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Abstract

Meshing rock samples with sheet-like structures based their CT scanned volumetric images, is a crucial component for
both visualization and numerical simulation. In rocks, fractures and veins commonly exist in the form of sheet-like objects
(e.g. thin layers and distinct flat shapes), which are much smaller than the rock mass dimensions. The representations of
such objects require high-resolution 3D images with a huge dataset, which are difficult and even impossible to visualize or
analyze by numerical methods. Therefore, we develop a microscopic image based meshing approach to extract major
sheet-like structures and then preserve their major geometric features at the macroscale. This is achieved by the following
four major steps: (1) extracting major objects through extending, separation and recovering operations based on the CT
scanned data/microscopic images; (2) simplifying and constructing a simplified centroidal Voronoi diagram on the
extracted structures; (3) generating triangular meshes to represent the structure; (4) generating volume tetrahedron meshes
constrained with the above surface mesh as the internal surfaces. Moreover, a shape similarity approach is proposed to
measure and evaluate how similar the generated mesh models to the original rock samples. It is applied as criteria for
further mesh generation to better describe the rock features with fewer elements. Finally, a practical CT scanned rock
is taken as an application example to demonstrate the usefulness and capability of the proposed approach.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

An increasingly used source of information describing rock samples is obtained in the form of 3D images
scanned from realistic entities by using the advanced imaging technology such as the computed tomography
(CT) and the magnetic resonance imaging (MRI). Sheet-like structures (e.g. fractures and veins) widely
distributed in rocks are important sources of material heterogeneity and thus should be particularly addressed
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for better evaluating the geomechanical and flow behaviors. Due to easy generation of regular mesh, most
numerical simulations for volumetric rock images are based on finite difference method [1] and/or lattice
Boltzmann method [2]. While finite element method has more advantages over the finite different method
for the complicated structure analysis especially for those with faults/fractures and sheet-like structures
[3,4]. However, the related unstructured mesh generation remains a quite challenging topic.

Image-based sheet-like structure meshing relies on high quality digital image. Rocks are usually made up of
many constituents, ambiguities may happen if there is no prior knowledge about the constructive minerals.
Besides, partial volume effect is another reason for generating poor quality digital images. Digital imaging
such geomaterials is difficult in itself but gets achievable [5–7]. Segmentation algorithms [8], together with
the CT imaging techniques, are critical for labeling different rock objects and describing fracture structures.
Such algorithms may be sensitive to the local image noise and could not produce reasonable results for the
sheet-like structures due to the thin features if without high enough resolution [9]. Therefore, high-resolution
volumetric images are utilized to capture such geometric features, but such high resolution images lead to a
huge dataset, which may be out of current computer capability to analyze and even visualize [10,11]. Thus
there is an emerging need for generating analysis-suitable meshes for the segmented rock images involving
sheet-like structures, which is also the research focus of this paper.

The mesh generation for 3D images has been studied in many communities [12,13] (e.g. visualization, med-
ical imaging and FEM-based simulation) and is an active subject of a number of on-going studies [5,14–18].
For meshing 3D images, the simplest way is to directly convert voxels into brick elements [14]. However, the
drawbacks of this method are evident, besides of the huge dataset generated, the jagged boundaries lead to
poor results and even errors in simulations [19]. Marching cubes method [20] and its extensions [15,21,22]
are developed to capture interface surfaces and further smooth them for multi-material volumetric dataset.
These algorithms suffer from topological defects, ambiguous structures, and an exponential growth in the ele-
ment numbers with respect to its grid resolution. Alternate image meshing approaches [16,17] based on a Del-
aunay refinement method are recently studied to identify material interfaces and preserve the geometric
features. As the sheet-like objects cause opposite boundaries to be close to each other, there is no guarantee
for the topological correctness of the mesh generated by Delaunay triangulation. Therefore, such approaches
are not acceptable for the problems addressed here. Zhang et al. [5,23] innovatively proposed an octree-based
approach to generate meshes from images. They also designed a surface smoothing strategy [24] to improve
the boundary element quality. The advantage of their approach is the ability of creating quality hexahedral
elements from images. However, automatic hexahedral mesh generation for complex structures is still difficult
and unachievable. In general, the mesh generation for sheet-like structures in rocks is still challenging and cur-
rent image meshing methodologies in computational medicine and biology are not necessarily suitable for
meshing fractures and veins.

