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Abstract

For the response analysis of uncertain acoustic fields with limited information, two hybrid uncertain models have
been developed. One is the hybrid probability and interval model in which the probability and interval variables exist
simultaneously. The other one is the hybrid interval probability model in which some distribution parameters of
probability variables are expressed as interval variables. For the unified response probability distribution analysis of
acoustic fields under two hybrid uncertain models, an inverse mapping hybrid perturbation method (IMHPM) is proposed.
In IMHPM, the responses of two hybrid uncertain acoustic fields are converted to invertible functions of probability
variables based on the Taylor series expansion. According to the inverse mapping relationships between responses and
probability variables, the formal expressions of the response probability distributions are yielded on the basis of the
change-of-variable technique. The variational ranges of the response probability distributions are estimated by the interval
perturbation technique. The effectiveness and efficiency of the proposed method for the unified response probability
distribution analysis of two hybrid uncertain acoustic fields are investigated by a numerical example.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In the last several decades, the numerical method for the response analysis of the acoustic field with
deterministic parameters has achieved great attention [1]. However, due to the influences of model inaccura-
cies, physical imperfections, multiphase characteristics of materials and unpredictability of environment,
uncertainties existing in acoustic fields are unavoidable. The responses of uncertain acoustic fields are very
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sensitive to these uncertain parameters. The traditional mathematical model used to treat uncertain parame-
ters is the probability model. In the probability model, probability distributions of uncertain parameters are
unambiguously defined on the basis of available information. For the response analysis of acoustic fields with
probability variables, a lot of probabilistic approaches have been developed. James and Dowling proposed a
field shifting approximation technique to evaluate the probability distribution of the computed field amplitude
under known environmental uncertainties [2]. Finette et al. introduced the spectral stochastic method to
predict the ocean acoustic propagation in an uncertain waveguide environment [3,4]. The field shifting
approximation technique and the spectral stochastic method are approximate methods. Recently, the
change-of-variable technique is introduced to calculate the analytic solution of the probability distribution
of the array beam power of the acoustic field in the uncertain ocean environment [5]. The application precon-
dition of the change-of-variable technique is that the response of the acoustic field with probability variables
has to be an invertible function. For complex acoustic fields, this application precondition may be not satis-
fied. Based on the stochastic perturbation method and the change-of-variable technique, a change-of-variable
stochastic perturbation method has been proposed for the response probability distribution analysis of com-
plex random acoustic fields [6] and complex random structures [7]. From the overall perspective, probability
methods have achieved significant successes in the response analysis of acoustic fields with probability vari-
ables. The main advantage of these probability methods is that the response probability distributions of acous-
tic fields can be obtained. The common disadvantage of these probability methods is that the precise
probability distributions of uncertain parameters have to be available. Unfortunately, in most cases, the infor-
mation to construct the precise probability distributions of uncertain parameters is limited.

For the response analysis of the acoustic field with limited information, the interval model can be
employed. In the interval model, the uncertain parameters are expressed as interval variables whose varia-
tional ranges are well-defined. The interval model was firstly applied to the response analysis of uncertain
structures. If the responses of structures with interval variables can be defined as non-convex problems, the
vertex method can be employed to calculate their exact response intervals [8,9]. The vertex method has two
inherent disadvantages. The first one is that its computational cost increases exponentially with the increase
of the number of interval variables. The second one is that the extreme values which are not at the vertexes
cannot be considered. With the matrix perturbation technique and the interval extension theory, the interval
perturbation method has been applied to the static response analysis, the dynamic response analysis and the
eigenvalue analysis of structures with interval variables [10–15]. Recently, the interval perturbation method
was developed to evaluate the response variational ranges of acoustic fields with interval variables [16–18].
The main shortcoming of the interval model is that only the response variational ranges can be yielded.
The response probability distributions in variational ranges are missing.

To keep the advantages of the probability model and the interval model simultaneously, two hybrid uncer-
tain models have been developed. The first one is the hybrid probability and interval model. In the hybrid
probability and interval model, the uncertain parameters with sufficient information to construct the corre-
sponding probability distributions are treated as probability variables, while the uncertain parameters with
limited information are treated as interval variables. Significant successes have been achieved in the hybrid
probability and interval model. The stochastic seismic analysis of buildings with interval mass distributions
was done by Cacciola et al. [19]. The probabilistic characteristics of the stationary stochastic response
(mean-value vector, power spectral density function and covariance matrix) of structures with interval param-
eters under random excitation were investigated by Muscolino and Sofi [20–22]. The uncertainty propagation
of uncertain systems with both probability and interval variables was investigated by Zaman et al. [23]. The
reliability of uncertain structures with both probability and interval variables was investigated by Qiu and
Wang [24]. Recently, a random interval perturbation method for the response analysis of uncertain structures
with both probability and interval parameters was proposed by Gao et al. [25,26]. Based on the work of Gao
et al., two numerical methods named as the hybrid perturbation Monte-Carlo method and the hybrid pertur-
bation vertex method have been developed by Xia et al. [27].

