesh related variables r because
of the non-uniqueness of the discretization [19]. In particular, the reason is that the base vectors of r0 are
related to the unknown geometry and are functions of r as well. Also, the governing equations are non-linear
in s and r.

For the regularization of the problem, the Updated Reference Strategy is suggested [19]. In this method the
problem is solved on the “updated reference geometry” of the form finding step ðiÞ:
dwðs; rÞ ¼ t
Z

Ai
Si : dEdAi ¼ 0; ð9Þ
where S i is the 2nd Piola–Kirchhoff stress tensor acting on the updated reference geometry and E the Green–
Lagrange strain tensor. The updated reference geometry of step ðiÞ with surface area Ai is defined as the inter-
mediate equilibrium shape of the previous step ði� 1Þ. If the stress tensor Si was defined from a “pull back”

operation of the Cauchy stress tensor r0, Eq. (8) would remain unaltered as well as the singularity with respect
to r. Instead, Si is defined by the equivalent components of r0 with respect to the covariant base vectors G i

a of
the updated reference geometry, defined later in the text, which remain fixed in the iteration step ðiÞ:
S i ¼ rab
0

i
G i

a � G i
b: ð10Þ
As a consequence, Eq. (9) is well defined and even linear with respect to s and r and both, the shape and the
mesh are uniquely and smoothly modified during the form finding procedure [23]. As the updated reference
reaches the final shape, the Cauchy stress defined in the actual configuration at iteration step ðiÞ; ri

0 converges
to r0.
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Applying the method, the free-form shape of Fig. 1(b) is obtained for a predefined stress field r0 and a set of
Dirichlet boundary conditions. In this example, the four corner points are fixed and prestressed cables are sup-
porting the edges of the membrane. Furthermore, since Eq. (9) is solved numerically, an initial discretization is
required to initiate the procedure (Fig. 1(a)).

Neither the initial discretization nor the initial geometry influence the final shape obtained by form finding.
However, the discretization describing the final shape is highly influenced by the initial one because of the
update rule for the reference geometry. The initial mesh is the seed of the iteration sequence. For instance,
by changing the initial discretization of the problem of Fig. 1 by adding a refinement (Fig. 2(a)) while keeping
the same set of boundary conditions and prestress, solution of form finding will lead to the same shape, with
the difference that the refinement of the initial mesh is maintained in the final one (Fig. 2). Consequently, the
final mesh is influenced by, and closely related to the initial one, while the final shape obtained with the
method is unique and independent of the initial geometry.

The same principle applies to the mesh regularization method, with the difference that this time the shape
has to be retained and the discretization has to be improved. The point of departure is again Eq. (8). Now, a
“template” or “ideal” element is defined as the reference configuration and the movement is restricted to the
surface directions r since the surface geometry should remain unchanged. The template element describes the
desired shape for each individual element and is described in detail in the next section. The shape is retained by
applying additional Dirichlet boundary conditions normal to the surface for each surface node. In this work
the multi-freedom constraints were implemented based on the master–slave method.

Applying these constraints and numerically solving the equilibrium, leads to a non-singular system of equa-
tions which is linear in the surface tangent space. As a consequence, the proposed method will generate proper
meshes even for large distortions of the surface (or volumetric) mesh after solving one linear system of equa-
tions. Here, Eq. (9) is solved by the finite element method. For this, the discretization is done in the reference
configuration as defined by the template using the isoparametric element concept [22], i.e. the surface geometry
Fig. 1. Initial discretization (a) and final shape (b) after form finding of a 4-point membrane structure.

Fig. 2. Form finding of a 4-point membrane structure with local refinement on the initial mesh.
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and the displacement field are piecewise approximated by the interpolation of nodal coordinates and displace-
ments, respectively:
X ¼
Xn

i¼1

Niðh1; h2ÞX i; u ¼
Xn

i¼1

Niðh1; h2Þui; ð11Þ
where Ni are the standard linear shape functions and n is the number of nodes (Fig. 3). The nodal displace-
ments ui; i ¼ 1; . . . ; n are the unknowns of Eq. (9) and represent in this case the change of the mesh relevant
tangential variable r and the amount that each node should displace in the tangential space in order to reg-
ularize the mesh. Consequently, the position of a surface point in the actual configuration is defined as:
x ¼
Xn

i¼1

N iðh1; h2ÞðX i þ uiÞ: ð12Þ
In this context, the base vectors on the reference and on the actual configuration, respectively are:
Ga ¼
@X

@ha ¼
Xn

i¼1

@Niðh1; h2Þ
@ha X i; ga ¼

@x

@ha ¼
Xn

i¼1

@N iðh1; h2Þ
@ha xi; a ¼ 1; 2: ð13Þ
On this basis, the 2nd Piola Kirchhoff stress and the Green–Lagrange strain are defined in the reference con-
figuration accordingly:
S ¼ SabGa � Gb; ð14Þ

