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Highlights

• A boundary term is included in the phase-field approach which enables control of outer boundaries.
• The box constraints enforcing the upper and lower limits are included via an obstacle potential.
• The double-sided Howard policy iteration scheme is used for solving the max–min problem.
• An adaptive finite element formulation is used to resolve the interfaces between void and full material.
• The derivation of the stationarity conditions for the objective functional is outlined in detail.

Abstract

A phase-field based topology optimization approach is considered for the maximum stiffness or minimum compliance problem.
The objective functional to be minimized consists in addition to the compliance a cost for gray solutions and a cost for interfaces
between void and full material. Since the interfaces between void and full material are penalized via a volume integral in the original
phase-field formulation there is no penalty associated with interfaces along the external boundaries. In the present contribution, an
additional term representing the cost of interfaces at external boundaries is added to the functional subject to minimization. It is
shown that the new boundary term enters the optimization as a Robin boundary condition. The method is implemented in a finite
element setting and numerical simulations of typical structures are considered. The results indicate that the optimal designs are
influenced by the cost of interfaces to a large extent.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Topology optimization has over the past decades qualified as an important tool in the design process. The method
has evolved and the number of applications is vast, cf. [1,2] for an overview of the method and its applications. The
objective of the optimization is in the present work to find a design that maximizes the stiffness for a given amount of
material. The advantage of using the stiffness as the objective, or rather its complement the compliance, is that it is a
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global measure and thus can be represented by a scalar value. Moreover, the constraint on the volume is also particular
simple since it is linear and monotone which in most cases gives rise to a robust numerical algorithm.

The most widely used numerical scheme for topology optimization is the Solid Isotropic Material with Penalization
(SIMP) scheme where the density is approximated as constant within each element. The SIMP procedure is based on
a sequence of convex approximations and the algorithm is simple to implement and at the same time numerically
efficient. A distinct black/white solution is obtained by penalizing gray designs via a scaling of the elastic constitutive
relation. This formulation has been shown to be ill-posed due to the length scale missing in the formulation, cf. e.g. [3].
A mesh-dependent solution can, however, be obtained, by using the finite element method where a length scale enters
the formulation via the mesh size. However, to resolve the boundary a very fine or an adaptive mesh is needed, cf.
e.g. [4].

Regularization of the topology optimization problem implies that a length scale is introduced in the problem
formulation which removes the mesh dependency otherwise present in a finite element solution. Several procedures
for regularization of the topology optimization problem has been proposed, these can be local such that the smallest
size of a segment is limited, or it can restrict the total length of the perimeter. Such methods are known as filtering
techniques [5], perimeter control, [6], gradient control [7,8] and recently also phase-field approaches [9,10]. All
these methods has in common that they introduce a length scale in the formulation and thus restricting the smallest
characteristic size either locally or globally.

The gradient control method, [7], has been shown to yield similar results as the filter based schemes. The drawback
of the gradient control based method is that it implies a large number of additional constraints. The most frequent
approach for regularizing the problem is to make use of the filter approach as proposed by [5,11] and further developed
in e.g. [12]. A summary of filtering techniques can also be found in [13]. The filter approach is similar to the
gradient control method, a local method, however compared to the gradient control method it is associated with a
less computational cost. The original filter method is based on that a filtered sensitivity of the density, ρ, is used in the
constitutive relation instead of the local density sensitivity. A typical filter can be described as

ξ∗(x) =


Ωc

φ(x − y)ξ(y)dV (1)

where the filter function φ ≥ 0 fulfills the normalization condition

Ωc
φ(x − y)dV = 1, Ωc is a domain in

Rd , d ∈ [2, 3] with compact support. The filter is typically applied directly on the density field or on the sensitivity
of the density. Several possibilities for the filter function, φ exists and the two most frequently employed filters are the
linear and the Gaussian, bell-shaped, cf. e.g. [11,14].

The filter strategy is numerically simple to implement but the treatment of the boundaries deserves additional
attention. The difficulties at the boundaries stems from the fact that the filter function, φ is defined over Ωc which
close to the boundary stretches outside the design domain, Ω . As a consequence, close to the boundaries of the design
domain, ∂Ω , the convolution (1) will involve values of the quantity, ξ , located outside the design domain, Ω . Assuming
no material outside Ω and using (1) will inherently lead to a diffuse designs along design boundaries. One remedy (cf.
e.g. [15]) is to exclude the part of Ωc outside Ω along with a scaling of the filter function, φ. This procedure tends,
however, to yield high values of the density at the interface. In contrast to modifying the filter function, the density
field can be extended to the entire, Ωc, by making use of symmetries. However, all the remedies mentioned above are
suffering from having an unclear interpretation at the boundaries.

Another method for regularizing the stiffness problem was proposed in [6] where the objective functional is
augmented such that the total variation (TV) of the density field is penalized. The total variation is related to the
perimeter of the structure and defined as

TV =


Ω\Γ j

|∇ρ|dV +


Γ j

|⟨ρ⟩|d S (2)

where the element boundaries are defined by Γ j and ⟨⟩ represents the jump function. Since the absolute sign in (2) is
non-differentiable at the origin, the problem is regularized using the smoothing functions, g and j , i.e.