The second type of the hybrid uncertain model is the hybrid interval probability model. In the hybrid inter-
val probability model, the uncertain parameter is treated as the probability variable whose distribution param-
eters with limited information can only be given variation intervals but not precise values. Some significant
successes have also been achieved in the hybrid interval probability model. Based on the classical reliability
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theory and the interval analysis technique, the failure probabilistic intervals of structures with interval prob-
ability variables were evaluated by Qiu et al. [28]. By combining the Monte-Carlo simulation process into the
interval analysis, the variational ranges of the system reliabilities of structures with interval probability vari-
ables have been investigated by Zhang et al. [29,30] and Hurtado [31]. To obtain the variational ranges of
expectations and variances of responses of acoustic fields and structural–acoustic systems with interval prob-
ability variables, an interval random perturbation method has been developed by Xia et al. [32,33].

Though significant developments have been achieved in two hybrid uncertain models, some important
issues remain unsolved. First, the unified numerical method which can be used for the response analysis of
acoustic fields under two hybrid uncertain models is still unreported. The common element of two hybrid
uncertain models is that probability variables and interval variables exist simultaneously. Based on this com-
mon element, we have reasons to believe that a unified numerical method can be developed for the response
analysis of acoustic fields under two hybrid uncertain models. Second, in the earlier researches done by Xia
et al. [27,32], only the variational ranges of expectations and variances of responses of acoustic fields under
two hybrid uncertain models were obtained, while the response probability distributions of acoustic fields
under two hybrid uncertain models are still not investigated. However, the response probability distribution
plays an important role in the engineering practice. For example, if the response probability distribution is
known, the relative likelihood of response at any value can be obtained. Furthermore, based on the response
probability distribution, the cumulative distribution and the confidence interval of response can be yielded.
Thus, it is desired to develop a new hybrid uncertain method for the unified response probability distribution
analysis of acoustic fields under two hybrid uncertain models.

In this paper, a new numerical method named as the inverse mapping hybrid perturbation method
(IMHPM) is proposed for the response probability distribution analysis of acoustic fields under two hybrid
uncertain models. The main computing process of IMHPM is divided into two steps. The first step is the prob-
ability analysis in which the uncertainties of probability variables are considered, while the uncertainties of
interval variables are temporarily neglected. The second step is the interval analysis in which the uncertainties
of interval variables are considered. In the probability analysis, the responses of two hybrid uncertain acoustic
fields are converted to the invertible functions of probability variables based on the Taylor series expansion.
According to the inverse mapping relationships between responses and probability variables, the formal
expressions of the response probability distributions are yielded by using the change-of-variable technique.
In the interval analysis, the variational ranges of the response probability distributions are estimated by the
interval perturbation technique. The effectiveness and efficiency of IMHPM for the unified response probabil-
ity distribution analysis of two hybrid uncertain acoustic fields will be investigated by a numerical example.

2. Two hybrid uncertain acoustic fields

2.1. Hybrid uncertain acoustic field with both probability and interval variables

An acoustic field X is encircled by the boundary C is shown in Fig. 1. The boundary C is divided to three
parts: the pressure boundary CD, the normal velocity boundary CN and the normal impedance boundary CR.
Fig. 1. An acoustic field model.
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The steady-state acoustic pressure p in the acoustic field governed by the Helmholtz equation can be
expressed as
Dp þ ðx=cÞ2p ¼ 0 ð1Þ

where D is the Laplace operator; x is the angular frequency; c is the sound speed.

The pressure boundary condition CD, the normal velocity boundary condition CN and the normal imped-
ance boundary condition CR can be expressed as
p ¼ pD on CD

n � rp ¼ �jqxvn on CN

n � rp ¼ �jqAnp on CR

ð2Þ
where pD is the sound pressure on the pressure boundary CD; j ¼
ffiffiffiffiffiffiffi
�1
p

is an imaginary unit; n is the exterior
unitnormal vector; q is the density of the fluid in the acoustic field; vn is the normal velocity applied on the
normal velocity boundary CN; An is the admittance coefficient that models the structural damping on the nor-
mal impedance boundary CR.

