
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 278 (2014) 388–403
www.elsevier.com/locate/cma

Discrete double directors shell element for the functionally graded
material shell structures analysis

M. Wali∗, A. Hajlaoui, F. Dammak
Mechanical Modelization and Manufacturing Laboratory (LA2MP), National Engineering School of Sfax, B.P W3038,

Sfax, University of Sfax, Tunisia

Received 24 December 2013; received in revised form 28 March 2014; accepted 7 May 2014
Available online 11 June 2014

Abstract

In this paper, the accuracy and the efficiency of the 3d-shell model based on a double directors shell element for the functionally
graded material (FGM) shell structures analysis is studied. The vanishing of transverse shear strains on top and bottom faces is
considered in a discrete form. Thus, the third-order shear deformation plate theory (TSDT) is a particular case of the discrete
double directors shell model (DDDSM) used in the present work. The DDDSM is introduced to remove the shear correction
factors, when using the first-order shear deformation theory (FSDT), and improve an excellent performance when compared with
other works. This model can be used for static, free vibration and buckling analyses of FGM. The convergence of the proposed
model is compared to other well-known formulations found in the literature.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, shell structures made of FGMs are widely used in many engineering fields such as aerospace, gas
turbines, nuclear fusions, electronics, etc. because they present many advantages. Indeed, they are used in systems
which need high heat-resistance, high rigidity and eventually absence of the interface problem unlike laminate
structures. The material properties of FGMs are inhomogeneous and vary continuously in one or more directions.
Typical FGMs are made from a mixture of ceramic and metal, or a combination of different metals or different
ceramics that are appropriate to achieve the desired objective.

The importance of this kind of materials motivates many contemporary researchers to study their properties and
behaviors. Among these studies, we mention works of Vel and Batra [1] who presented the three dimensional exact
solution for free and forced vibrations of functionally graded rectangular plates, Ferreira et al. [2] who studied the
static deformations of functionally graded plates using the radial basis function collocation method and a higher-order
shear deformation theory, they selected the shape parameter in the radial basis functions by an optimization procedure
based on the cross validation technique.

Matsunaga [3] calculated the natural frequencies and buckling stresses of plates made of FGMs using a 2-D higher-
order deformation theory. Carrera et al. [4] evaluated the effect of thickness stretching in plate/shell structures made
by FGM in the thickness directions. Neves et al. [5] presented a quasi-3d hyperbolic shear deformation theory for the
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bending and free vibration analysis of functionally graded plates. Xiang et al. [6] used an n-order shear deformation
theory and a meshless global collocation method based on the thin plate spline radial basis function to analyze the
static characteristics of functionally graded plates under sinusoidal load.

The study of FGM structures using classical theory, based on the Kirchhoff hypothesis, is lack of precision. The
inaccuracy is due to neglecting the effects of transverse shear and normal strains of the structure. In order to take
into account the effects of gradual change of material properties, the first-order shear deformation theory (FSDT)
and higher-order shear deformation theories (HSDT) have been used in the analyses of FGMs. However, since using
the FSDT, shear correction factors should be incorporated to adjust the transverse shear stiffness and the accuracy of
solutions will be strongly dependent on the correction factors. Examples of the FSDT approach are given in [7,8].

To analyze static and dynamic behavior of FGMs, a number of theoretical formulations and finite element models
based on the HSDT were developed. Reddy [9] presented a general formulation for FGMs using the third-order shear
deformation plate theory and developed the associated finite element model that accounts for the thermo-mechanical
coupling and geometric non-linearity. Numerous works using HSDT are published to study the transverse shear
deformations through the FGM shell thickness, such as [10–12].