P =


Ω\Γ j

g(|∇ρ|)dV +


Γ j

j (⟨ρ⟩)d S. (3)
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In this approach, the finite element interpolations for the density field is chosen as piece-wise constant within each
element such that jumps are allowed over the element boundaries as well as along the outer boundary. The functional
P is then used for controlling the perimeter in the topology optimization problem. Penalization of material along
the design domain boundaries can easily be included in the perimeter control scheme since the integral of the jump
function, if elements with material is present, is taken over the design domain boundary. In contrast to the filter
approach the method is global and can thus not be expected to strictly suppress very thin members locally.

Yet an alternative method for regularizing the stiffness problem is provided by the phase-field method, cf. [9,16].
The phase-field method was originally developed for simulation of evolution of micro-structural phenomena, cf. [17].
The energy, or cost term, related to interfaces is given by

Ω
|∇ρ|

2dV . (4)

A comparison of the perimeter control scheme and the phase-field approach reveals that the two methods share some
features. Both methods are penalizing gradients of the density field. In contrast to the perimeter control scheme the
phase-field approach is based on a continuous density field which eliminates the need for penalization of interfaces
between elements. However, from (4), it follows that there is no cost for material along the design domain boundaries,
e.g. where regions with full material are located along the design boundary, and where ∇ρ = 0. In the phase-field
approach homogeneous Neumann boundary condition

∇ρ · n = 0 along ∂Ω (5)

is imposed for the density field. The boundary condition (5) will enforce that the design is perpendicular to the design
domain, cf. e.g. [10,16,18].

In conclusion, interfaces are penalized via a volume integral of square of the magnitude of the gradient of the
density field, cf. (4), along with the boundary condition (5) in the phase-field approach. The boundary condition (5)
implies that there is no cost for interfaces along the design domain boundary, this favors material along the design
domain boundary. For most applications this feature is in conflict with the optimal design and in the present work a
remedy to the problem is presented.

The phase-field approach employed in [18] is used as a basis in the present work. To introduce a cost for interfaces
along the design domain, the objective functional in the present work is augmented with a boundary term which
introduces a cost for creating external design boundaries. The derivations following the requirement of stationarity of
the objective functional reveals that the new term in the objective functional can be interpreted as a Robin boundary
condition (mixed boundary condition) for the density field along the design domain boundaries. The paper is closed
by two simple examples where the effect of the new boundary term is demonstrated.

2. Preliminaries

The design space in which the structure is embedded is denoted Ω ⊂ Rd of dimension d = 2, 3. The density,
ρ : Ω → [−1, 1], is taken as the design variable and void material is represented by ρ = −1 and full material is
defined by ρ = 1. The total amount of material available for the design is given by, V̄ , i.e.

V̄ =
1
2


Ω
ρ dV + Vo


(6)

where Vo is the volume of the design domain, Ω . The constitutive relation for the stress, σ is given as

σ (ρ,u) = D(ρ) : ϵ(u) (7)

where the strain, ϵ(u), is defined as the symmetric part of the gradient of the displacement field, ϵ(u) = (∇u)sym,
where subscript sym denotes the symmetric part of the quantity, and D(ρ) represents the elastic stiffness tensor.
Decreasing the density, ρ, will lead to a reduction of the stiffness. This relation, not necessarily linear, will here be
used in a similar manner as in the SIMP method. Assuming the existence of a monotone function g(ρ) : R → R+,
the stiffness of the material is described by D = g(ρ)D0 where D0 represents the stiffness of the full material, i.e.
ρ = 1. Void material is represented by ρ = −1 and it will later on be assumed that a residual stiffness is present for
void material, i.e. g(−1) = ϵ2

s > 0.
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In absence of body forces and given density field, ρ, the strong form of the elastic equilibrium problem consist of
finding the displacement u such that:

∇ · σ (ρ,u) = 0 in Ω
u = 0 on ∂ΩDu

σ (ρ,u) · n = to on ∂ΩNu

(8)

where the boundary, ∂Ω , is separated into ∂Ω = ∂ΩNu ∪ ∂ΩDu and ∂ΩNu ∩ ∂ΩDu = ∅ and where ∂ΩDu is the
Dirichlet part where the displacement condition is imposed, and ∂ΩNu is the Neumann part where the surface traction
to is applied. The outward unit vector normal to ∂ΩNu is denoted n.

The variational (weak) form of the elastic problem is found by introducing the function space V := {ū ∈

[H1(Ω)]d
: ū|∂ΩDu

= 0}. For given density distribution ρ ∈ L∞(Ω), find u ∈ V such that:

Vu(ρ,u; ū) = 0 ∀ū ∈ V (9)

where

Vu(ρ,u; ū) =


Ω

σ (ρ,u) : ϵ(ū)dV −


∂ΩNu

to · ūd S. (10)

It is noted that the solution u in (9) is obtained for a given density field ρ, i.e. the solution depends on the density
distribution such that u(ρ).