Based on Eqs. (1) and (2), the finite element equation of the acoustic field can be expressed as
ðK� x2Mþ jxCÞp ¼ F ð3Þ

where K, M, C and F stand for the acoustic system stiffness matrix, mass matrix, damping matrix and load
vector, respectively. They can be expressed as
K ¼
XNcell

i¼1

Z
Xi

ðrNÞTðrNÞdX;

M ¼
XNcell

i¼1

1

c2

Z
Xi

NTNdX;

C ¼
XNcell

i¼1

qAn

Z
Ci

R

NTNdC;

F ¼ �j
XNcell

i¼1

xq
Z

Ci
N

NTvndC

ð4Þ
where the summation represents an assembly process of the system matrices and vectors; Ncell is the total num-
ber of elements; Xi is the ith element in the acoustic field; Ci

R ¼ CR \ Xi is the normal impedance boundary CR

which is related with element Xi; Ci
N ¼ CN \ Xi is the normal velocity boundary CN which is related with the

element Xi; N is the Lagrange shape function of the isoparametric element.
Assuming the acoustic dynamic stiffness matrix is Z, which can be expressed as
Z ¼ K� x2Mþ jxC ð5Þ

then the finite element equation of the acoustic field can be rewritten as
Zp ¼ F ð6Þ

Due to the influences of model inaccuracies, physical imperfections, multiphase characteristics of materials

and unpredictability of environment, uncertainties existing in the acoustic field are unavoidable. The uncertain
parameters, whose probability distributions are well determined, can be modeled as probability variables. The
uncertain parameters, whose variational ranges are well defined but the probability distributions within var-
iational ranges are lost, can be modeled as interval variables. The probability vector composed of probability
variables is marked as a = {a1,a2, . . . ,ar, . . .}T. r = 1,2, . . . , l1. l1 is the number of probability variables. The
interval vector composed of interval variables is marked as b = {b1,b2, . . . ,bt, . . .}T. t = 1,2, . . . , l2. l2 is the
number of interval variables. The detailed definitions of the probability vector and the interval vector can
be referred to Ref. [27].



24 B. Xia et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 20–34
The finite element equation of the acoustic field with both probability and interval variables can be rewrit-
ten as
Zða; bÞp ¼ Fða; bÞ ð7Þ
where Z(a,b) is the hybrid probability and interval acoustic dynamic stiffness matrix; F(a,b) is the hybrid
probability and interval load vector. The sound pressure vector p is also a hybrid probability and interval
vector.
2.2. Hybrid uncertain acoustic field with interval probability variables

Assume that the uncertain parameters of acoustic field with limited information can be treated as the inde-
pendent interval probability variables. The interval probability vector composed of interval probability vari-
ables is marked as a(b)
aðbÞ ¼ fa1ðbÞ; a2ðbÞ; . . . ; arðbÞ; . . .gT
; r ¼ 1; 2; . . . ; l1

b ¼ fb1; b2; . . . ; bt; . . .gT
; t ¼ 1; 2; . . . ; l2

ð8Þ
where l1 is the number of interval probability variables. ar(b) is the rth interval probability parameter. b is the
interval vector associated with the interval probability vector a(b). The detailed definitions of the interval
probability vector can be referred to Ref. [32].

As is defined above, the probability vector a and the interval vector b simultaneously exist in two hybrid
uncertain models. However, in the hybrid probability and interval model, a and b are parallel. a is used to
treat the uncertain parameters with sufficient information, while b is used to treat the uncertain parameters
with limited information. As a and b in the hybrid probability and interval model are independent of each
other, they can be marked as (a,b). In the hybrid interval probability model, b is attached to a. a is used to
treat the uncertain parameters with limited information. b is used to treat the uncertain distribution param-
eters of a. As b in the hybrid interval probability model is dependent of a, they should be marked as (a(b)).

