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Abstract

This contribution addresses a two-scale computational homogenization framework for the simulation of electro-active solids at
finite strains. A generalized form of the Hill–Mandel condition is employed for the derivation of energetically consistent transition
conditions between the scales. The continuum mechanical formulation is implemented into a two-scale finite element environment,
in which we attach a microscopic representative volume element at each integration point of the macroscopic domain. In order to
allow for an efficient solution of the macroscopic boundary value problem an algorithmically consistent tangent of the macroscopic
problem is derived. The method will be applied to the analysis of dielectric polymer–ceramic composites, where we determine the
effective actuation of composites with different microstructures. Furthermore, we show the applicability of the proposed method
to the computation of two-scale electro-mechanically coupled boundary value problems in consideration of large deformations.
c⃝ 2014 Elsevier B.V. All rights reserved.

Keywords: Computational homogenization; FE2-method; Electro-mechanical coupling; Finite deformations; Electro-active polymers; Dielectric
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1. Introduction

The development of numerical schemes for the simulation of electro-elastic materials undergoing large strains
could be helpful for the design and optimization of advanced technical applications in the area of large-strain electro-
mechanical actuation like, for example, artificial muscles and robotics [1–5]. The continuum mechanical field theory
for the mathematical description of the geometrically nonlinear behavior of these materials is well established [6–10]
and has been employed for the modeling of electro-elasticity at finite strains [11–17]. In recent years, numerical
solution methods based on different discretization techniques, mainly in the framework of finite element methods,
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have been developed [18–25]. From a practical point of view, materials with very large or “giant” electrostriction
are particularly attractive. Thus, the maximization of actuation strains plays an important role in the development
of electro-active elastomers. As found out experimentally, the effective electro-mechanical coupling of dielectric
elastomers can be enhanced by the addition of high-electric-permittivity (high-ϵ) particles into the elastomeric matrix
[26–32]. This phenomenon can be explained by the interplay between the elastomeric matrix and the inclusions, where
one notes two major contributions: firstly, the overall electric permittivity is increased due to the addition of high-ϵ
dispersion [26]. Secondly, the high contrast of the individual phases on the microlevel induces pronounced electric
field fluctuations [33]. This interesting phenomenon is investigated theoretically by using different methods like, for
example, homogenization techniques based on sequential laminates [34,35] or computational strategies based on finite
element simulations [36,37], see also the works [38–40].

It should be mentioned that the addition of microstructural high-ϵ objects could lead to the important issue of
microstructural instability. This can roughly be explained by the large locally induced electric fields in the elastomeric
matrix which give rise to pronounced local deformations in the microstructure. In general there are two important
phenomena associated with electro-mechanical instability. On the one hand instabilities occur when electrostatic
forces cannot be compensated by elastic forces. On the other hand, as in any electrically charged dielectric, there is
the danger of electric breakdown. For the case of homogeneous materials these issues are addressed, for example, in
[41,42] for static and dynamic conditions; associated experimental observations are documented in [43]. The detailed
study of the corresponding effects is however beyond the scope of the present contribution. Thus, the interested reader
may be referred to, for example, the works [44–46], in which instability phenomena for composite dielectrics are
analyzed in detail.

The present contribution aims at providing a two-scale computational homogenization framework for electro-
elastic boundary value problems at finite deformations, which can be applied to the simulation, characterization
and optimization of electro-elastic solids undergoing large strains. In detail, the framework is based on the FE2-
method, which solves a macroscopic boundary value problem (BVP) in consideration of the response of attached
microscopic representative volume elements (RV E ). This computational method is well-established in the context of
purely mechanical problems [47–58] and has been extended to the homogenization of physically coupled materials
like, for example, in thermo-elasticity [59,60] and electro-mechanics [61,62]. Recently, the application to the finite-
strain magneto-mechanical case was presented in [63].

The outline of the paper is as follows. In Section 2 the basic kinematical relations and balance equations of finite
electro-elasticity will be summarized. Section 3 will provide the two-scale homogenization framework with a focus on
the coupled BVPs on the macro- and the microscale as well as on the transition conditions between the two scales. An
expression for the macroscopic tangent moduli will be given. In Section 4 the method will be applied to the simulation
of polymer–ceramic composites. Section 5 will provide a short summary and a conclusion.

2. Theoretical framework

In the following we summarize the basic equations for the continuum-mechanical description of electro-elasticity
at large strains. For a more detailed discussion we refer to the works [13,14] or [18].