3. Boundary augmented functional

The objective of the optimization is for fixed amount of material to find a distinct design that maximizes the stiff-
ness of the structure. The stiffness of the structure is maximized when the compliance, C , defined as

∂Ωt

t0 · ud S = 2

Ω
w(ρ,u)dV = C(ρ,u) (11)

is taking a minimum value. Note that the elastic boundary value problem was used in the derivation of (11). In (11)
w(ρ,u) =

1
2ϵ(u) : σ (ρ,u) represents the specific strain energy. Although most phase-field studies have been con-

cerned with the stiffness optimization problem it can be applied to other problems. In [19] local stress constraints
was incorporated in a phase-field approach and in [20] it was shown that the phase-field based topology optimization
scheme can be applied to minimal displacement problems. Intermediate, or gray, densities, ρ ∈ ]−1, 1[ are penalized
via the penalization function, F(ρ) : R → R+

o (subscript o indicates that zero is included in the set) and the total
penalization for gray densities is given by

Ω
F(ρ)dV ≥ 0. (12)

The penalty function F(ρ) is frequently referred to as a double-well potential function or an obstacle potential func-
tion with the property F(−1) = F(1) = 0. Minimizing the compliance, C , using the penalization (12) will, similar
to the SIMP scheme, result in a mesh-dependent solution due to a lacking length scale. To overcome this deficiency,
the problem will be regularized using a phase-field approach which implies that a cost for gradients is included in the
objective functional, see also the previous discussion in the introduction part and [21]. To summarize, the objective
functional to be minimized will take the following format

Ẽ(ρ,u) =


Ω


F(ρ)+

γ1

2
|∇ρ|

2


dV + ηC(ρ,u) (13)

where the influence of the compliance is governed by η and where u ∈ V and ρ ∈ M with the space M := {ρ̄ ∈

H1(Ω) : ρ̄|∂ΩDρ
= ρDρ } where ρDρ is the prescribed density along ∂ΩDρ . The boundary for the density field ρ is then

split according to ∂Ω = ∂ΩNρ ∪∂ΩDρ and ∂ΩNρ ∩∂ΩDρ = ∅. The second term in (13) represents the interface energy
or gradient energy and the third term is not present in the micro-structural phase-field formulation and represents the
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compliance which is subject to minimization. The functional (13) has previously been considered for topology opti-
mization, cf. e.g. [21]. As discussed in the introduction, the solution obtained by minimization of (13) results in that
interfaces located along the design domain boundary, ∂Ω are not penalized. As a consequence of lacking cost for in-
terfaces along design boundaries it is favorable for material to be located along ∂Ω . To include interface cost along ∂Ω
the functional in (13) is augmented with an additional boundary term. The boundary of Ω will for the density problem
now be split into ∂Ω = ∂ΩRρ∪∂ΩDρ and ∂ΩRρ∩∂ΩDρ = ∅, where Rρ and Dρ refers to Robin and Dirichlet boundary
conditions, respectively. Using this split the objective functional E(ρ,u), subject to minimization is given by

E(ρ,u) =


Ω


F(ρ)+

γ1

2
|∇ρ|

2


dV + ηC(ρ,u)+
γ2

2


∂ΩRρ

(ρ + 1)2d S. (14)

The boundary integral proposed in (14) implies that a density not being void along ∂ΩRρ contributes to the functional,
E . The parameter γ2 sets the cost for interfaces along the design domain. It is concluded that for ρ = −1, there is
no cost for interfaces along ∂ΩRρ whereas ρ = 1 implies a penalty of 2γ2 per unit length of the boundary. Note that
for γ2 = 0 the cost for material along the outer boundary vanishes and the usual homogeneous Neumann boundary
condition used in the standard phase-field approach is recovered. Another special case is obtained by letting γ2 → ∞.
From (14) it can be concluded that increasing γ2 will force the density along ∂ΩRρ to approach void material, i.e. a
Dirichlet boundary condition is approached.

To satisfy, equilibrium, traction boundary conditions and volume constraint the objective functional is augmented
such that the Lagrangian ψ is obtained, i.e.

ψ(ρ,u,λe,λρ) = E(ρ,u)+


Ω

λe
· ∇ · σ (u, ρ)dV + λρ


Ω
ρdV + Vo − 2V̄


+


∂ΩNu

λt
· (t0 − σ (u, ρ) · n)d S (15)

where u ∈ V , ρ ∈ M. The Lagrangian multipliers λe
∈ V and λt

∈ V are enforcing equilibrium and traction boundary
condition, respectively. Finally, λρ ∈ R is a Lagrangian multiplier enforcing the volume constraint.

3.1. Stationarity

An optimal state is characterized by its Lagrangian (15) being stationary. Taking advantage of that the stresses can
be derived from the strain energy as

σ = w,ε (16)

allows the first variation of the objective functional to be written as

δψ =


Ω


F,ρ − γ1∆ρ − ∇λe

: w,ερ + 2ηw,ρ + λρ

δρ dV +


∂ΩNρ∩∂ΩNu


λe

− λt
· w,ερ · n δρ d S

+


Ω


2ηw,ε − ∇λe

: w,εε


: ε(δu) dV +


∂ΩNu


λe

− λt
·

w,εε : ε(δu)


· n d S

+ γ2


∂ΩRρ

(ρ + 1)δρ d S + γ1


∂ΩRρ

∇ρ · nδρ d S = 0 ∀ δu ∈ V, δρ ∈ K (17)

where K := {ρ̄ ∈ H1(Ω) : ρ̄|∂ΩDρ
= 0}.