Based on the surface meshes generated by marching cubes methods [15,20], mesh coarsening approaches
can further reduce the element number. The existing coarsening algorithms could be roughly classified into
three groups: decimation, scattering and remeshing. The decimation approach [25,26] reduces the number of
elements through a series of elementary simplifications such as collapsing edge and merging face. These
operations are efficient but they could produce a number of thin or flat elements leading to poor mesh
quality. The Vertex scattering technique [27,28] is to firstly scatter vertices on the surface and then smooth
these vertices until a given precision is achieved. Comparing with the decimation method, it could generate
high quality mesh but is quite time-consuming due to the large number of background element required.
The remeshing approach [29–32] could coarsen meshes with a desired element gradation through a
parameterized space, which requires the background surface mesh could be well partitioned. Although these
coarsening approaches could decrease element numbers of the surface mesh, they are not suitable for the
problems addressed here.

A better representation for a sheet-like structure is surface mesh to represent such a thin object. Therefore,
it is necessary to develop a rock image based meshing approach to extract sheet-like structures (major frac-
tures and veins) in rocks and describe them with approximated surface meshes, which ensure capture their
major geometric features by using a limited number of high quality elements.
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2. Implementation for feature extracting and image meshing

The advanced imaging technologies such as CT and MRI all produce 3D images for describing rocks with
complicated structures in more details. The 3D micro-CT scanned rock image used here is formed from a stack
of 2D images in Fig. 1. The unit of 3D image is voxel analogous to pixel in 2D, which has a position as well as
a scalar value representing its material/colour. There scalar values subdivide the volume into regions repre-
senting different components of the scanned rock such as fractures, veins and matrix. The fractures and veins
are known as sheet-like objects, one of their dimensions is much smaller than the other two.

2.1. Simplified centroidal Voronoi diagram (SCVD) construction for sheet-like structures

Given an open set X # RN , and n different generators fzign
i¼1. Let dis(�) denote the distance function on RN ,

the Voronoi diagram (whose dual is well-known as Delaunay triangulation) is defined as fV ign
i¼1:
V i ¼ fx 2 Xj disðx; ziÞ < disðx; zjÞ for j ¼ 1; . . . ; n; j–ig ð1Þ

Centroidal Voronoi diagram is firstly proposed by Du et al. [33] where the generator zi is also the mass cen-
troid of its Voronoi cell:
zi ¼
R

V i
x � qðxÞdxR

V i
qðxÞdx

ð2Þ
where q(x) is a density function of Vi.
In this section, a simplified centroidal Voronoi diagram is proposed based on volumetric dataset. In 3D

rock images, sheet-like objects are represented by a set of voxels sharing the same volume and density, so in
the proposed SCVD construction q(x) = 1 for Formula 2. As the objects have a small thickness and are
somehow equivalent to a plain, we construct Voronoi diagram by propagating Voronoi cells from their gen-
erators in the manner of Breadth First Search (BFS). dis(�) indicates surface distance on sheet-like objects
and Formula 1 is automatically satisfied in the process of BFS. Pseudo-code in Algorithm 1 describes the
simplified Voronoi diagram construction where 6-voxel connectivity is employed. Take a patch in Fig. 2 for
example, Fig. 2(a)–(c) are three stages from the generators to the final Voronoi cells.
Algorithm 1: simplified Voronoi diagram construction
Treat voxels linked with zi as the initial Voronoi cell Vi

WHILE there is a voxel not belonging to fV ign
i¼1

FOR EACH Vi in fV ign
i¼1

Progress Vi by one voxel in the manner of BFS
END

END
SCVD is an approximate implementation of centroidal Voronoi diagram, which bases on the theory
proposed by Du et al. [33]. Firstly, n Voronoi generators fzign

i¼1 are randomly selected from the voxels
on sheet-like objects in rock images. Then locations of these generators are iteratively optimized by
Formula 2 until the energy error [33] is achieved. The generator number n is calculated by the following
formula.
n ¼ Cvol

V vol
; V vol ¼ t � ð1þ 2 � r � ðr � 1ÞÞ ð3Þ
where Cvol is the total volume of the structure, t is the average thickness and r is the customized radius of
a Voronoi cell. As Cvol and t are known, r is the only variable to define the generators as well as the
SCVD.