On the other hand, to model the multi-layered structures capable to take into account the strong discontinuities
in material properties across the thickness, a multi-directors shell theory has been used in the literature. In this
approach, the theories of shells are considered as oriented 2D areas with additional kinematic variables modeling
the shell behavior. Such continuous domain is known as Cosserat surface [13]. In the same context, Başar et al. [14]
developed a refined finite-rotation theory with seven independent displacement variables for arbitrary multilayered
shell structures made particularly of composite material layers. This theory approximates the displacement field by
a cubic series expansion of thickness coordinates, which imply a quadratic shear deformation distribution across the
thickness. Başar et al. [15] presented a multi-directors shell theory on the basis of a quadratic approximation of the
displacement field. Their contribution is the development of four-node isoparametric shell elements providing an
accurate prediction of interlaminar stresses in composite laminates; special attention is given to the consideration of
finite rotations as well as large deformations. An enriched kinematic field in order to extend the potential application
domain of the shell model is developed by Brank and Carrera [16], Brank et al. [17] and Brank [18]. In these works,
the researchers discussed a theoretical formulation of shell model accounting for through-the-thickness stretching,
which allows large deformations and direct use of 3d constitutive equations.

The primary objective of this work is to study FGM shell structures. The problem formulation is established from
an adopted 3d-shell nonlinear model based on a double directors shell element. However, this paper treats only linear
FGM shell structure by linearizing equations obtained from the developed non-linear DDDSM formulation with a
third-order deformation theory. The linearized model is validated both by standard tests and by comparing the accuracy
and the performance with works in the literature. In fact, the used double directors shell model is developed in [19] to
study constant elastic materials and extended in this paper for FGM shell structures. The third-order shear deformation
plate theory of Reddy [20] and Reddy [9], is the linear version of the DDDSM model projected in a 2d xy-plane. In the
modeling, the vanishing of transverse shear strains on top and bottom faces is considered in a discrete form, similar
to the development of the nonlinear discrete Kirchhoff shell element presented in the work of Dammak et al. [21].

The outline of the paper is as follows. In Section 2, the material properties of the functionally graded materials
are illustrated. In Sections 3 and 4 the kinematic of the double directors shell model and the weak form of shell
equilibrium equations are presented respectively. The implemented finite elements are described in Section 5. A
number of numerical simulations are presented in Section 6 and closing remarks are stated in Section 7.

2. Material properties

An FGM shell structure with polynomial material law, as given by Zenkour [22], is considered. The shell structure
is graded from aluminum (bottom surface) to alumina (top surface) materials. The following functional relationship
is considered for the Young modulus EFGM(z) in the thickness direction:

EFGM(z) = Em + (Ec − Em)


z

h
+

1
2

n

(1)

where Em = 70 GPa and Ec = 380 GPa are the Young modulus of the metal and ceramic components, respectively
and n is the power-law index. The Poisson ratio for both metal and ceramic is assumed to be constant and equal to
ν = 0.3.
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3. Basic concepts of the model

In this section, the geometry and kinematic of nonlinear double directors shell model are described. The fixed
spatial coordinate system is defined by a triad (Ei ), i = 1, 2, 3. The reference surface of the shell is assumed to be
smooth, continuous and differentiable. Initial and current configurations of the shell, are denoted, respectively, by C0
and Ct . Variables associated with the undeformed state C0 will be denoted by upper-case letters and by lower-case
letters when referred to the deformed configuration Ct . Vectors will be denoted by bold letters.

3.1. Double directors shell kinematic hypothesis

Parameterizations of the shell material points are carried out in terms of curvilinear coordinates ξ = (ξ1, ξ2, ξ3
=

z). The position vectors of any material point (q), whose normal projection on mid-surface is the material point (p),
in the initial states C0 are given by

Xq


ξ1, ξ2, z


= Xp


ξ1, ξ2


+ z D


ξ1, ξ2


, z ∈ [−h/2, h/2] (2)

where h is the thickness, p is a point of the reference surface, and D is the initial shell director. The base vectors, in
the initial state C0 are given as

Gα = Aα + z D,α; G3 = D, α = 1, 2. (3)

The surface element d A in the initial state is given by

d A =
√

A d Aξ ,
√

A = ∥A1 ∧ A2∥ , d Aξ = dξ1dξ2. (4)

The covariant reference metric tensor G at a material point ξ is defined by

G =

Gi · G j


, i, j = 1, 2, 3. (5)

For later use geometrical variables are added

Determinant G:
√

G = [G1 G2 G3] =

Gi j
 (6)

Volume element: dV =
√

G dξ1dξ2dz. (7)