Let us first consider the two last boundary integrals in (17). To satisfy stationarity of (17) a mixed, Robin type,
boundary condition for ρ · n = 0 is assumed

γ1∇ρ · n = −γ2(1 + ρ) along ∂ΩRρ . (18)

The boundary condition (18) implies that the two last surface integrals in (17) vanish. Next, following [18] where it is
shown that λe

= λt
= 2ηu results in the reduced functional

δψ =


Ω


F,ρ − γ1∆ρ + λρ − 2η

g,ρ
g
w


δρdV = 0 ∀ δρ ∈ M (19)
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where it was used that w,ρ = g,ρϵ : Do : ϵ =
g,ρ
g w. By localization the optimality criteria can be expressed, find ρ

subjected to (8) and (6) such that:

F,ρ − γ1∆ρ + λρ − 2η
g,ρ
g
w = 0 in Ω

ρ = 0 along ∂ΩDρ
γ1∇ρ · n = −γ2(1 + ρ) along ∂ΩRρ .

(20)

The variational (weak) form of the optimality criteria is given as, find ρ ∈ M subjected to (9) and (6) such that

V̄ρ(u, ρ, λρ; ρ̄) = 0 ∀ρ̄ ∈ M (21)

where

V̄ρ(u, ρ, λρ; ρ̄) =


Ω
ρ̄F,ρdV +


∂ΩNρ

γ2ρ̄(1 + ρ) d S +


Ω
γ1∇ρ̄ · ∇ρdV

+


Ω
ρ̄λρdV −


Ω

2ηρ̄w,ρdV (22)

where the coupling to the mechanical field (9) enters via w,ρ .

4. Specific formats

Several possible formats for the cost function, F and the elastic scaling function g exist. In [18] use was made of a
smooth functions F with high penalty for ρ outside the range [−1, 1]. Too high penalty in that formulation will affect
the numerical algorithm and lead to convergence problems. A continuous penalty function F do not strictly exclude
densities above the upper limit thus false stiffness could be the outcome. However, this problem can be avoided by
use of a cut-off for g at ρ = 1, cf. e.g. [22]. This approach would also influence upon the interpretation of the volume
constraint since areas where |ρ| > 1 can exist. An alternative route was employed in [23,21] where a non-smooth
obstacle potential function was utilized. This approach will be employed in the present formulation. For this situation
the penalization function, F will take the format

F(ρ) = I (ρ)+ F0(ρ) (23)

where F0(ρ) = (1 − ρ2)/2 and where the indicator function, I , is defined as

I[−1,1](ρ) =


0 ρ ∈ [−1, 1]

∞ otherwise.
(24)

The choice (23) will result in infinite penalty for densities ρ ∉ [−1, 1] which implies that the local density will not
violate the constraint ρ ∈ [−1, 1]. The derivative of F enters optimality criteria (20) and for the situation where F is
non-smooth deserves extra consideration. Using the concept of subderivative the derivative of F can be expressed as

F,ρ = F0,ρ + µ (25)

where µ is in the subdifferential of I which is the normal cone N[−1,1](ρ) to [−1, 1], and has the properties

µ ∈ ∂ I[−1,1](ρ) = N[−1,1](ρ) =

(−∞, 0], ρ = −1
0 ρ ∈ (−1, 1)
[0,∞) ρ = 1.

(26)

The choice (26) gives rise to an extra complication due to the non-smoothness and that µ for ρ = 1 and −1 is an
unknown quantity. The solution to this problem will be discussed together with the definition of the max–min problem
and Howard’s policy iteration scheme. For this purpose let us define the following sets

A+
= {x ∈ Ω | ρ = 1} Upper coincidence set

A−
= {x ∈ Ω | ρ = −1} Lower coincidence set

A = A+
∪ A− Coincidence set

N = {x ∈ Ω | −1 < ρ < 1} Non-coincidence set.

(27)

These sets turn out to be useful later when the max–min problem will be formulated.
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The scaling function g used in the stiffness is in the present work chosen as

g(ρ) = (1 + ρ + ϵs)
2/4 (28)

where the threshold value is taken as ϵs = 10−5 in the numerical examples. The choice (28) sets the residual stiffness
as ϵ2

s times the nominal stiffness and this choice ensures that the elastic problem is non-singular.

5. Phase-field approach

In order for the solution to evolve towards a minimum of the objective functional, the non-conserving Ginzburg–
Landau also known as the Allen–Cahn approach is used for defining the set of evolution laws for the system. This
approach will guarantee that the objective functional will approach a minimum. However due to the non-convexity of
the system a stationary point cannot be guaranteed to be a global minimum.

To find a state that fulfills (20)a a steepest decent approach will be adopted. The search direction is the residual of
(20)a and the solution is allowed to evolve until (20)a is fulfilled within a given tolerance. In conclusion, the rate of
change of the density distribution, −ρ̇ is taken to be proportional to the left hand side of (20)a, i.e.

− γ1ρ̇ = F,ρ − γ1∆ρ + λρ − 2ηw,ρ . (29)

Then from (19), considering the time rate instead of variation, by the use of (29) it then immediately follows that

ψ̇ = −γ1


Ω
(−F,ρ + γ1∆ρ − λρ + 2ηw,ρ)2 ≤ 0 (30)

i.e. a minimum of ψ is approached for the evolution law (29).