The finite element equation of the acoustic field with interval probability variables can be rewritten as
ZðaðbÞÞp ¼ FðaðbÞÞ ð9Þ
where Z(a(b)) is the interval probability acoustic dynamic stiffness matrix; F(a(b)) is the interval probability
load vector. The sound pressure vector p is also an interval probability vector.
3. IMHPM for two hybrid uncertain acoustic fields

3.1. Probability analysis of two hybrid uncertain acoustic fields

If the interval vector b is assumed as a constant vector, the finite element equations of two hybrid uncertain
acoustic fields (shown in Eqs. (7) and (9)) are simplified to a probability finite element equation
ZðaÞp ¼ FðaÞ ð10Þ
The Taylor series expansion of the interval probabilistic response vector can be expressed as
p ¼ pja¼EðaÞ þ
Xl1

r¼1

@p

@ar

����
a¼EðaÞ

ðar � EðarÞÞ þ
1

2!

Xl1

r¼1

Xl1

c¼1

@2pR

@ar@ac

����
aR¼EðaRÞ

ðar � EðarÞÞðac � EðacÞÞ þ � � � ð11Þ
where p|a=E(a) is the value of p when the probability vector a has its expectation E(a). E(a) = {E(a1), E(a1),
. . . ,E(ar), . . .}. E(ar) is the expectation of the probability variable ar.

For most engineering problems, the improvement in accuracy obtained by using the higher order
perturbation terms is rather small when compared with the increase of the computational complexity and
the computational burden. Neglecting the higher order perturbation terms, Eq. (11) can be rewritten as
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p ¼ pja¼EðaÞ þ
Xl1

r¼1

@p

@ar

����
a¼EðaÞ
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����
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r¼1

@p0rar ð12Þ
where
p0 ¼ pja¼EðaÞ �
Xl1

r¼1

@p

@ar

����
a¼EðaÞ

EðarÞ ¼ ðZðEðaÞÞÞ�1
FðEðaÞÞ
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FðEðaRÞÞ

 !
ð13Þ
p, p0 and p0r are n-vectors. n is the degree of freedom of the hybrid uncertain acoustic fields. The kth element
pk in p can be expressed as
pk ¼ p0;k þ
Xl1

r¼1

p0r;kar; k ¼ 1; 2; . . . ; n ð14Þ
where p0,k is the kth element in p0; p0r;k is the kth element in p0r.
The Monte Carlo method can be considered as a potential method to estimate the probability distribution

of pk. However, the probability distribution yielded by the Monte Carlo method is discrete. Compared with
the discrete version of the probability distribution, the formal expression of the probability distribution of
response plays a more important role in the design and optimization of acoustic field. For examples, if the
formal expression of the probability distribution of response is yielded, the likelihood of response at any con-
sidered values can be obtained directly and the influence of each random variable on the probability density
function of random response can be analyzed intuitively.

To obtain the formal expression of the probability distribution of pk, the change-of-variable technique [5]
will be introduced. In the probability theory, if the mapping relationships between dependent variables and
independent variables are invertible and the probability distributions of independent variables are defined
unambiguously, the probability distributions of dependent variables can be yielded by the change-of-variable
technique. As is shown in Eq. (14), pk is an invertible function whose inverse function can be obtained by sim-
ple mathematical operations. Thus, the change-of-variable technique may be an effective approach to calculate
the formal expression of the probability distribution of pk.

According to the number of random variables, three cases (the acoustic field with one random variable, the
acoustic field with two random variables and the acoustic field with more than two random variables) will be
discussed in detail.

Case 1: The acoustic field with one random variable.
For the acoustic field with one random variable, Eq. (14) can be rewritten as
pk ¼ p0;k þ p01;ka1; k ¼ 1; 2; . . . ; n ð15Þ
The probability distribution function of pk can be expressed as
fpk
ðpkÞ ¼

1

jp01;kj
fa1

pk � p0;k

p01;k

 !
ð16Þ
where fpk
ð�Þ is the probability distribution function of pk. fa1

ð�Þ is the probability distribution function of a1.
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Case 2: The acoustic field with two random variables.
For the acoustic field with two random variables, Eq. (14) can be rewritten as
pk ¼ p0;k þ p01;ka1 þ p02;ka2; k ¼ 1; 2; . . . ; n ð17Þ
The probability distribution function of pk can be expressed as
fpk
ðpkÞ ¼

1

jp02;kj

Z 1

�1
fa1
ða1ÞfaR

2

pk � p0;k � p01;ka1

p02;k

 !
da1 ð18Þ
where fa2
ð�Þ is the probability distribution function of a2 .