Fig. 1. The micro-CT scanned digital image of a rock block with the size of 1012 � 1024 � 931. The matrix is in grey and sheet-like
structures are in back.

Fig. 2. Simplified Voronoi diagram construction: (a) a patch and its generators; (b) the growing Voronoi cells; (c) the finial Voronoi
diagram.
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2.2. Feature extraction

In practice, sheet-like objects have different sizes and shapes thus they affect the rock mechanical behavior
in different ways. Feature extraction is necessary for the reduction of the structure complexity, which keeps
major objects and removes small entities. The small entity removal is governed by a customized volume cri-
terion M, which identifies disconnected objects smaller than M and removes them. Such a criterion will cause
two problems in feature extraction: (1) major objects represented by a set of small entities will not be recog-
nized and (2) small entities intersecting with major objects will not be removed. In this paper, an object rep-
resented by a number of small disconnected objects is named as potential object and a structure consisting of
intersecting objects is called crossing structure. The workflow for the feature extraction is demonstrated in
Fig. 3, where potential object detection and geometric feature recovery are achieved by extending operation,
crossing structure separation is implemented by separation operation and dilation/erosion algorithms are
involved in the above operations. The following of this section will focus on introducing separation and
extending operations. As dilation/erosion algorithms [34] are general in image processing, they are not further
discussed in this paper.
2.2.1. Separation operation

Before separation, dilation/erosion algorithm is involved to refine the sheet-like objects by a thickness t.
Then we specify a Voronoi cell radius r and use Formula 3 to calculate Voronoi generator number. In practice,
the choice of t and r depends on the sheet-like object morphology and the rock image resolution. In the next



Fig. 3. Workflow for feature extraction.
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step, we construct a SCVD on the crossing structures and generate corresponding triangles. The separation
operation is achieved based on these triangles.

Algorithm 2: separation operation
Dang is a customized dihedral angle threshold
A generator z is flat only if no dihedral angle between its linked triangles smaller than Dang

FOR EACH z in fzign
i¼1

IF z is marked CONTINUE
IF z is not flat CONTINUE
Mark z and put it into a set CZ
Increase CZ by its adjacent generators which are not marked but flat and mark the generators once they
are pushed into CZ
Export CZ as a single piece

END

Specifically, we show the details of the separation operation on a pair of crossing patches in Fig. 4. Firstly,
crossing patches are extracted from a 3D rock image as shown in Fig. 4(a). Then a SCVD is constructed in
Fig. 4(b) by Algorithm 1 with r = 5. The number of generators in this diagram is 147 and corresponding tri-
angles in Fig. 4(c) are generated. In the last step, we choose Dang = 150� and make the current structure apart
by Algorithm 2. In fact, the separation operation removes voxels on the intersection. As shown in Fig. 4(d),
the operation creates a hole on one patch which is labeled as A and breaks the other patch into two discon-
nected objects B and C.

2.2.2. Extending operation

For a patch, its tangent and normal directions are required for the extending operation in the processes of
potential major object detection and geometric feature recovery. Nevertheless, such sheet-like objects in 3D
images consist of a set of voxels that have no tangent or normal information. We apply triangles generated
from the SCVD to extend the patches roughly along their tangent direction.



Fig. 4. Separation operation: (a) two patches intersecting with each other; (b) the SCVD; (c) the generated triangles; (d) three disconnected
objects.