E ¼ EabGa � Gb ¼ 1

2
ðga � gb � Ga � GbÞGa � Gb; a; b ¼ 1; 2: ð15Þ
Hence, taking the variation of Eq. (9) with respect to the unknown displacements um;m ¼ 0; . . . ; dofs and
substituting Eq. (14) and Eq. (15) to Eq. (9), it can be rewritten for each degree of freedom m of the system
as:
t
Z

A
S :

@E

@um
dA ¼ t

Z
A

Sab 1

2
ðga � gb;m þ gb � ga;mÞdA ¼ 0; m ¼ 0; . . . ; ndofs: ð16Þ
This equation system with the displacements ui as the unknowns is linear. The resulting stiffness matrix is:
Kmn ¼
Z

A
S :

@2E

@um@un
dA; m; n ¼ 0; . . . ; ndofs; ð17Þ
Fig. 3. Deformation in the context of geometrical nonlinear analysis.
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whereas the right hand side is:
Rm ¼
Z

A
S :

@E

@um
dA; m ¼ 0; . . . ; ndofs: ð18Þ
The unknown of this system is the update of the displacement Dui and since the initial system is linear, the
problem is solved in one step. In the case that the prescribed stress tensor is symmetric, the stiffness matrix
and the right hand side reduce to:
Kmn ¼
Z

A
Sab � ðga;m � gb;nÞdA;

Rm ¼
Z

A
Sab � ðga;m � gbÞdA; m; n ¼ 0; . . . ; ndofs:

ð19Þ
In the above equations Sab are the components of the predefined 2nd Piola–Kirchhoff stress tensor and
ga;m; a ¼ 1; 2 are the derivatives of the base vectors of the actual configuration with respect to the displacement
of the mth degree of freedom. However, the integration is done in the reference configuration. In the reference
configuration each element is assumed to have an ideal shape, i.e. its template. The individual templates are
acting independently and there is no need that they match geometrically. For instance, as described also in the
next section, the template can be a unit square for each element. Consequently, the calculation of the base
vectors Ga; a ¼ 1; 2, the 2nd Piola–Kirchhoff stress tensor, the Green–Lagrange strain as well as the area A

are evaluated based on this template element.
As it can be seen from Eq. (19) there is no dependency of the stiffness matrix to the unknown displacement

field since the stiffness matrix depends only on the constant predefined 2nd Piola–Kirchhoff stress tensor S and
on the derivatives of the base vectors with respect to the displacements which are constant values as well.
Thus, the problem of in-plane regularization is linear.

As it was discussed earlier, when the method is applied to three-dimensional surfaces, additional Dirichlet
boundary conditions have to be enforced in order to retain the shape. In practice, each node is restricted to
move in the tangential plane to the surface at that point. The tangential plane is calculated by a weighted aver-
aging of the normals of all the elements sharing the node. Here, each normal is weighted by the inverse of the
element area. This averaging results in a more accurate normal direction compared to equally weighted aver-
aging. For instance in a 2D case, the average of the weighted normals of each element around a node points
exactly to the center of a circle passing through the discretization points. Of course, this is only an approxi-
mation and since the movement of each node during the process is finite, the nodes will deviate from the ori-
ginal surface. However, the true surface is usually not analytically given. These deviations are automatically
corrected during shape optimization when the shape in normal direction is simultaneously modified. More-
over, if needed, higher order local approximations of the surface can also be used which of course will damage
the linearity of the problem. In case of corners and sharp edges the nodes are fixed since these areas should be
regarded as features of the initial design which should be retained during regularization.

Furthermore, in the special case of a square initial template for all the surface elements and an isotropic
stress state, the problem reduces to the linear Amsden–Hirt method described earlier. One can easily conclude
this statement by comparing the variational form of the Amsden–Hirt generator given in Eq. (20) and the var-
iational form of the in-plane regularization problem:
U ¼ t
Z

A
S : EdA: ð20Þ
Hence, the method can be regarded as a generalization of the Amsden–Hirt method which offers two addi-
tional mesh control parameters: the ideal (target) element shape which can be individually assigned for each
element and the prestress controlling the size or concentration of the elements. These control parameters are
discussed in detail in the following section.

5. The template element

The kernel of the in-plane regularization method is the proper choice of adequate element reference geom-
etries or “element templates” and the choice of the applied prestress. These are the two handles used during



46 E. Stavropoulou et al. / Comput. Methods Appl. Mech. Engrg. 275 (2014) 39–54
optimization to control the mesh. The template is the ideal shape of each element defined in the reference con-
figuration. Obviously, for a given surface discretization there will not be any modification if the actual element
geometries are taken as templates assuming a unit stress tensor. In any other case, each element will change its
shape towards its template shape in a global sense.