With the hypothesis of a double directors shell model, the position vector of the point q in the deformed configuration
is given by:

xq


ξ1, ξ2, z


= xp


ξ1, ξ2


+ f1 (z) d1


ξ1, ξ2


+ f2 (z) d2


ξ1, ξ2


. (8)

The base vectors, in the deformed state are then

gα = aα + f1 (z) d1,α + f2 (z) d2,α; g3 = f ′

1 (z) d1 + f ′

2 (z) d2. (9)

The metric tensor components in Ct are separated into the in-plane and out-of-plane part components. With some
approximations, the metric tensor can be written as

gi j = gi · g j ,


gαβ ≈ aαβ + f1 (z) b1

αβ + f2 (z) b2
αβ

gα3 ≈ f ′

1 (z) c1
α + f ′

2 (z) c2
α

g33 ≈


f ′

1 + f ′

2

2 d,

α, β = 1, 2 (10)

where aαβ , bk
αβ and ck

α (k = 1, 2) represent the covariant metric surface, the first curvature tensors and the shear,
respectively. The parameter d presents the thickness stretching.

Taking into account d1 · d1 ≈ d2 · d2 ≈ d1 · d2, these components can be computed as
aαβ = aα · aβ , ck

α = aα · dk

bk
αβ = aα · dk,β + aβ · dk,α, d = d1 · d1,

k = 1, 2. (11)
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Similar expressions for the in-plane and out-of-plane components of the metric tensor can be obtained in the case of
the initial configuration C0.

3.2. Strain measure

Using Eq. (10), the Lagrangian strain E has the following components:

E =
1
2

(g − G) , Ei j =
1
2


gi j − Gi j


,


Eαβ = eαβ + f1 (z) χ1

αβ + f2 (z) χ2
αβ

2Eα3 = f ′

1 (z) γ 1
α + f ′

2 (z) γ 2
α

E33 = 1/2


f ′

1 + f ′

2

2 d − 1
 (12)

where eαβ denote the membrane strains, χk
αβ the bending strains and γ k

α the shear strains, which can be computed aseαβ =

aαβ − Aαβ


/2, γ k

α = ck
α − Ck

α

χk
αβ =


bk
αβ − Bk

αβ


/2,

k = 1, 2. (13)

In matrix notation, the vectors of membrane, bending and shear strains are given by:

e =

 e11
e22
2e12

 , χk
=


χk

11

χk
22

2 χk
12

 , γ k
=


γ k

1

γ k
2


, k = 1, 2. (14)

To impose a third-order double directors shell model and at the same time a quadratic distribution of the shear stress,
the following expressions for f1 (z) and f2 (z) are chosen

f1 (z) = z − f2 (z) , f2 (z) = 4z3/3h2. (15)

This gives the following shear strain

2Eα3 = f ′

1 (z) γ 1
α + f ′

2 (z) γ 2
α =


1 − 4

z2

h2


γ 1
α + 4

z2

h2 γ 2
α . (16)

Vanishing of the transverse shear stress on the top and bottom shell faces, σyz (±h/2) = σxz (±h/2) = 0, the shear
strain can be obtained as follows:

γ 2
α = 0, 2Eα3 =


1 − 4z2/h2


γ 1
α . (17)

This kinematic constraint will be imposed in a discrete form in the finite element approximation.

4. Weak form and linearization

By using the total Lagrangian formulation, the weak form of equilibrium equations is given as

G =


V

Si jδEi j dV − Gext = 0 (18)

where dV is the shell volume element in the initial configuration, δEi j are the covariant components of the virtual
Green–Lagrange strain tensor, Si j are the contravariant components of the second Piola–Kirchhoff stress tensor and
Gext is the external virtual work. Performing the integration through the thickness of the shell, and using Eqs. (12)
and (17), the weak form becomes

G =


A


N · δe +

2
k=1

Mk · δχk
+ T1 · δγ 1


d A − Gext = 0 (19)
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where δe, δχk and δγ 1 are the variations of shell strains and N, Mk and T1 are the membrane, bending and shear
stresses resultants which can be written as

N =


N 11

N 22

N 12

 , Mk =


M11

k

M22
k

M12
k

 , T1 =


T 1

1

T 2
1


k = 1, 2. (20)

These components are defined as follows

Nαβ
=

 h/2

−h/2
Sαβ


G/A dz, Mαβ

k =

 h/2

−h/2
fk (z) Sαβ


G/Adz (21)

T α
1 =

 h/2

−h/2
f ′

1 (z) Sα3


G/A dz.