Fig. 5. Voxel predication for extending operation: V is a voxel to be predicated; Z is a generator and n
*

is its normal; v
*

is the vector from Z

to V; the thickness is 2t; R is a customized radius.
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To extend a patch, the SCVD and its corresponding triangular mesh are previously constructed. In Fig. 5,
Z is a generator and n

*
is the normalized average normal of triangles linked Z. V is a voxel near Z and v

*
is the

vector from Z to V. The criterion of whether V could be extended is
j v* � n* j < tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j v* j2 � j v* � n* j22

q
< R

8<
: ð4Þ
where 2t is the thickness of the patch and R is the customized radius for the extending operation. Z, t and R
define a flat cylinder as shown in Fig. 5 and voxels acceptable for extension are within this cylinder. For the
extending operation in geometric feature recovery, there is an additional criterion which is the potential voxel
must belong to corresponding objects of the original digital image.

Applications of extending operation for potential object detection and geometric feature recovery are dem-
onstrated in Figs. 6 and 7 respectively. Fig. 6(a) is a set of disconnected objects that are separated with each
other. We use the parameters t = 1.5 and R = 7 to perform the extending operation in this application. From
Fig. 6(a) to (c), the objects are roughly extended along their tangent directions and finally merged into one.
Fig. 7(a) is the separated object A in Fig. 4(d) where the gap highlighted is produced by the separation oper-
ation. The gap is shrunk in Fig. 7(b) by the proposed extending operation using parameters t = 1.5 and R = 7.
Fig. 7(c) is the result of this operation where the gap disappears and the geometric shape is recovered.

2.3. Mesh generation and shape similarity measurement

2.3.1. Surface and volume mesh generation

The surface mesh generation for the sheet-like structures is based on the SCVD. The generating route is
similar to the Delaunay triangulation but ambiguities caused by the fuzzy cell boundaries in SCVD need to



Fig. 6. Potential object detecting: (a) is several disconnected objects in the rock image; from (a) to (c) these objects are merged into a whole
piece through the extending operation.

Fig. 7. Geometric feature recovery: (a) is the disconnected object in Fig. 4(d); from (a) to (c) the geometric feature is recovered by the
extending operation.
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be further refined. In Fig. 8, A, B, C and D represent IDs of Voronoi cells and the dots represent voxels within
a cubic. For a regular case, in Fig. 8(a), there are only three IDs in the cubic and a triangle is constructed by
connecting the corresponding generators. For an ambiguous case, in Fig. 8(b), more than three IDs exist in the
cubic and the constructed triangles will cause a topological defect.

An amending strategy is proposed here to remove such ambiguity in triangular element construction. As
shown in Fig. 9(a), the SCVD has four generators A, B, C and D and the ambiguity is highlighted in a black
circle. The amending strategy is processed during the SCVD construction. Specifically, two generators are
Fig. 8. Triangular element construction: (a) a regular case and (b) an ambiguous case.



Fig. 9. Amending strategy for triangular element construction: (a) the SCVD with ambiguity; (b)–(f) the proposed amending process.
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connected whenever their corresponding Voronoi cells meet each other in the propagation. In Fig. 9(b)–(e),
B–D, C–D, A–C and A–B are connected serially and a polygon ABCD is constructed simultaneously. Based
on the polygon, triangles ACD and ABD in Fig. 9(f) are created.

We serve the generated triangular meshes serve constraints then apply a constrained Delaunay tetrahedral-
ization to generate the corresponding volume mesh. The whole mesh generation procedure is demonstrated in
Fig. 10(a)–(c) with the following steps: (1) constructing SCVD; (2) constructing triangular mesh for the object;
(3) generating volume mesh through Delaunay tetrahedralization with vein surface constraints.

2.3.2. Shape similarity measurement

Shape similarity measurement is crucial for evaluating how the generated mesh model is close to the input
3D image. For a surface mesh, each element has a thickness value, which is gained from the input image. Spe-
cifically, each voxel belonging to sheet-like structure has a thickness value, obtained by the smallest thickness
in its three directions. The thickness of a triangular element is the average thickness of voxels intersecting with
it. Letting the triangle be the mid plane and its thickness be the height, a prism is constructed for the element.
We convert each element of the surface mesh to a volumetric representation by labeling voxels within its
prism. Then a volumetric description of the surface mesh is generated. Compared with the input image, voxels

of the mesh volumetric representation could be grouped into two sets: Cin
mesh coincident with the input image

and Cout
mesh different from the input image. Taking into account both Cin

mesh and Cout
mesh, a similarity measurement is

defined as:
Similarity ¼
Cin

mesh

�� ��� Cout
mesh

�� ��
jCimagej

ð5Þ
where Cimage is the set of sheet-like objects in the input image and operator |�| calculates the number of voxels.
The range of the similarity is [1.0,�1] and a larger value denotes better matching with the original data.