Case 3: The acoustic field with more than two random variables.
Assume that x1;k ¼ p01;ka1 þ p02;ka2. The probability distribution function of x1,k can be expressed as
fx1;k ðx1;kÞ ¼
1

jp02;kj

Z 1

�1
fa1
ða1Þfa2

x1;k � p01;ka1

p02;k

 !
da1 ð19Þ
where fx1;k ð�Þ is the probability distribution function of x1,k .
Next, assume that x2;k ¼ x1;k þ p03;ka3. The probability distribution function of x2,k can be expressed as
fx2;k ðx2;kÞ ¼
Z 1

�1
fa3
ða3Þfx1;k ðx2;k � p03;ka3Þda3 ð20Þ
where fx2;k ð�Þ is the probability distribution function of x2,k; fa3
ð�Þ is the probability distribution function of a3 .

With this analogy, the probability distribution function of xl1�2;k ¼ xl1�3;k þ p0l1�1;kal1�1 can be expressed as
fxl1�2;k ðxl1�2;kÞ ¼
Z 1

�1
fal1�1
ðal1�1Þfxl1�3;k ðxl1�2;k � p0l1�1;kal1�1Þdal1�1 ð21Þ
where fxl1�3;k ð�Þ is the probability distribution function of xl1�3;k; fxl1�2;k ð�Þ is the probability distribution function
of xl1�2;k; fal1�1

ð�Þ is the probability distribution function of al1�1.

When the probability distribution function of xl1�2;k is obtained, the unknown probability distribution func-
tion of pk can be expressed as
fpk
ðpkÞ ¼

Z 1

�1
fal1
ðal1
Þfxl1�2;k ðpk � p0;k � p0l1;k

al1
Þdal1

ð22Þ
where faR
l1

ð�Þ is the probability distribution function of aR
l1

.

From the derivative procedure mention above, we can obtain that the formal expression of the probability
distribution of pk can be yielded by the change-of-variable technique effectively. For two hybrid uncertain
acoustic fields, interval variables actually exist in the acoustic field. Thus, the probability distribution function
of pk (namely, fpk

ðpkÞ) is a function of the interval vector b. The uncertainty of fpk
ðpkÞ rising from the interval

vector b can be expressed as the variational range of fpk
ðpkÞ.
3.2. Interval analysis of two hybrid uncertain acoustic fields

fpk
ðpkÞ is a function of the interval vector b. To investigate the variational range of fpk

ðpkÞ, the interval per-
turbation method will be introduced.

The first-order Taylor expansions of fpk
ðpkÞ at the mean values of interval variables bt (t = 1,2, . . . , l2) can be

expressed as
fpk
ðpkÞ ¼ f m

pk
ðpkÞ þ

Xl2

t¼1

@fpk
ðpkÞ

@bt

����
b¼bm

DbteI ð23Þ
where f m
pk
ðpkÞ is the value of fpk

ðpkÞ when the interval variables bt (t = 1,2, . . . , l2) has its mean values.

bm ¼ fbm
1 ; b

m
2 ; . . . ; bm

t ; . . . ; bm
l2
g is the mean value of the interval vector b. bm

t is the mean value of bt. Dbt is

the deviation radius of bt. eI = [�1,1].
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Due to the complexity of the formal expression of the probability distribution of pk, the first derivative of
fpk
ðpkÞ related with the interval variable bt may not be obtained directly. Thus, the central difference method

which can be easily implemented in the engineering practice will be introduced to approximate the first deriv-
ative of fpk

ðpkÞ:

@fpk
ðpkÞ

@bt

����
b¼bm

¼ fpk
ðpkð�btÞÞ � fpk

ðpkðbtÞÞ
2Dbt

ð24Þ
where
�bt ¼ fbm
1 ; b

m
2 ; . . . ; �bt; . . . ; bm

l2
g

bt ¼ fbm
1 ; b

m
2 ; . . . ; bt; . . . ; bm

l2
g

ð25Þ
where bt and �bt are the lower and upper bounds of bt.
Substituting Eq. (24) into Eq. (23), one gets
fpk
ðpkÞ ¼ f m

pk
ðpkÞ þ

Xl2

t¼1

fpk
ðpkð�btÞÞ � fpk

ðpkðbtÞÞ
2

eI ¼ f m
pk
ðpkÞ þ Dfpk

ðpkÞeI ð26Þ
where Dfpk
ðpkÞ is the deviation radius of fpk

ðpkÞ. Dfpk
ðpkÞ can be expressed as
Dfpk
ðpkÞ ¼

Xl2

t¼1

fpk
ðpkð�btÞÞ � fpk

ðpkðbtÞÞ
2

����
���� ð27Þ
where |�| denotes the absolute value.
Based on the interval algorithm, the lower and upper bounds of fpk