The virtual strains can be obtained as the variation of the strain measures which yields from Eq. (13)
δeαβ = 1/2


aα · δx,β + aβ · δx,α


, δγ 1

α = aα · δd1 + δx,α · d1

δχk
αβ = 1/2


aα · δdk,β + aβ · δdk,α + δx,α · dk,β + δx,β · dk,α


.

(22)

Moreover, by defining the generalized resultant vectors of stress and strain with

R =


N

M1
M2
T1


11×1

, Σ =


e

χ1

χ2

γ 1


11×1

(23)

the weak form of the equilibrium equation can be rewritten as

G (Φ, δΦ) =


A

δΣ T
· Rd A − Gext (Φ, δΦ) = 0 (24)

where Φ = (u, d1, d2). Eq. (24) defines the nonlinear shell problem, which can be solved by the Newton iterative
procedure. The consistent tangent operator for the Newton solution procedure can be constructed by the directional
derivative of the weak form in the direction of the increment ∆Φ = (∆u,∆d1,∆d2). It is a conventional practice to
split the tangent operator into geometric and material parts, denoted by DGG ·∆Φ and DMG ·∆Φ, respectively, i.e,

DG · ∆Φ = DGG · ∆Φ + DMG · ∆Φ. (25)

The geometric part results from the variation of the virtual strains while holding stress resultants constant:

DGG · ∆Φ =


A


∆δΣ T

· R


d A. (26)

This geometric part is not developed in this paper. The material part of the tangent operator results from the variation
in the stress resultants and thus takes the form

DMG · ∆Φ =


A

δΣ T
· ∆Rd A =


A

δΣ T
· HT · ∆Σd A (27)

where HT is the material tangent modulus, expressed as

HT =


H11 H12 H13 0

H22 H23 0
H33 0

Sym H44

 (28)

(H11, H12, H13, H22, H23, H33) =

 h/2

−h/2


1, f1, f2, f 2

1 , f1 f2, f 2
2


Hdz (29)
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H44 =

 h/2

−h/2


f ′

1

2 Hτ dz (30)

where H and Hτ are in plane and out-of-plane linear elastic sub-matrices, which can be expressed in the Cartesian
system as

H =
E (z)

1 − ν2 (z)

 1 ν (z) 0
ν (z) 1 0

0 0 (1 − ν (z)) /2

 , Hτ =
E (z)

2 (1 + ν (z))


1 0
0 1


. (31)

5. Remarks on finite element approximation

In this section, the numerical implementation of the presented shell theoretical formulation based upon a four node
non-linear shell element is established. The displacement vector is defined as: u = xp − Xp. Using the isoparametric
concept, the variation and incremental of displacement vector is approximated by

δu =

4
I=1

N I δuI , ∆u =

4
I=1

N I ∆uI (32)

where N I are the standard isoparametric shape functions. The isoparametric concept is illustrated in detail in the work
of [23]. The first director vector d1 is approximated with the same functions

δd1 =

4
I=1

N I δd1I , ∆d1 =

4
I=1

N I ∆d1I . (33)

5.1. Membrane and first bending strain field

The shell membrane part of the problem is considered. The strain–displacement relation is

δe = Bm · δΦn (34)

where Φn is the nodal variables and Bm is the discrete membrane strain–displacement operator defined as

BI
m =


BI

mm 0 0

, BI

mm =

 aT
1 N I

,1

aT
2 N I

,2

aT
1 N I

,2 + aT
2 N I

,1

 . (35)

For the first bending part, the strain–displacement relation is given by

δχ1
= B1 · δΦn, (36)

where B1 is the discrete first bending strain–displacement operator

BI
1 =


BI

1m BI
1b 0


, BI

1m =

 dT
1,1 N I

,1

dT
1,2 N I

,2

dT
1,1 N I

,2 + dT
1,2 N I

,1

 , BI
1b =

 aT
1 N I

,1

aT
2 N I

,2

aT
1 N I

,2 + aT
2 N I

,1

 . (37)

5.2. Construction of the assumed natural transverse shear strain field

A typical isoparametric shell element is considered as depicted in Fig. 1. A, B, C and D denote the mid-points of
the element boundaries set. The assumed natural transverse shear strain field is expressed by Bathe and Dvorkin [24]

δγ 1
=


δγ 1

1
δγ 1

2


=


(1 − η) δγ 1

1 (B) + (1 − η) δγ 1
1 (D)

(1 − ξ) δγ 1
2 (A) + (1 − ξ) δγ 1

2 (C)


(38)
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Fig. 1. Assumed strain construction of the isoparametric shell element.