Fig. 10. Mesh generation: (a) the SCVD; (b) the triangular mesh; (c) the volume mesh with surface constraints.
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3. Numerical applications

The proposed sheet-like structure extraction and related mesh generation approaches are designed for 3D
rock images with complex fractures and veins. Numerical applications based on scanned rock images in prac-
tice are presented as below to demonstrate these techniques in detail.

The first example (Fig. 11) is a part of sheet-like objects extracted from a 3D rock image. The major structure
consists of patches with different sizes and a number of holes/gaps as shown in Fig. 11(a). Firstly, the extending
Fig. 11. Sheet-like object extraction and its surface mesh generation: (a) the input objects; (b) detected major entities; (c) structure
separation; (d) minor objects removal; (e) geometric recovery; (f) the surface mesh.



Fig. 12. A 3D rock image meshed with different element sizes: (a) the 3D rock image with the size of 1012 � 1024 � 931; (b) the internal
sheet-like structures; (c) the major objects; (d)–(f) are triangular meshes generated by different Voronoi cell radii where the major sheet-like
objects are in white and the outside rock boundaries are in golden.
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operation is applied to detecting potential major entities and the result is shown in Fig. 11(b). The detected
objects including a big flat shape and two small patches (highlighted in black circles) intersect with each other.
In the next step, the structure is separated into several pieces and the progression itself generates gaps (in
Fig. 11(c)) at the intersection where objects meet. In Fig. 11(d), the smallest piece is removed, which induces
a gap highlighted by a black circle on the big object. In the next stage, the gap is filled by the geometric recovery
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process and the major structure of the objects is clearly identified in Fig. 11(e). Finally, a triangular surface
mesh is generated in Fig. 11(f), which approximates the major structures in Fig. 11(a).

The second example is a rock image with the size of 1012 � 1024 � 931 in 3D (Fig. 12(a)). The rock has
complex internal structures as shown in Fig. 12(b). The major objects extracted in Fig. 12(c) are utilized to
represent the model for the further analysis. Figs. 12(d)–(f) show the ability of the proposed method to control
element size and quantity in meshing rock images (where sheet-like objects are in white and rock boundaries
are in golden). Table 1 gives an overview of element size, number and similarity between the meshes and its 3D
image model in Fig. 12(c). The features of the generated mesh is controlled by Voronoi cell radius r in For-
mula 3, where with the increasing of r, the element number is reduced, but the similarity is also decreased
(Table 1).

A chart in Fig. 13 is obtained through meshing the rock structures in Fig. 12(c), which further reveal the
relationship between Voronoi cell radius r and the corresponding mesh similarity. One important aspect must
be mentioned is the thickness of the objects. On one hand, once r is close or less than the thickness the pro-
posed algorithm assembles the structure into small pieces (due to Dang in Algorithm 2) which will be later
removed. On the other hand, if r is much larger than the thickness some details of the structure are lost.
As the average thickness of the objects in Fig. 12(c) is 5, Voronoi cell radius r = 7 is the best choice with
respect to the highest shape similarity 64.57%, which generates a surface mesh with 69,394 elements. Consid-
ering the image models in the form of grids, evenly sampling the grids to reduce image resolution could sim-
plify the model and reduce its dataset scale, but the similarity will drop dramatically as shown in Table 2.
Additionally, the resolution reduction approach is not as effective as the proposed image meshing algorithm
in representing sheet-like structures for visualization. Compared with the mesh model with r = 7, grid models
Table 1
Summary for surface meshes in Fig. 12(d)–(f).