Let the body of interest in the (undeformed) reference configuration be denoted by B ⊂ R3 and parameterized
in the referential coordinates X; in the deformed configuration it is denoted by S ⊂ R3 and is parameterized in the
current coordinates x. The nonlinear deformation map ϕt : B → S at time t ∈ R+ maps points X ∈ B onto points
x ∈ S . The deformation gradient F is defined by

F(X) = Grad ϕt (X) =
∂ϕt (X)
∂X

. (1)

In the absence of magnetic fields and free currents the electric field in the current configuration is governed by
Faraday’s law of electrostatics

curle = 0, (2)

so that we can express it as the gradient of some scalar electric potential φ with respect to the current coordinates as

e = −gradφ = −
∂φ

∂x
. (3)
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In order to formulate the mechanical balance equation we take into account that the electric field exerts a force on the
material under consideration. According to e.g. [64] this force can be described by the electrostatic (or ponderomotive)
body force f elec given by

f elec
= grad e · p (4)

where p denotes the electric polarization density in the current configuration. Based on that, and in the absence of
mechanical body forces, we write the balance of momentum in the current configuration as

div σmech
+ f elec

= 0, (5)

where σmech denotes the mechanical Cauchy stress tensor. In the latter equation, we can express f elec in terms of the
second-order Maxwell stress tensor via

f elec
= div σ elec with σ elec

= e ⊗ d −
1
2
ϵ0(e · e)1, (6)

where ϵ0 is the permittivity of free space and 1 is the second-order unity tensor. Furthermore, d is the electric
displacement in the current configuration given by

d = ϵ0e + p. (7)

Thus, the balance of momentum can finally be reformulated to

div(σmech
+ σ elec) = div σ = 0, (8)

where we have introduced the total Cauchy stress tensor σ which is the sum of the mechanical Cauchy stress σmech

and the electrically induced Maxwell stress σ elec. In the absence of free charge carriers, the balance equation on the
electrical side is given by Gauß’s law

div d = 0. (9)

In line with the work [13] we postulate the existence of a total potential Ω per unit reference volume, from which
the total stresses and the electric displacements can be derived. It should be noted that this potential includes a
contribution of free space, so that the Maxwell stress can also be computed for the surrounding space of the body, see
e.g. [22], page 185. In order to obtain constitutive equations that satisfy a priori the principle of material objectivity,
the functional dependence Ω := ψ(E,C) is taken into account, where E is the electric field with respect to the
reference configuration and C is the right Cauchy–Green tensor given by

E = FT e and C = FT F. (10)

Based on the function Ω we compute the total second Piola–Kirchhoff stresses, the total first Piola–Kirchhoff stresses
and the total Cauchy stresses by

S = 2
∂Ω
∂C
, P = FS, and σ = J−1FSFT , (11)

respectively, where J = det F. The electric displacement with respect to the reference and current configuration
follows consequently as

d = −J−1F ·
∂Ω
∂E

and D = JF−1d. (12)

3. Coupled boundary value problems on the two scales

In the framework of the FE2-method we have to solve BVPs on two separate scales—on the macroscopic and
the microscopic scale. The two associated BVPs will be discussed in the following sections based on the theoretical
framework provided in Section 2. The procedures discussed below can be understood as a direct extension of the work
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Fig. 1. Macroscopic BVP with attached RV E at each Gauß point. The microscopic BVP is driven by boundary conditions derived from the
macroscopic deformation gradient F and the macroscopic electric field E. An averaging process delivers the dual macroscopic quantities, i.e. the
macroscopic total stresses P and the macroscopic electric displacements D as well as the effective elastic, electro-elastic, and dielectric moduli A,
q, and ϵ.

on small-strain electro-elasticity proposed in [62]. The general procedures and assumptions presented in the following
trace back, amongst others, to the fundamental works on computational homogenization provided by Miehe and
coworkers, see for example [48,49,53]; in this context we also refer to the summary [58]. For a visualization of the
FE2-concept see Fig. 1.