The use of different templates and the role of the predefined stress field S can be demonstrated with the 9-
element example of Fig. 4. In this example the nodes are placed in an irregular distance from each other. Keep-
ing the geometry of the boundaries by applying proper boundary conditions and applying in-plane regulari-
zation using square templates and a unit stress field will lead to the second figure from the top of Fig. 4. Here,
the shape of the elements changes in order to approach the square template in a global sense, conforming the
Dirichlet boundary conditions. Since during this process no element is preferred, the elements cover the same
distances over the span of the geometry and the skewness is automatically corrected.

Changing the applied stress field changes the relative size of elements. In the third figure from top of Fig. 4,
elements 4 and 3 have three and two times more stress, respectively than the rest of the elements. As a result,
these elements will cover three and two times less distance in the spanwise direction of the domain respectively.
In general, higher predefined stress will cause elements to shrink which is a property which can be applied to
achieve local refinements on the boundary or even inside the computational domain.

A more local effect is observed by using a rectangular template with edges as large as the midsegment of
each element. This individual template for each element corrects the skewness locally (Fig. 4). Obviously,
stress adaptation in desired areas can also be achieved.

In evolutionary problems, like in shape optimization or problems with moving boundaries, the goal is to
retain the quality of the initial mesh which usually possesses certain properties like local refinements, boundary
confined element layers and certain growth ratios between the elements. In this type of problems the initial
shape of each element is regarded as the template and throughout the evolution of the process the elements
retain their shape and size independent of the number of steps required to arrive at the specific deformed state.
For instance, by moving the right boundary of the initial example of Fig. 4 together with this type of template
results to the bottom mesh of Fig. 4. It is obvious that after the deformation the elements keep their initial
properties.

The method applies correspondingly to more dimensions. For instance, in Fig. 5(a) a square template and a
unit stress tensor is applied as reference geometry to remove the distortion (noise) from a two-dimensional
Fig. 4. Demonstration of the in-plane regularization method for a simple 9-element example. From top to bottom: initial mesh,
regularization with square templates, regularization with square templates with local refinement, regularization with shearless templates,
regularization with initial templates in a moving boundary problem.
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plane mesh consisting of quad elements. Fig. 5(b) shows the mesh after regularization, i.e. the solution of a
linear system of equations. The same square template was used for every element and the resulting mesh con-
sists of elements which match perfectly the predefined template. In this particular case the topology of the
mesh allows the elements to reach their template shape. In general, this is not the case and thus the method
results in a global compromise after this linear step. As it has been already shown for the one-dimensional
case, changing the applied local prestress, local refinements can be achieved. In Fig. 5(c), the isotropic stress
decrease when the distance to the refinement point increases.

In the same way, proper refinement needed for boundary layer resolution in fluid problems can be achieved
with one linear step starting from any initial mesh. Moreover, as in the one-dimensional case, by assuming for
each element, a rectangular template with edges as large as the midsegment of each element, the skewness of
elements can be reduced. In the next example, the mesh of Fig. 6(a) created by a mesh generator will be
improved using this template. The elements of this mesh are not severely distorted as in the previous example
but still there is a group of elements around the boundary circle which are not well aligned to the boundary.
This type of non orthogonality is a remarkable source of error in numerical simulations, especially in the finite
volume method. In the resulting mesh shown in Fig. 6(b), the first layers of elements around the circle are fol-
lowing the curved lines of the boundary. In Fig. 7 the distribution of the angle of distortion is plotted. Here,
Fig. 6. Regularization of a structured mesh with a hole.
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the angle of distortion is defined as j90� /j, where / is the angle between the midsegments of the quadrilat-
eral. It can be observed that the mesh quality is significantly improved after regularization while more ele-
ments have small distortion angles and the elements with bigger distortion angles are less. The method can
not guarantee non-folded grids when used for mesh smoothing like in this example but in many cases it
can be used to improve the quality of the mesh with a proper choice of individual templates. For problems
with sharp reentrant corners like the ones presented in the Rouge’s Gallery [11], nonlinear procedures are
required and the reader can refer to [13].

These limitations do not apply in the case of evolutionary processes which begin with an initial high quality
mesh which gets distorted during the computation. For this type of problems, the initial shape of each element
can be used as the template as described for the one-dimensional case. Examples of such problems are CFD
simulations with moving boundaries or fluid–structure interaction problems.

As commonly observed in engineering practice, the increase in the curvature of the surface mesh can have
severe effects on the mesh quality. In Fig. 8(a), the resulting mesh of an initially flat surface, after applying a
displacement field normal to the surface in 100 iterations is shown. This can be the case, for example, in a
metal forming process or the inflation of a rubber membrane as anticipated in figure (Fig. 8). The resulting
elements are elongated, even though, the initial mesh had a good quality consisting of square elements of
the same size. Applying the regularization method together with the initial shape of each element as template,
the elements of the deformed shape still have very good aspect ratios (Fig. 8(b)). Moreover, since this method
regularizes the mesh globally, there are no more elements with high aspect ratios, for the price that some of the
elements with perfect initial aspect ratios were slightly deformed (Fig. 9). This is exactly what is desired in
shape optimization, because the low quality elements are the ones which limit the computation. The
Fig. 8. The resulting mesh after a curving process without and with regularization, respectively.