Fig. 2. Position of the nodes couple (I, J ).

where γ 1
2 (A) , γ 1

1 (B) , γ 1
2 (C) et γ 1

1 (D) are the transverse shear strains at points as defined in Fig. 1.

δγ 1
= Bs · δΦn (39)

where Bs is the discrete shear strain–displacement operator

Bs =


N 1

,1dT
1B N 2

,1aT
1B 0 N 2

,1dT
1B N 2

,1aT
1B 0 N 3

,1dT
1D N 3

,1aT
1D 0 N 4

,1dT
1D N 3

,1aT
1D 0

N 1
,2dT

1A N 4
,2aT

2A 0 N 2
,2dT

1C N 3
,2aT

2C 0 N 3
,2dT

1C N 3
,2aT

2C 0 N 4
,2dT

1A N 4
,2aT

2A 0


. (40)

5.3. Discrete constraints

The shear part relative to the second director vector d2 is vanished in a discrete form. A quadratic interpolation is
used as proposed in the work of [21].

δd2 =

4
I=1

N I δd2I +

8
K=5

PK δαK tK , ∆d2 =

4
I=1

N I ∆d2I +

8
K=5

PK ∆αK tK (41)

where (I ) represents a node of the element, (K ) represents the mid-point of the element boundaries and δαK are
variables associated to δd2 on the element boundaries. The vector tK is unit and its direction is defined by the position
of the nodes couple (I, J ) as shown in Fig. 2.

tK = (xJ − xI )/L K , L K = ∥xJ − xI ∥ (42)

where L K is the I − J side length. The shape functions PK are quadratic and are given in Table 1.
By introducing the vanishing shearing hypothesis, on top and bottom faces, over the element boundaries under

integral form, the transverse strain is given for side (I, J ) by J

I
δγ 2

szds = 0, (43)

δγ 2
sz = δβs + δu,s · d2, δβs = tK · δd2 (44)
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Table 1
Functions PK .

PK P5 = 0.5


1 − ξ2


(1 − η)

P6 = 0.5 (1 + ξ)


1 − η2


P7 = 0.5


1 − ξ2


(1 + η)

P8 = 0.5 (1 − ξ )


1 − η2


where (s) is a parametric coordinate. While using a linear interpolation of the displacement vector δu, this vector can
be written for the side (I, J ) as follows:

δu = (1 − ξ) δuI + ξδuJ , 0 ≤ ξ = s/L K ≤ 1. (45)

The director vector d2 is given by

d2 =
d̃d̃
 , d̃ =

4
I=1

N I d2I (46)

δd2 =
1d̃
Pd δd̃, Pd = I − d2 ⊗ d2 (47)

where Pd is an orthogonal projection. Vector δd̃ is defined by a quadratic interpolation as in Eq. (37):

δd̃ = (1 − ξ) δdI + ξδdJ + 4ξ (1 − ξ) δαK tK . (48)

Then the final expression of δβs is

δβs ≈
1d̃
 ((1 − ξ) δβs I + ξδβs J + 4ξ (1 − ξ) δαK ) . (49)

Then to integrate the two terms of the vanishing shearing hypothesis, the relations (44), (45) and (49) are used J

I
δu,s · d2 ds ≈ (δuI + δuJ )

(dI + dJ )

∥dI + dJ ∥
(50) J

I
δβs ds ≈

L K

∥dI + dJ ∥


δβs I + δβs J +

4
3
δαK


. (51)

The constraint is obtained by taking the sum of these last two equations equal to zero. This leads to the following
expression of variables δαk