3.1. Boundary value problem on the macroscopic scale

Throughout the following sections, the quantities associated with the macroscopic scale will be labeled with an
overline. Consequently, we denote the body of interest on the macroscopic scale as B ⊂ R3 and parameterize it in the
coordinates X. Furthermore, the macroscopic displacement and electric potential are written as u and φ, respectively.
Based on that, we define the macroscopic deformation gradient tensor and electric field vector as

F := Grad x and E := −Grad φ. (13)

The governing balance laws on the macroscopic scale now appear as

Div P = 0 and Div D = 0 in B. (14)

We prescribe Dirichlet- and Neumann-type boundary conditions in terms of

{u, φ} = {ub, φb} on ∂B
{u,φ}

and {T,−Q} = {[[P]] · N, [[D]] · N} on ∂B
{T ,Q}

(15)

where T are surface tractions, Q are electric surface charges, N is a unit normal vector pointing outwards from the
body, and [[•]] := •inside −•outside denotes the jump across the boundary of the body (note that there exists a free-space
contribution of the Maxwell stress).

3.2. Micro-to-macro transitions

The above macroscopic fields {F,P,E,D} are linked to associated microscopic counterparts {F,P,E,D} through
suitable surface integrals along the boundary ∂B of the microscopic representative volume element (RV E ) described
on a domain B with volume V . By assuming continuity of the displacements and the electric potential across the
RV E we may alternatively define the macroscopic deformation gradient and electric field through volume integrals.
In this case we have

F := ⟨x ⊗ N⟩∂B = ⟨F⟩B and E := ⟨−φ N⟩∂B = ⟨E⟩B (16)
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where ⟨•⟩∂B :=
1
V


∂B • d A denotes the average of the surface integral along ∂B and ⟨•⟩B :=

1
V


B • dV denotes

the average of the volume integral over the RV E with respect to the reference state. Furthermore, N is a unit normal
vector pointing outwards from the RV E . In addition to that we define the macroscopic Piola stresses and electric
displacements as

P := ⟨T ⊗ X⟩∂B = ⟨P⟩B and D := ⟨−Q X⟩∂B = ⟨D⟩B. (17)

Please note that the equality of the surface and volume integrals in (17) is only valid when mechanical body forces
and free electric charge carriers are neglected on the microscale. For a detailed derivation of the relations given in (16)
and (17) in the small-strain setting see [65].

3.3. Boundary value problem on the microscopic scale

The quantities on the microscopic scale will have no special labeling. We denote the microscopic body as B ⊂ R3

and parameterize it in the microscopic coordinates x. In analogy to (13) the microscopic deformation gradient and
electric field are given by

F := Gradx and E := −Gradφ. (18)

The balance equations are written down as

Div P = 0 and Div D = 0 in B, (19)

where we have neglected body forces as well as charge carriers on the microscale. Appropriate boundary conditions
on ∂B can be derived from a generalized form of the classical Hill–Mandel macro-homogeneity condition [66]

˙Ω = ⟨Ω̇⟩B ⇔ P :
˙F − D ·

˙E = ⟨P : Ḟ⟩B − ⟨D · Ė⟩B, (20)

refer to [61,62] for the electro-mechanically coupled case in the small-strain setting. This condition is fulfilled if

P := ⟨P : Ḟ⟩B − P :
˙F  

P1

+ D ·
˙E − ⟨D · Ė⟩B  

P2

= 0, (21)

see [61] for a detailed discussion on how to fulfill this condition by setting P1 = 0 and P2 = 0 individually. The
simplest assumption of the microscopic fields that automatically satisfy the above condition is given by postulating
the constraints P := P or Ḟ :=

˙F and D := D or Ė :=
˙E, which are associated to the Sachs–Reuss and Voigt–Taylor

bounds, respectively. More general boundary conditions can be derived from an equivalent expression3 of (21)
given by

P = ⟨[T − P · N] · [u̇ −
˙F · X]⟩∂B  P1

+ ⟨[Q + D · N] [φ̇ +
˙E · X]⟩∂B  P2

= 0. (22)

From the conditions P1 = 0 and P2 = 0 we derive the Dirichlet and Neumann boundary conditions in terms of the
mechanical and electrical quantities as

{u̇, φ̇} = {
˙F · X,− ˙E · X} and {T, Q} = {P · N,−D · N} on ∂B, (23)

respectively. Periodic boundary conditions satisfying the two individual conditions are given by

{T, Q}(X+) = −{T, Q}(X−) and {w,φ}(X+) = {w,φ}(X−) on X±
∈ ∂B±, (24)

where w and φ are the microscopic fluctuations of the displacement and the electric potential and X±
∈ ∂B± denote

points on opposite faces of the RV E .