Fig. 9. Distribution of element aspect ratio (ratio of midsegments) on final design with and without regularization.
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transmission from a flat or slightly curved surface to highly curved one is a common incident in node-based
optimization as well.

From all the above, it follows that the choice of the template and the prestress is decisive for each appli-
cation. For optimization problems the most suitable template is the one with the initial shape of each element.

6. Minimization of power dissipation in an S-bend 3D duct

In this section the in-plane regularization method is successfully applied to the shape optimization of a
three-dimensional industrial S-bend (Fig. 10). The air duct used for rear seat ventilation is studied in [24].
The design surface is depicted with green in Fig. 10 and has 8324 nodes and thus design variables s.

The objective function is the dissipated power defined in [25]:
Fig. 10
referen
f ¼ �
Z

C
p þ 1

2
qv2

� �
v � ndC; ð21Þ
where p and v are the pressure and the velocity, respectively whereas v � n is the normal component of the
velocity and C the fluid boundary.

Furthermore, for the shape optimization the node-based approach is applied where the design variables of
the problem are the components perpendicular to the surface at each node and the optimization algorithm is
steepest descent with constant step size. In this case, for the sensitivity analysis, a continuous adjoint method
[25,26] was applied due to its significant advantages over the direct sensitivity analysis [27], using OpenFOAM.
The resulting sensitivity field is not smooth and an explicit Gaussian filtering is performed. After the
. Initial mesh of S-bend with 2081346 finite volume cells. The design surface is marked with green [24]. (For interpretation of the
ces to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 11. Histories for the normalized power dissipation with and without in-plane regularization.

Fig. 12. Shape optimization of S-bend. Failure of the mesh at the 11th iteration without in-plane regularization (a) and final design (43rd
iteration) with in-plane regularization with 27% of improvement of the objective (b).
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Fig. 13. Cross sections at the bend for iterations 11, 22, 33 and 43, respectively.
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optimization update, the in-plane regularization method is applied to improve the quality of the mesh. At the
end of each optimization step the volume mesh is updated by solving the Laplacian equation with variable
diffusion [14].

By applying out-plane and in-plane regularization as already described above, around 27% of improvement
in power loss is achieved (Fig. 11). In this way significant design changes can take place while no kinks, wrin-
kles or any other mesh irregularities appear throughout the computation. The final design is smooth and the
mesh density and quality is maintained (Fig. 12(b)). The evolution of the shape at a cross section located at the
bend of the duct is shown in Fig. 13. In contrary, without in-plane regularization the optimization fails already
at the 11th iteration due to degenerated elements which appear on the bend of the duct as it can be seen in
Fig. 12(a). Fig. 14 displays the surface sensitivity at the initial design as well as at the improved design using
in-plane regularization. The high sensitivity region undergoes the largest deformation. This area is where the
mesh fails when no in-plane regularization is applied. In the final design the high sensitivities are removed
while some sensitivity still remains close to the boundary of the design domain since it should be kept
unchanged during optimization.

In order to study the mesh quality more quantitatively, the proportional change of area of the surface ele-
ments compared to the initial mesh is shown in Fig. 15. The value 0 means that the area of the element has not
been changed and the value �1 shows an element with zero area. Note that Fig. 15(b) refers to iteration 43 and
Fig. 15(a) to iteration 11, at which the case with no in-plane treatment collapses. Although the shape is much
more deformed in 15(b), the elements still have much better quality compared to 15(a).



Fig. 14. Surface sensitivity distribution for the initial and final design.

Fig. 15. Proportional change of element area w.r.t the initial mesh without (a) and with (b) in-plane regularization, plotted on the initial
shape.
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7. Conclusions

In this work, an in-plane regularization method is proposed to retain the quality of surface meshes during
node-based shape optimization. The method is an elliptic method motivated by form finding: A numerical
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method to determine the shape of prestressed membrane structures. Important parameters of the method are
the reference or “template” element and the “artificial” prestress, both of which are defined for each individual
element. On the one hand, the template controls the final shape of each element: each element approaches its
template as close as possible in a global sense. On the other hand, the stress influences the relative size of each
element compared to the rest. Depending on these two parameters, in-plane regularization can be applied for
mesh smoothing, mesh motion and local refinement. The method is tested by various examples and as it is
shown in the final ducted flow example, the in-plane treatment is necessary for keeping mesh quality and
achieving considerable reduction of the objective function values.
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