δαK =
3

2L K


(δuI + δuJ ) · dK −

3
4

(δdI + δdJ ) · tK


(52)

dK =
1
2

(dI + dJ ) . (53)

The expression of the director vector d2 is deduced from interpolation (41)

δd2 =

4
I=1

N I δd2I +

8
K=5

3
2

PK (1/L K (δuI + δuJ ) · dK − 1/2 (δdI + δdJ ) · tK ) tK . (54)

In a matrix form, the director vector d2 is written as

δd2 =

4
I=1


M I

dδuI + M I
r δd2I


(55)
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where matrices M I
d and M I

r are given by

M I
d = PK tdI

K + PM tdI
M , tdI

K =
3

2L K
tK ⊗ dK (56)

M I
r = N I I + PK ttI

K + PM ttI
M , ttI

K =
3
4

tK ⊗ tK . (57)

The (K ) and (M) are the two mid-sides of each side of the quadrilateral, which are bound to the node (I ) (Fig. 2).
Finally, the second bending strain is expressed as

δχ2
= B2 · δΦn (58)

where B2 is the discrete second bending strain–displacement operator

BI
2 =


BI

2m 0 BI
2b


(59)

BI
2m =

 dt
2,1 N I

,1 + at
1 · M I

d,1

dt
2,2 N I

,2 + at
2 · M I

d,2

dt
2,1 N I

,2 + dt
2,2 N I

,1 + at
1 · M I

d,2 + at
2 · M I

d,1

 , BI
2b =

 at
1 · M I

r,1

at
2 · M I

r,2

at
1 · M I

r,2 + at
2 · M I

r,1

 . (60)

Finally, the generalized strain δΣ can be expressed as follows

δΣ =


δe

δχ1

δχ2

δγ 1

 = B · δΦn, B =


Bm
B1
B2
Bs

 . (61)

5.4. Nodal transformation

In all equations, δdk and δdk,α are the variation of the directors and their derivatives. These variations can be written
either in spatial description as

δdk = δθk ∧ dk = Λk δθk, Λ̄k = −d̃k (62)

where d̃k is the skew-symmetric tensor such that d̃kdk = 0, or in material description

δdk = Qk δΘ̄k E3 = Λ̄kδΘk, Λ̄k = QkẼ3 (63)

where dk = QkE3 and E3 =

0 0 1

t .
A spatial description leads to a shell problem with 9 DOF/node and the material description leads to a shell problem

with 7 DOF/node. The transformation Λ̄ in the material description takes the following form

Λ̄k =

−t2k t1k


3×2 . (64)

6. Numerical examples

The performance of the proposed discrete double directors shell element is evaluated with several problems. The
convergence of the results is compared to other well-known formulations. A listing of these shell elements, and their
abbreviations is presented in Table 2.

The results given with the S4 element are obtained with the addition of an automatic calculation of the shear
correction factors as in [25]. A P-FGM that consists of the following properties: (Ec, Em, ν, n) is considered. All
material and geometrical properties are given in a coherent system of units.

6.1. Bending of a rhombic plate

A simply supported rhombic plate of side L = 100 mm, thickness h = 1 mm and power-law index n = 6 is
uniformly pressure loaded: q = 1 MPa. The center-point deflection is normalized with the finite element converged
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Table 2
Listing of shell elements.

Name Description

SQAD4 Discrete Kirchhoff quadrilateral of [21]
S4 First order shear deformable shell element of [7]
SHO4 Present double directors shell element

Table 3
Center-point deflection of a rhombic plate.

Node per side SQAD4 S4 Present
SHO4 %

3 13.76 1.842 7.846 240.08
5 5.670 2.760 5.186 158.69
9 3.873 2.821 3.695 113.06

17 3.417 3.028 3.348 102.44
33 3.286 3.166 3.279 100.33

Fig. 3. Description and results of the rhombic plate under uniform pressure loading.

solution of 3.268 using 100 elements per side. The difficulty in this problem arises from the singularity of the solution
at the obtuse vertices, where the stresses tend to infinity [7]. To assess the convergence of shell elements, the uniform
mesh shown in Fig. 3 is used. The results are listed in Table 3 and shown in Fig. 3.