ðpkÞ can be expressed as
fpk
ðpkÞlower ¼ f m

pk
ðpkÞ � Dfpk

ðpkÞ
fpk
ðpkÞupper ¼ f m

pk
ðpkÞ þ Dfpk

ðpkÞ
ð28Þ
It should be noted that the cumulative probability of the lower bound of fpk
ðpkÞ in the definition domain is

less than 1, while the cumulative probability of the upper bound of fpk
ðpkÞ in the definition domain is larger

than 1. Thus, the lower and upper bounds of fpk
ðpkÞ are not a standardized probability distribution. The lower

and upper bounds of fpk
ðpkÞ are used to determine an interval in which all potential response probability

distributions of two hybrid uncertain acoustic fields will be included.
The main steps of IMHPM to predict the variational ranges of the response probability distributions of two

hybrid uncertain acoustic fields can be summed as:

Step 1: Calculation of p0 and p0r shown in Eq. (13).
Step 2: Calculation of the probability distribution function of pk (namely fpk

ðpkÞ) according to Eqs. (16)
and (18)–(22).

Step 3: Calculation of deviation radius of fpk
ðpkÞ (namely Dfpk

ðpkÞ) according to Eq. (27).
Step 4: Calculation of the lower and upper bounds of fpk

ðpkÞ (namely fpk
ðpkÞlower and fpk

ðpkÞupper) accord-
ing to Eq. (28).

4. Numerical examples

U-shaped tube is widely used in air-conditioning condenser cooling equipments. The prediction of the
sound pressure response of the U-shaped tube plays an important in role in the noise vibration harshness
(NVH) optimization of air-conditioning condenser cooling equipments. Fig. 2 depicts a U-shaped tube model.
A discontinuous normal velocity vn = vn0ej2pkt is imposed on the left top side of the tube cavity. vn0 and k are
the amplitude and the frequency of the discontinuous normal velocity vn. The remaining sides are perfectly
rigid. This U-shaped tube is divided into the finite element model. The size of hexahedron element is
0.0125 m � 0.0125 m � 0.0125 m.



Fig. 2. A U-shaped tube model.
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This U-shaped tube model is surrounded by air. Considering the unpredictability of the environment tem-
perature, the air density and the sound speed are considered as interval variables. The variational range of the
air density q is [1.204 kg/m3,1.225 kg/m3]. The variational range of the sound speed c is [340.5 m/s, 343.4 m/s].
The amplitude vn0 of the discontinuous normal velocity vn is assumed as the probability variable which follows
the Gumbel distribution. The Gumbel distribution is a particular case of the generalized extreme value distri-
bution which can be used to model the distribution of the maximum (or the minimum) of the number of sam-
ples of various distributions. Distribution parameters of the amplitude vn0 are lvn0

¼ 0:15 m=s and
bvn0
¼ 0:05 m=s. The frequency k of the discontinuous normal velocity vn is assumed as the probability variable

which follows the Gaussian distribution. Four types of distribution parameters of the frequency k are pre-
sented in Table 1.

As the interval variables (q and c) and the probability variables (vn0 and k) exist simultaneously, this
U-shaped tube model belongs to the first type of hybrid uncertain acoustic field. Simulations of this U-shaped
tube model are carried out by Matlab 7.0 on a 3.39 GHz Intel(R) Core(TM) i7-4770.

The lower and upper bounds of the response probability distribution of node G1 (marked in Fig. 2) yielded
by IMHPM are plotted in Figs. 3–6. The types of distribution parameters of the frequency k in Figs. 3–6 are
Type I, Type II, Type III and Type IV, respectively. The Monte Carlo method will be introduced to calculate
the potential response probability distribution of node G1. In the implementation of the Monte Carlo method,
the sample number of interval variables is 100 and the sample number of random variables is 100,000. For
each combination of interval variables, a potential response probability distribution can be obtained by the
Monte Carlo method. Thus, there are 100 potential response probability distributions for each considered type
of distribution parameters of the frequency k. These potential response probability distributions are also plot-
ted in Figs. 3–6. In Figs. 3–6 and the following context, the results obtained by IMHPM and the Monte Carlo
method are marked as IMHPM and MCM, respectively.
Table 1
Four types of distribution parameters of the frequency k.

Type Expectation (lk) (Hz) Standard variance (rk) (Hz)

I 100 5
II 200 10
III 300 15
IV 450 22.5



Fig. 3. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type I of distribution parameters of the frequency k.