3 For a detailed derivation of this expression we refer to the Appendix B.
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3.4. Algorithmically consistent linearization of macroscopic field equations

In order to obtain quadratic convergence within the Newton scheme on the macroscopic scale we must linearize
the macroscopic weak forms consistently. This goes along with the consistent linearization of the macroscopic total
Piola stresses and the macroscopic electric displacements

∆P =
∂P

∂F
: ∆F +

∂P

∂E
· ∆E and ∆D =

∂D

∂F
: ∆F +

∂D

∂E
· ∆E. (25)

Taking into account the definitions (17) we note that we have to compute the partial derivatives of volume averages
with respect to the macroscopic deformation gradient and electric field, i.e.

A :=
∂⟨P⟩B
∂F

, q :=
∂⟨D⟩B
∂F

=


−
∂⟨P⟩B
∂E

T

and ϵ :=
∂⟨D⟩B
∂E

. (26)

Here we introduced the macroscopic mechanical moduli A, dielectric moduli ϵ, and electro-elastic moduli q with
[qT

]ijk := qkij.
In order to derive suitable measures for the effective coefficients we assume that the microscopic deformation

gradient and electric field (18) can be decomposed into constant parts {F,E} and fluctuating parts {F,E} so that

{F,E} := {F,E} + {F,E} with


B
{F,E} dV = 0. (27)

Here it should be noted that (27)2 is automatically satisfied through the definitions of the boundary conditions
formulated in (23) and (24). By using the above superposition principle together with the chain rule we can rewrite
(25) as


∆P

−∆D


=

1
V

B


A −qT

−q −ϵ


+

 A :
∂F
∂F

−qT
·
∂E
∂E

−q :
∂F
∂F

−ϵ ·
∂E
∂E

 dV

∆F
∆E


, (28)

where we introduced the algorithmically consistent microscopic elastic, electro-elastic, and dielectric tangent moduli
as the partial derivatives

A :=
∂P
∂F
, q :=

∂D
∂F

= −


∂P
∂E

T

, and ϵ :=
∂D
∂E
. (29)

In Eq. (28) we have to compute partial derivatives of the microscopic fluctuation fields with respect to their
macroscopic counterparts. This can be done by using the FE discretization of the microscopic RV E which gives
us the algorithmically consistent macroscopic moduli in matrix notation as

A −qT

−q −ϵ


=

1
V


B


A −qT

−q −ϵ


dV −

1
V


Luu Luφ
Lφu Lφφ

T Kuu Kuφ
Kφu Kφφ

−1 Luu Luφ
Lφu Lφφ


.

Here the first term on the right hand side constitutes a simple volume average of the algorithmic microscopic
moduli over the RV E . The second term arises as an augmentation of the macroscopic moduli that results from the
incorporation of microscopic fluctuations on the RV E . For a straightforward derivation and the definition of the used
matrices see Appendix A.

4. Numerical examples

In the following sections we will apply the proposed method to the two-scale simulation of dielectric polymer–
ceramic composites. First, the influence of the dielectric properties of ceramic inclusions on the overall actuation of an
electroactive composite will be analyzed. Based on that, we will investigate the overall performance in consideration
of different volume fractions and different shapes of the inclusions. Finally, the method will be employed for the
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Fig. 2. Macroscopic boundary value problem with RV E attached at each integration point (for simplicity, only one finite element on the macro-
scopic scale is depicted). The RV E is composed of a polymer matrix and a ceramic inclusion. On the macroscopic scale we consider a statically
determined body with prescribed electric potential boundary conditions on its upper and lower surface. On the microscopic scale we consider
periodic boundary conditions. Please note that lmicro ≪ lmacro.

two-scale simulation of a macroscopic electric bimorph with attached microscopic RV E s. In all simulations we
consider periodic boundary conditions on the microscale and describe both, elastomer and ceramic inclusions, by
the Neo-Hookean-type potential

Ω(C,E) =
1
2
µ(tr[C] − 3)+

λ

4
(J 2

− 1)−


λ

2
+ µ


ln J −

1
2
ϵ0


1 +

χ

J


J [C−1

: (E ⊗ E)], (30)

where λ and µ are the Lamé constants and χ is the electric susceptibility, from which the latter is defined to be zero
in free space and greater than zero in dielectric materials.