6.2. Pinched hemispherical shell with 18◦ hole

A pinched hemispherical shell with an 18◦ hole at the top, shown in Fig. 4, with two inward and two outward
forces 90◦ apart is modeled using symmetry boundary conditions on one quadrant. This problem is a good test of the
inextensional bending behavior of an element, and an excellent test for the ability of an element to model rigid-body
motions [7]. Material and geometric properties for this test are n = 6, radius R = 10 m, and thickness h = 0.04 m.
The numerical results are presented in Table 4 and Fig. 4, normalized with the finite element converged solution of
5.232 × 10−2 using 100 elements per side.

6.3. Pinched cylinder with end diaphragms

A short cylinder, with two pinching vertical forces at the middle section, and two rigid diaphragms at the end, is
modeled using one octant and applying the appropriate symmetry boundary conditions (Fig. 5). The length of the
cylinder is L = 600 mm, the radius is R = 30 mm, and the thickness is h = 3 mm. The power-law index n = 6.
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Table 4

Hemispherical shell with 18◦ hole (×10−2).

Node per side SQAD4 S4 Present
SHO4 %

3 5.266 4.709 5.185 99.10
5 5.440 5.216 5.398 103.17
9 5.286 5.188 5.269 100.70

17 5.223 5.198 5.220 99.77
33 5.225 5.223 5.229 99.94

Fig. 4. Description and results of the pinched hemisphere with an 18◦ hole. Symmetry is used and only one quadrant is modeled.

Fig. 5. Description and results of the pinched cylinder with end diaphragms. Symmetry is used and only one eighth of the cylinder is modeled.

The numerical results are presented in Table 5 and Fig. 5, normalized with the finite element converged solution
of 4.7468 × 10−4 using 100 elements per side. This problem is the most demanding of all considered cases. It is a
severe test of the inextensional bending and complex membrane states of stress. Most four node shell elements do not
converge efficiently in this problem.

It can be found from Fig. 3 to 5 that the present model, SHO4, produces the close results to those of SQAD4 and
S4 elements. Also, for these three tests, it is noticed that the proposed model exhibits high performance even with
coarse mesh.
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Table 5

Pinched cylinder with end diaphragms (×10−4).

Node per side SQAD4 S4 Present
SHO4 %

3 0.408 0.181 0.189 3.98
5 2.657 1.745 2.157 45.44
9 4.211 3.445 3.928 82.75

17 4.594 4.288 4.525 95.32
33 4.618 4.569 4.654 98.04

Table 6
Dimensionless parameters of FGM square plate (a/h = 10) under sinusoidal load.

n Method w̄ σ̄x σ̄y τ̄xy τ̄xz τ̄yz

1 Zenkour [22] 0.5889 3.0870 1.4894 0.6110 0.2462 0.2622
Present SHO4 0.5886 3.0970 1.4910 0.6093 0.2381 0.2602
Carrera et al. [26] 0.5875 – – – – –
Xiang et al. [6] 0.5895 3.2480 1.5287 0.6295 – –

2 Zenkour [22] 0.7573 3.6094 1.3954 0.5441 0.2265 0.2763
Present SHO4 0.7568 3.6200 1.3980 0.5426 0.2181 0.2731
Carrera et al. [26] 0.7570 – – – – –
Xiang et al. [6] 0.7581 3.7062 1.4222 0.5559 – –

4 Zenkour [22] 0.8819 4.0693 1.1783 0.5667 0.2029 0.2580
Present SHO4 0.8810 4.0800 1.1810 0.5652 0.1940 0.2532
Carrera et al. [26] 0.8823 – – – – –
Xiang et al. [6] 0.8824 3.9371 1.1474 0.5620 – –

7 Zenkour [22] 0.9562 4.5971 0.9903 0.5834 0.2081 0.2194
Present SHO4 0.9552 4.6090 0.9925 0.5818 0.1989 0.2152
Carrera et al. [26] 0.9554 – – – – –
Xiang et al. [6] 0.9563 4.6568 1.0026 0.5868 – –

6.4. Square plate under static doubly sinusoidal load

This test consists of square FGM plate under static doubly sinusoidal distributed load q expressed as q =

q0 sin (πx/a) sin (πy/a) (Fig. 6). A 20 × 20 meshing is used for this validation test. The used dimensionless
parameters are

w̄ =
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Table 6 lists the dimensionless displacements and stresses of a simply supported FGM square plate of (a/h = 10). It
can be found that the results obtained by the present model are in good agreement with those found in the works of
[22,26,6]. In addition, the obtained results are nearly close to those of [22].