Fig. 4. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type II of distribution parameters of the frequency k.

Fig. 5. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type III of distribution parameters of the frequency k.
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Figs. 3–6 show that the potential response probability distributions yielded by the Monte Carlo method are
included in the interval constrained by the lower and upper bounds of the response probability distributions
obtained by IMHPM. Thus, the lower and upper bounds of probability distribution yielded by IMHPM can
be used to determine an interval in which the potential response probability distributions of the hybrid uncer-
tain acoustic field with both probability and interval variables are included.

The effectiveness of IMHPM for the response probability distribution analysis of the second type of the
hybrid uncertain acoustic field will be investigated. The air density q, the sound speed c and the amplitude
vn0 of discontinuous normal velocity vn are assumed as the interval probability variables. The distributions
of these interval probability variables are listed in Table 2.



Fig. 6. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type IV of distribution parameters of the frequency k.

Table 2
Distributions of interval probability variables for the U-shaped tube.

Interval random variable Distribution type Probability distribution parameters

c (m/s) Gaussian distribution lc = [340.5,343.4] rc = [4.9,5.1]
q (kg/m3) Gaussian distribution lq = [1.204, 1.225] rq = [0.0198,0.0202]
vn0 (m/s) Gumbel distribution lvn0

¼ ½0:14; 0:16� bvn0
¼ ½0:045; 0:055�

Table 3
Four types of distribution parameters of the frequency k.

Type Expectation (lk) (Hz) Standard variance (rk)

I 100 [4.95 Hz,5.05 Hz]
II 200 [9.9 Hz,10.1 Hz]
III 300 [14.85 Hz,15.15 Hz]
IV 450 [22.275 Hz,22.725 Hz]

Fig. 7. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type I of distribution parameters of the frequency k.
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The frequency k of the discontinuous normal velocity vn is also assumed as the interval Gaussian random
variable. Four types of distribution parameters of the frequency k are presented in Table 3.

The lower and upper bounds of the response probability distribution of node G1 yielded by IMHPM are
plotted in Figs. 7–10. The potential response probability distribution of node G1 yielded by the Monte Carlo
method are also plotted in Figs. 7–10. The types of distribution parameters of the frequency k in Figs. 7–10 are
Type I, Type II, Type III and Type IV, respectively. In the implementation of the Monte Carlo method, the
sample number of interval variables is 100 and the sample number of random variables is 100,000. Figs. 7–10



Fig. 8. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type II of distribution parameters of the frequency k.

Fig. 9. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential response
probability distribution of node G1 yielded by the Monte Carlo method for Type III of distribution parameters of the frequency k.

Fig. 10. The lower and upper bounds of the response probability distribution of node G1 calculated by IMHPM and the potential
response probability distribution of node G1 yielded by the Monte Carlo method for Type IV of distribution parameters of the frequency
k.
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show that the potential response probability distributions yielded by the Monte Carlo method are included in
the interval constrained by the lower and upper bounds of the response probability distributions obtained by
IMHPM. Thus, the lower and upper bounds of the response probability distribution yielded by IMHPM can
be used to determine an interval in which the potential response probability distributions of the hybrid
uncertain acoustic field with interval probability variables are included.

Computational efficiency is an important factor to evaluate the performances of numerical methods. The
computational time of the Monte Carlo method (with 107 samples) and IMHPM for the response probability
distribution analysis of node G1 for Type I of distribution parameters of the frequency k is listed in Table 4.
As is shown in Table 4, the computational cost of IMHPM for the response probability distribution analysis
of two hybrid uncertain acoustic fields is much less than that of the Monte Carlo method. In other words, the



Table 4
The computational cost of the Monte Carlo method and IMHPM for the response probability
distribution analysis of two hybrid uncertain acoustic fields.

MCM (s) IMHPM (s)

The first type 123,343 0.5
The second type 123,468 70.8
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computational efficiency of IMHPM for the response probability distribution analysis of two hybrid acoustic
fields is much higher than that of the Monte Carlo method. The computational cost of the Monte Carlo
method for the response probability distribution analysis of two hybrid uncertain acoustic fields is approxi-
mately the same. The reason is that the number of samples used by the Monte Carlo method for two hybrid
uncertain acoustic fields is the same. The computational cost of IMHPM for the hybrid interval probability
acoustic field is larger than that of IMHPM for the hybrid probability and interval acoustic field. The reason
will be discussed in the following.