5.1. Time discretization

Before the finite element formulation is discussed, a time discretization for the density field is introduced. Here,
the backward-Euler approximation for ρ̇ will be employed, i.e.

ρ̇ =
ρ − ρn

τ
(31)

where τ is the time elapsed during the time-step and ρn is the known density at time tn . For the present problem, the
time step has no physical meaning and it will be chosen such that convergence is obtained. Insertion of (31) into (29)
and using (25) yields

γ1

τ
(ρ − ρn)+ F0,ρ − γ1∆ρ + λρ − 2ηw,ρ = −µ. (32)

Taking advantage of (26) it follows that instead of (32) a max–min problem can be stated. However, let us first
recall some preliminary results:

γ1

τ
(ρ − ρn)+ F0,ρ − γ1∆ρ + λρ − 2ηw,ρ ≥ 0 in A−

γ1

τ
(ρ − ρn)+ F0,ρ − γ1∆ρ + λρ − 2ηw,ρ = 0 in N

γ1

τ
(ρ − ρn)+ F0,ρ − γ1∆ρ + λρ − 2ηw,ρ ≤ 0 in A+

ρ − 1 ≤ 0 in Ω
ρ + 1 ≥ 0 in Ω .

(33)

The split in (33) into the different sets implies that µ is not evaluated explicitly. Instead a selection procedure is
introduced such that the correct equation is used from the material point at hand, i.e. a selection between (33)b, d
and e. For this selection procedure, Howard’s policy iteration scheme will be introduced in the sequel. Also for this
purpose it is concluded that the inequalities in (33) can be stated as a max–min problem

max


min
γ1

τ
(ρ − ρn)+ F0,ρ − γ1∆ρ + λρ − 2ηw,ρ, ρ + 1


, ρ − 1


= 0 in Ω (34)



152 M. Wallin, M. Ristinmaa / Comput. Methods Appl. Mech. Engrg. 278 (2014) 145–159

which describes the problem at hand. This statement must, evidently, be supplemented with the volume constraint and
the elastic problem.

With the above at hand, the variational (weak) forms of the time discretized evolution equation of the density field
and the associated elastic problem can be stated where advantage is taken of the sets defined in (27). Find u ∈ V ,
ρ ∈ M, µ ∈ N[−1,1](ρ) and λρ ∈ R in Ω such that:

Vu(ρ,u, ū) = 0 ∀ ū ∈ V
Vρ(ρ̄,u, λρ, µ, ρ) = 0 ∀ ρ̄ ∈ M
C1(ρ) = ρ − 1 ≤ 0

C2(ρ) = ρ + 1 ≥ 0

C3(ρ) =


Ω
ρ dV + Vo − 2V̄ = 0

(35)

where

Vρ(u, ρ, λρ, µ; ρ̄) =


Ω
ρ̄Fo,ρdV +


Ω
ρ̄µ dV +


∂ΩNρ

γ2ρ̄(1 + ρ) d S

+


Ω
γ1∇ρ · ∇ρ̄dV +


Ω
ρ̄λρdV −


Ω

2ηρ̄w,ρdV . (36)

6. Finite element setting

The computational domain Ω is approximated by Ω̄ which consists of the set of elements Th such that Ω̄ =

∪K∈Th K . The finite element spaces used for the displacement and the density field consist of piece-wise mth order
polynomials, Pm , with m ≥ 1, i.e.

V h
=


ūh ∈ H1(Ω̄); ūh|K ∈ Pm(K ), ∀K ∈ Th, ūh |∂ΩDu

= 0


Mh
=


ρ̄h ∈ H1(Ω̄); ρ̄h|K ∈ Pm(K ), ∀K ∈ Th, ρ̄h |∂ΩDρ

= 0

.

(37)

The finite element space for the subdifferential of the indicator function is taken as

W h
=


vh ∈


n
δ(x − xn)αn; αn ∈ R; xn ∈ Ω̄


(38)

where δ denotes the Dirac delta function and where the collocation points xn are chosen to coincide with the finite
element nodal points. This choice is sufficient for our purposes and it will later on be shown to be compatible with the
numerical scheme.

The solution to the finite element problem can then with the use of (37) and (38) be stated as, find uh ∈ V h, ρh ∈

Mh, µh ∈ W h and λρ ∈ R in Ω such that

V h
u (ρh,uh, ūh) = 0 ∀ ūh ∈ V h

V h
ρ (ρh,uh, λ

ρ, µh, ρ̄h) = 0 ∀ ρ̄h ∈ Mh

C1(ρh) = ρh − 1 ≤ 0

C2(ρh) = ρh + 1 ≥ 0

C3(ρh) =


Ω̄
ρh dV + Vo − 2V̄ = 0

(39)

is fulfilled.
To reduce the size of the resulting system a staggered time stepping procedure will here be employed, i.e. the equi-

librium will be solved for fixed densities followed by an update of the density field for a fixed derivative of the strain
energy, w,ρ .
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6.1. Solution strategy

It has been shown in [21] that a staggered approach is a feasible approach especially since the density problem
is characterized as a non-smooth problem. In the staggered approach, first the elastic problem is solved for a given
density field after this step the density field is solved using Howard’s algorithm.