Fig. 12 (d) (e) (f)

Voronoi cell radius 11 51 107
Element size 14.88 66.49 135.75
Element number 40204 1777 368
Similarity 63.28% 29.46% 11.66%

Fig. 13. Relationship between shape similarity and Voronoi cell radius: the highest similarity is 64.57% when the Voronoi cell radius is 7.

Table 2
Grid model for Fig. 12(c) with different sample rates.

Sample rate 1 2 3 4 P5

Similarity 100.0% 65.5% 37.8% 15.4% 60.0%
Grid quantity 9.6 � 108 1.2 � 108 3.6 � 107 1.5 � 107 7.7 � 106
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whose sampling rates are larger than 2 have a lower similarity and a larger grid number. Although the sim-
ilarity of grid model with sampling rate 2 is comparable with the mesh mode similarity, its grid quantity is
9.6 � 108 which is 1.4 � 104 times as much as that in the mesh model.

Besides visualization, another important application of the proposed method is numerical simulation,
which needs a volume mesh model rather than a surface mesh to describe the rock and its sheet-like structures.
Mesh with shape similarity above 60% could be considered as an acceptable approximation of the rock image.
According to the chart in Fig. 13, we choose surface meshes generated by r = 15 where the similarity is 60.3%
and the mesh for the major sheet-like structure is individually shown in Fig. 14(a). In fact, the proposed sim-
ilarity calculation method is a strict measurement. Fig. 14(b) includes both the surface mesh Fig. 14(a) and the
input 3D image Fig. 12(c), where the mesh almost completely approximates the structure from the aspect of
visualization. Fig. 14(c) is the surface mesh with its thickness property. Elements with 0 thickness indicate
holes or gaps for the input image model. Taking the surface mesh and corresponding rock boundaries as con-
Fig. 14. Mesh generation for a rock image: (a) surface mesh of the main structure; (b) surface mesh with the input image; (c) surface mesh
with thickness property and (d) the volume mesh with 28,631 nodes and 143,901 elements.



Table 3
Element quality for Fig. 14(d).

Quality measurement Minimum quality Average quality Regular tetrahedron

Minimum dihedral angle 8.18� 49.06� 70.53�
Gamma quality 0.14 0.81 1.00
Edge aspect 0.20 0.66 1.00
Radius aspect 0.06 0.84 1.00
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straints, a tetrahedral mesh Fig. 14(d) is constructed by the in-house developed mesh generator. The surface
mesh is consistent with the volume mesh, shown in the close-up in Fig. 14(d). The volume mesh has 28,631
nodes as well as 143,901 elements. In general, compared with grid models, the generated volume mesh achieves
a better similarity with fewer elements with respect to Table 2.

In Table 3, four methods [35,36] are adopted to measure the element quality of the generated volume mesh
in Fig. 14(d). Statistics in Table 3 show that the average element qualities of the generated mesh are close to
the regular tetrahedron. Consequently, the generated volume mesh model is considered as analysis-suitable for
finite element simulation.

4. Conclusions

In this paper, a new mesh generation approach for 3D rock images with fractures and veins is proposed to
generate both surface and volume meshes for rocks involving complicated sheet-like structures. Comparing
with grid models, the proposed algorithm can generate meshes with less element number to approximate inter-
nal sheet-like structures within rock samples. For the rock sample, the ratio between the tetrahedral mesh ele-
ment number and the grid number is 1:6704. A shape similarity measurement is also proposed and the optimal
Voronoi cell radius used for generating surface mesh for the rock sample is 7 with the corresponding similarity
64.57%. In practice, surface meshes with shape similarity above 60% are considered as close approximations
for the sheet-like structures. Our numerical experiments show that this technique is more effective than the
direct resolution reduction with regard to both shape similarity and element quantity. Moreover, the gener-
ated surface mesh can be utilized as constraints to generate corresponding volume mesh. The element quality
of the volume mesh is high concerning a variety of measurements and the element quantity is reasonable for
future finite element simulations. In general, the generated mesh models are competitive with grid models and
have wide applications in both visualization and finite element simulation.
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