The distribution across the plate thickness of the dimensionless shear stress σ xz =
h

aq0
σxz


0, a

2 , 0


for various
values of the exponent n, using 20 × 20 meshes, is illustrated in Fig. 7 and is compared with the results of the 3d
solution presented in the work of [5]. The proposed DDDSM presents very close results to Neves’s 3d solution. But,
it is noticed from Fig. 7 that the condition of zero-transverse shear strains on top and bottom faces of the FGM plate
is not considered in the work of [5].

In the following results a pined square FGM plate (u = 0) submitted to static sinusoidal load is considered. A
16 × 16 meshing is used for these examples.

Fig. 8 shows the variation of the dimensionless center-point deflection of a square plate (a/h = 10) with power-law
index n.
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Fig. 6. A simply supported square FGM plate under sinusoidal load.
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Fig. 7. Dimensionless shear stress σ̄xz for a simply supported square plate under sinusoidal load (a/h = 4).

Fig. 8. Dimensionless deflection versus power law index n for a simply supported square plate under sinusoidal load (a/h = 10).

In Fig. 9, the dimensionless center-point deflection w̄ is given in terms of the side-to-thickness ratio a/h for
(n = 6). From Figs. 8 and 9 it can be easily observed that the numerical results obtained by S4 and SHO4 elements
agree highly with a large variation of the ratio a/h and the power-law index n. Fig. 9 illustrates a significant
discrepancy between the results obtained by the present model and Dammak et al. [21] model, especially for thick
plates. This is due to the applicability ranges of the models named restriction domains. In fact, if an error of about 5%
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Fig. 9. Dimensionless deflection versus ratio a/h for a simply supported square plate under sinusoidal load (n = 6).

(a) First order shell theory : S4. (b) Present double directors : SHO4.

Fig. 10. Dimensionless normal stress σ̄x for a simply supported square plate under sinusoidal load (a/h = 10).

(a) First order shell theory : S4. (b) Present double directors : SHO4.

Fig. 11. Dimensionless stress σ̄xz for a simply supported square plate under sinusoidal load (a/h = 10).

is allowed, the Mindlin–Reissner type theory can be employed for (a/h ≥ 25) and the Kirchhoff–Love type theory
only for (a/h ≥ 50) [14].

Figs. 10 and 11 illustrate the dimensionless normal stresses σ̄x = σx (a/2, 0) h2/

q0a2


and the dimensionless

shear stresses σ̄xz = σxz (0, a/2) h2/

q0a2


, respectively versus dimensionless transverse coordinate z̄ = z/h for

different values of the power-law index n (a/h = 10).
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From Fig. 11, it is noticed that the S4 element cannot predict accurately the dimensionless transverse stresses with
the comparison of the SHO4 element.

7. Conclusions

The analysis and the efficiency of the 3d-shell model based on a double directors shell element for the FGM shell
structures is presented in this paper. The transverse shear deformations are taken into account in the DDDSM model.
The vanishing of transverse shear strains on top and bottom faces is considered in a discrete form. Dimensionless
stresses and displacements of the simply supported functionally graded plate under sinusoidal load are computed by
the present DDDSM model. By numerical investigation, the proposed model presents a good performance and high
accuracy to predict the static behavior of shell structures when comparing with available published results.

The proposed (DDDSM) formulation presented in this paper can be used in the following aspects:

(a) Linearized formulation. This case is treated in this paper.
(b) Free vibration. A dynamic equation of the DDDSM model for FGM shells will be derived through Hamilton’s

principle.
(c) Buckling. Buckling stresses of shells made of FGMs will be analyzed by taking into account the effects of

transverse shear deformations.
(d) Fully nonlinear formulation. The formulation will be assessed through numerical simulations involving the finite

rotation and the geometric non-linearity.

The authors will study these aspects in future articles.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cma.2014.05.011.
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