The solution procedure can formally be stated as

• For given ρg = ρh , find uh ∈ V h such that

Vu(uh, ρg; ūh) = 0 ∀ ūh ∈ V h . (40)

• For given ug = uh and function g(ρh), find ρh ∈ Mh , λρ ∈ R and µh ∈ W h such that

V h
ρ (ρh,ug, λ

ρ, µh, ρ̄h) = 0 ∀ ρ̄h ∈ Mh

C1(ρh) = ρh − 1 ≥ 0

C2(ρh) = ρh + 1 ≤ 0

C3(ρh) =


Ω̄
ρh dV + Vo − 2V̄ = 0.

(41)

Note that the scaling function g given in (28) is taken to be constant in the second stage, together with fixed displace-
ments corresponds to assuming that w,ρ is constant, i.e. a semi-implicit method is utilized.

The elastic problem is linear as it is solved for constant density field. This can be considered as a standard linear
elastic problem and is therefore not discussed in detail here. Instead emphasis will be given to the non-smooth density
problem which is solved using a double sided version of Howard’s algorithm as introduced by [24]. Also the density
problem needs some consideration since a selection must be done, cf. the continuous problem defined in (34). To
derive the discrete counterpart part to (34), explicit matrix formats corresponding to V h

ρ will be given. By denoting the
matrix containing the shape functions N and the matrix containing the gradient of the shape functions B the following
matrix format of (41)a is obtainedγ1

τ
− 1


M + γ1K0 + γ2KR


ρ + Pλρ −

γ1

τ
Mρn − 2η


Ω̄

NTw,ρdV + γ2PR = −µ (42)

where ρ and µ denote the nodal values of ρh and µh , respectively. In (42), the following constant matrices were
introduced

M =


Ω̄

NT NdV, K0 =


Ω̄

BT BdV, P =


Ω̄

NT dV, (43)

and

KR =


∂Ω̄Rρ

NT Nd S, PR =


∂Ω̄Rρ

NT d S. (44)

Collecting the terms in (42) enable the system to be written in the compact format

Aρ + Pλρ − b = −µ. (45)

It is also noted that the volume constraint, (41)d, can be written as

PT ρ + Vo − 2V̄ = 0. (46)

Since the function spaces as well as the domain is discretized it is advantageous to define the sets corresponding to
(27), such that:

Ah+
= {x ∈ Ω̄ | ρh = 1} Upper coincidence set

Ah−
= {x ∈ Ω̄ | ρh = −1} Lower coincidence set

Ah
= Ah+

∪ Ah− Coincidence set
N h

= {x ∈ Ω̄ | − 1 < ρh < 1} Non-coincidence set.

(47)
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Using the definition (26), three cases of (45) can be distinguished.

Aρ + Pλρ − b


α

≥ 0 ∀ xα ∈ Ah+
Aρ + Pλρ − b


α

= 0 ∀ xα ∈ N h
Aρ + Pλρ − b


α

≤ 0 ∀ xα ∈ Ah−

(48)

where xα denotes the location of node α and where {·}α denotes the α row of the system. It is important to realize that
the system (48) should be solved along with (46). It is easily verified that the three cases in (48) can be formulated as
a max–min problem, i.e.

max(min(Aρ + Pλρ − b, ρ + 1), ρ − 1) = 0

PT ρ + Vo − 2V̄ = 0.
(49)

The min and max operators in (49) should be evaluated row-wise, i.e. for each row max(min({Aρ + Pλρ − b}β ,

{ρ + 1}β), {ρ − 1}β) = 0 should be evaluated. It is also noted that this is the max–min statement of the discrete
problem corresponding to the continuous problem in (34). The max–min problem (49) is often referred to as a double
obstacle problem where the upper and lower limits represents the obstacles. Several strategies for solving the problem
(49) exists. In [25] the Primal Dual Active Set (PDAS) strategy was employed. In [21], this problem was solved using
the Howard policy iteration scheme. The Howard policy iteration scheme will be used herein and it will therefore
briefly be recaptured below.

6.1.1. Howard’s policy iteration algorithm
As shown in [24], Howard’s single obstacle solution procedure can be generalized to the double obstacle problem

(49). Policy iteration schemes can be said to consist of a policy improvement and a policy evaluation. To formulate
this consider first a template problem such as

min(B1ρ − c1, B2ρ − c2) = 0 (50)

where Bi are n × n matrices and ρ and ci are column matrices of size n. This statement corresponds to the single
obstacle problem.

Next let us introduce a nonempty set compact set A = {0 1}, and α ∈ An which are called polices and n is the
number of rows in the min statements. Note that n corresponds to the number of degrees of freedom in the system. The
policy α then determines if the first or the second argument in (50) is the solution corresponding to α = 0 and α = 1,
respectively. It should be noted that this selection procedure generates a new linear equation system. The introduction
of polices allows for a more compact notation, namely

min
α∈An

(B(α)ρ − c(α)) = 0. (51)

With the above, the policy iteration scheme which computes a solution ρ∗ from a sequence of trial values ρk and
policies αk can be defined as

αk+1
= arg min

α∈An
[B(α)ρ − c(α)] (policy improvement)

ρk+1is a solution of B(αk+1)ρ − c(αk+1) = 0 (policy evaluation).