For the hybrid probability and interval acoustic field, the numbers of both probability and interval vari-
ables are 2. For the hybrid interval probability acoustic field, the numbers of probability and interval variables
are 4 and 7, respectively. Based on Eqs. (17) and (18), the probability of the sound pressure pk of the hybrid
probability and interval acoustic field can be expressed as
fpk
ðpkÞ ¼

1

jp0vn0;k
j

Z 1

�1
fkðkÞfvn0

pk � p0;k � p0k;kk

p0vn0;k

 !
dk ð29Þ
where fkð�Þ is the probability distribution function of the frequency k; fvn0
ð�Þ is the probability distribution

function of the amplitude vn0.
Based on Eqs. (19)–(22), the probability of sound pressure pk of the hybrid interval probability acoustic

field can be expressed as
fpk
ðpkÞ ¼

1

jp0vn0;k
j

Z 1

�1
fqðqÞ

Z 1

�1
fcðcÞ

Z 1

�1
fkðkÞfvn0

pk � p0;k � p0q;kq� p0c;kc� p0k;kk

p0vn0;k

 !
dkdcdq ð30Þ
where fq(�) is the probability distribution function of the density q; fc(�) is the probability distribution function
of the sound speed c.

It is obvious that the computational complexity and cost of Eq. (30) are much larger than those of Eq. (29).
Furthermore, we can obtain from Eqs. (27) and (28) that when evaluating the lower and upper bounds of the
response probability distribution, fpk

ðpkÞ, which should be calculated, is related with the number of interval
variables. When the number of interval variables is n, the number of fpk

ðpkÞ which should be calculated is
2n + 1. Thus, for the hybrid probability and interval acoustic field with 2 interval variables, the number of
fpk
ðpkÞ which should be calculated is 2 � 2 + 1 = 5. For the hybrid interval probability acoustic field with 7

interval variables, the number of fpk
ðpkÞ which should be calculated is 2 � 7 + 1 = 15. The larger the number

of fpk
ðpkÞ should be calculated, the higher the computational cost would be. Based on the discussions above,

we can obtain that the computational cost of IMHPM for the hybrid interval probability acoustic field is lar-
ger than that of IMHPM for the hybrid probability and interval acoustic field.

5. Conclusion

For the response probability distribution analysis of the acoustic field with limited information, two types
of hybrid uncertain models have been introduced. The first type of hybrid uncertain model is the hybrid prob-
abilistic and interval model. In the hybrid probabilistic and interval model, the uncertain parameters with and
without sufficient information to construct the corresponding probability distributions are treated as proba-
bilistic variables and interval variables, respectively. The second type of hybrid uncertain model is the interval
probabilistic model. In the interval probabilistic model, the uncertain parameters are treated as probabilistic
variables whose distribution parameters may be treated as interval variables. The common element of two
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hybrid uncertain models is that probability variables and interval variables exist simultaneously. Based on this
common element, an inverse mapping hybrid perturbation method (IMHPM) is proposed for the unified
response probability distribution analysis of two hybrid uncertain acoustic fields. In the proposed method,
the responses of two hybrid uncertain acoustic fields are converted to invertible functions of probability vari-
ables based on the stochastic perturbation analysis. And then, the change-of-variable technique is introduced
to calculate the response probability distributions. Last, the variational ranges of the response probability dis-
tributions are estimated by the interval perturbation technique. Numerical results on a U-shaped tube verify
that the lower and upper bounds of the response probability distribution yielded by IMHPM can be used to
determine an interval in which the potential response probability distributions of the acoustic field under
either of two hybrid uncertain models are included. Furthermore, the numerical results also show that the
computational efficiency of IMHPM is very high, when compared with the Monte-Carlo method. Hence,
IMHPM can be considered as an effective and efficient engineering method to quantify the effects of paramet-
ric uncertainties on the sound pressure response of two hybrid uncertain acoustic fields.

IMHPM, which is proposed in this paper for evaluating the variational ranges of the response probability
distributions of hybrid uncertain acoustic fields, can be extended to the response probability distribution anal-
ysis of the hybrid uncertain static structures, the hybrid uncertain dynamic structures, the hybrid uncertain
structural–acoustic systems, the hybrid uncertain heat transfer problems, etc. As the finite element method
is limited to the low-frequency response analysis of acoustic field, the proposed IMHPM is also limited to
the low-frequency response analysis of two hybrid uncertain acoustic fields. The mid- and high-frequency
response analysis of hybrid uncertain acoustic fields is a problem which is worth to research further.
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