With these preliminary results let us consider the max–min problem, i.e. the double obstacle problem. For the
double obstacle problem two policies are used, one for each obstacle. Let A and B be two nonempty compact sets and
let the policies associated with A and B be denoted α ∈ An related to the min problem and β ∈ Bn related to the max
problem. The max–min problem can then be stated as

max
β∈Bn


min
α∈An

(B(α, β)ρ − c(α, β))


= 0 (52)

i.e. the two policies will form a new linear equation system which fulfills the max–min condition. To be more explicit,
the particular solution procedure based on (49) can be reformulated into

G(ρ) = max
β∈Bn

Qβ(ρ) = 0 (53)
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where the following definitions are used (the subscript i denotes the row)
Qβ(ρ)


i =


Fβ(ρ)i if βi = 0
{ρ}i − 1 if βi = 1

(54)

and using the notation above the min statement can be written as

Fβ(ρ) = min
α∈A N

(B(α, β)ρ − c(α, β)) . (55)

It is then concluded that the rows where the policy βi = 0 is given as

{B(α, β)}i j =


{A}i j if αi = 0
δi j if αi = 1

and {c(α, β)}i =


b − Pλρ


i if αi = 0

− {1}i if αi = 1.
(56)

Note that for rows where the policy βi = 1 the row is given by the second choice in (54).
In the two-stage stage procedure by [24] the min problem is first solved for ρ with fixed policies β, i.e. Fβ(ρ) then

the max problem is solved for fixed policies α. The algorithm is outlined below

• Howard algorithm for a single obstacle: (For a fixed βq )
Iterate for k ≥ 0

(i) Find ρk such that Fβ
q
(ρk) = B(αk, βq)ρk

− q(αk, βq) = 0
(ii) If k ≥ 1 and ρk

= ρk−1 stop
(ii) Compute αk+1

:= arg minα∈An Fβ(ρk)

(iii) Set k := k + 1 and go to (i).

For the particular system in question and the solution of (i) the policies results in that prescribed values on ρ are
imposed. With the single obstacle algorithm at hand, the two stage algorithm can be written as

• Howard algorithm for double obstacles: (Initiate αo and βo)
Iterate for q ≥ 0

(i) Find ρq such that Qβ
q
(ρq) = 0 (solution given by Howard algorithm obstacle for fixed βq )

(ii) Compute βq+1
:= arg maxβ∈Bn Qβ(ρq)

(iii) If G(ρq) = Qβ
q+1
(ρq) = 0 then stop;

Else set q := q + 1 and go to (i).

It is important to realize that densities coinciding with the obstacles are not part of the linear system that should be
solved, i.e. the size of the linear system that is required to be solved in each iteration is determined by the number of
degrees of freedom in the diffuse interfaces.

7. Numerical examples

To illustrate the presented formulation and its numerical implementation, two boundary value problems will be
considered. The geometries along with the boundary conditions are depicted in Fig. 1. The magnitude of the applied
forces are chosen as 1. Plane stress and isotropy is assumed and the elastic parameters Young’s modulus and Poisson’s
ratio are chosen to be 1 and 0.3, respectively. The dimensions of the design domains in the plane of loading are taken
as 3 × 1 in Fig. 1(a) and 2 × 2 in Fig. 1(b). The elements used in the finite element simulation are linear triangular
plane elements and to resolve the interface a mesh refinement strategy is employed. A hierarchical element refinement
strategy is used. As the material density field only varies in the interfaces the refinement is concentrated to these areas,
and since the range of the material density field is known and bounded a simple refinement rule can be adopted. The
adaptivity is based on that if the difference in material density in an element is greater than 0.3 the element is refined
and if the difference in the material density within an element is less than 0.01 the element will be coarsened if pos-
sible. This strategy will ensure that the interfaces are properly resolved. The initial mesh for the geometry in Fig. 1(a)
consist of 660 elements and for the geometry in Fig. 1(b) of 800 elements.

The adaptive time stepping used in the examples below is based on the number of iterations used in the policy
iteration scheme, i.e. no error estimation is used. If the total (inner and outer) iterations is less that 5 the time step
is increases by 20% until the maximum time step τmax = 1 · 10−4 is reached. The initial time step is taken as
τini t = 1 · 10−8.
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a b

Fig. 1. Illustration of geometry and boundary conditions used in the numerical examples.

Fig. 2. The shapes of the optimal structures for material V̄ = 0.3Vo for the two left figures and V̄ = 0.65Vo for the two right figures and for the
two lower figures γ2 = 0 whereas for the two top figures γ2 = 100. Blue color indicates void material and red full material. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

7.1. Bar structure

To illustrate the implication of the boundary term a first simple example is considered where two horizontal point
loads, located 1/4 from the top and bottom, are applied, cf. Fig. 1(a). Although this structure is very simple, it provides
insight into the behavior of the boundary penalty term presented herein. On the left side homogeneous Dirichlet dis-
placement boundary conditions are present. An initial homogeneous distribution of the material density is considered
for which two different levels are used namely V̄ = 0.3Vo corresponding to that the design domain is filled with 30%
material and V̄ = 0.65Vo which corresponds to that the design domain is filled with 65% material. The parameters
γ1 = 0.5 and η = 200 are used for the case of V̄ = 0.3Vo and γ1 = 0.4 and η = 400 for the case V̄ = 0.65Vo. The
parameter controlling the boundary penalty are used, γ2 = 0 and 100. The boundaries where the boundary penalty
will be present are the top, bottom and right external boundaries, cf. Fig. 1(a), i.e. the boundary penalty is not present
at the left boundary.

The results from the simulations are shown in Fig. 2. It is clearly seen that when the boundary penalty is absent,
material tend to be located along the external boundaries as this is favorable. This optimized structure differ consid-
erably from the situation when the boundary penalty term is present. For the situation without the boundary term it
is also noted that a diffuse bridge is present between the two part. It is concluded that this bridge is present since it
compensates for the fact that the two parts of the optimized structures are not horizontally aligned.

For the situation when the boundary penalty term is present it is noted that for small levels of total volume two bar
like structures are obtained. For large amount of total material these two bar like structures cannot exist instead they
form one part which resembles a dog bone shaped structure.

The fillets clearly visible at the left hand side of Fig. 2(b) is also present in Fig. 2(a), however less pronounced. The
fillets stems from the fact that the left hand side of the structure is clamped at the left hand side.
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Fig. 3. The shapes of the optimal structures for material V̄ = 0.5Vo and γ1 = 1 and η = 400. For (a) γ2 = 0 i.e. not penalty at design boundaries
and for (b) γ2 = 200, i.e. penalty at design boundaries. Blue color indicates void material and red full material. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

7.2. Cantilever structure

The geometry considered in the second example is shown in Fig. 1(b). The left side of the structure is clamped,
i.e. homogeneous Dirichlet displacement boundary conditions is applied on the left hand side and at the lower right
corner a vertical concentrated load is present. The boundary penalty term if present is applied along the top, bottom
and right external boundaries. The initial material is taken a V̄ = 0.5Vo, i.e. the domain is homogeneously filled with
50% material. The material parameters are γ1 = 1 and η = 400 and when penalty present it is set to γ2 = 200.

From Fig. 3(a), it is concluded that for the case where no cost is present for material at design boundaries, material
is preferred at the design boundaries as it tries to ‘climb’ upward on the lower right side. At the top left corner the
same behavior can be seen as the material tries to spread out along the design boundaries.

By considering Fig. 3(b) where a cost for material on the design boundaries are present it is obvious that the
attachment of material along design boundaries are not present. This is visible by comparing the right lower parts and
the left top parts of the right (a) and left (b) figures. Also at the lower part of Fig. 3(b) it is shown that the material is
not located along the this boundary, i.e. a completely different behavior compared to the situation when not penalty is
present is obtained.

Whether there should be material located along the design boundaries is of course a question in itself. Here it is
shown that if the cost for material along design boundaries is absent there are no means to control the behavior of the
design. In some part it might be preferable to have material along the design boundaries, this might be the situation of
the lower design boundary in Fig. 3.

Finally, the convergence history during the first 300 steps for the example illustrated in Fig. 3b is shown in Fig. 4.
From Fig. 4 it can be concluded that the objective function decreases drastically during the initial phase of the
optimization. This decrease stems mainly from the fact that the material reorganization results in a significantly stiffer
structure. From Fig. 4 it can also be concluded that the compliance increases as the finite element discretization is
refined; a result that is consistent with the fact that FE solution of the elastic problem is overestimating the stiffness of
the solution, i.e. the FE method provides an upper bound solution. From Fig. 4 it can be concluded that the penalization
due to F0 is insignificant and can be omitted. It is also interesting to note that the although the absolute values the
gradient energy and the boundary energy are relatively low they have a major influence on the final design.

8. Conclusions

A phase-field approach for topology optimization has been considered for the situation of maximizing the stiffness
for a given amount of material. In the usual phase-field approach there is no penalty for interfaces forming at design
domain boundaries and special emphasis was here devoted to associate costs to the interfaces forming at the design
boundaries. Thus an augmented functional including costs for material located at the design domain boundaries
has been proposed. It was shown that stationarity of the functional leads to Robin boundary condition instead of
the usual Neumann boundary conditions used in a phase-field approach. In addition it was shown that adopting
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step=20 100 300

Fig. 4. Evolution of the components of the objective functional. Magenta dashed curve corresponds to the contribution due to the compliance,
ηC , black solid curve corresponds to the contribution due to the gradient,


Ω γ1|∇ρ|

2dV , green dashed dotted curve corresponds to the surface
contribution,


∂Ω Rρ

γ2(ρ + 1)2dV and finally the bulk term

Ω F0dV is indicated by a dotted red curve. All contributions are normalized using

the initial value of the objective functional. Snap shots of the evolution of the designs is also shown. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

a Ginzburg–Landau approach for the evolution laws together with the Robin boundary conditions minimizes the
functional.

For the density field a double obstacle problem was introduced such that the density stay within the allowable
range. The topology optimization problem was solved using a staggered solution strategy, where first the elastic
problem was solved for constant density and then the density problem, i.e. phase-field problem was solved for constant
displacements. The non-smooth problem obtained due to the double obstacle problem was then solved using a double
sided version of Howard’s algorithm. It was shown that the proposed solution method is well suited for solving the
topology optimization problem.

Finally it was shown by solving some representative problems that the influence of costs associated with interfaces
along design domains can have large impact on the solution. Two examples were considered, one which mimic uniaxial
stretching and a second where a cantilever beam considered.
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