4.1. Computational homogenization of polymer–ceramic composites

Experimental investigations show that the overall actuation performance of a dielectric polymer can be enhanced by
the usage of composite materials, see the short discussion in the introduction. As indicated there, one of the reasons for
that lies in the fact that the actuation of a non-polar (non-piezoelectric or -ferroelectric) dielectric is mainly governed
by the electrostatic body forces (or Maxwell stresses). From the constitutive viewpoint, the Maxwell stress itself is a
function of the dielectric properties of the material. Since elastomers generally have comparably small susceptibility in
the order of magnitude χ ≈ 101, the addition of metal or ceramic inclusions (as for instance barium titanate which has
a susceptibility with order of magnitude of χ ≈ 103)4 can significantly enhance the overall susceptibility. Next to that,
the high contrast of the matrix and the inclusions leads to electric field fluctuations on the microscale, which induce
electric field gradients and thus give rise to the appearance of electrostatic body forces. The following numerical
examples will investigate the overall coupling of ceramic-reinforced dielectric elastomers.

In detail, we investigate the effective response of some idealized composite RV E s that have to be imagined as
periodically embedded in an overall macroscopic body. For the analysis of the composite we use the above presented
homogenization framework, which means that we attach an RV E at each integration point of the macroscopic domain,
see Fig. 2.

As depicted in the figure the loading is given by an electric potential difference applied to the macroscopic body.
By using the periodic boundary conditions derived in Section 3 the primary gradient fields in each integration point
of the macroscopic body are transferred to the attached RV E s. Then, after the solution of the associated microscopic
boundary value problem, the effective response is given back to the macroscale. In each integration point, the effective
response includes the effective stresses, the effective electric displacements as well as the effective material moduli of

4 A metal is a conductor and thus has χ → ∞. This often leads to a pronounced enhancement of the actuation. We will, however, concentrate
on the analysis of polymer composites made from ceramics.
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Fig. 3. Dielectric polymer–ceramic composite with different susceptibilities of the inclusion. In this example, the volume fraction of the inclusion
is 20%. Both, matrix and inclusion are described with the Neo-Hookean potential given in (30). The size of the RV E is 1 · 10−3

× 1 · 10−3
[mm2

].

a b

Fig. 4. Actuation of the composite under applied macroscopic electric field E2: (a) development of actuation in consideration of different dielectric
properties of the inclusion χ incl

= n · χmat (polymer deformation is given as reference), (b) relative deformation under applied electric field of
E2 = 22 [

kV
mm ] for the different composites (the relative deformation is computed as the ratio between composite deformation λcomp

22 and polymer

deformation λpoly
22 parallel to the applied electric field).

the composite microstructure. For the numerical solution of the boundary value problems on the microscale we use
homogeneous finite element discretizations with six-noded triangular finite elements. The number of elements in each
RV E is about 1000, which was found to be a sufficient discretization for the computation of quantitatively meaningful
results.

4.1.1. Analysis of the influence of the dielectric properties of the inclusion
In order to quantify the influence of the dielectric properties of the inclusion we analyze the overall behavior of an

elastomer with circular ceramic inclusions5 that have different susceptibility, see Fig. 3.
The susceptibility of the inclusions will be chosen as n = 1, 10, 20, 30, 40, 100 times the susceptibility of the

elastomer, i.e. χ incl
= n · χmat with χmat

= 7. We choose the Young modulus of the inclusion to be 103 times the
Young modulus of the matrix with Y mat

= 2 · 105
[

N
m2 ], i.e. Y incl

= 103
· Y mat

= 2 · 108
[

N
m2 ]. In order to account

for the nearly incompressible character of the matrix we set Poisson’s ratio6 to νmat
= 0.49. Poisson’s ratio of the

inclusion is set to νincl
= 0.3. For the present analysis we consider a volume fraction of the inclusion of 20%.

As electric boundary conditions we prescribe a positive electric potential φlower on the lower surface and a negative
potential φupper on the upper surface, so that the specimen is loaded with a homogeneous macroscopic electric field
E2 that points in positive vertical direction. Fig. 4 shows the development of macroscopic actuation strain λ22 with
respect to the applied macroscopic electric field. Furthermore, the achievable maximum strains under the macroscopic
field E2 = 22 [

kV
mm ] are compared to the strain obtained with the polymer alone.

5 In the present two-dimensional study such a composite constitutes a dielectric elastomer with periodically arranged cylindrical fibers.
6 It should be mentioned that the electro-elastic response of the elastomer is sensitive of the choice of Poisson’s ratio. For simulations in the

quasi-incompressible limit (ν → 0.5) the usage of mixed finite element formulations will thus be favorable, see, for example, [25,67].
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a
b

Fig. 5. Actuation under applied electric field of the composite: (a) development of actuation in consideration of different volume fractions of
the inclusion. With increasing volume fraction of the inclusion instabilities of the composite are induced already under smaller applied fields. As
can be seen clearly, the initiation of instability goes along with a vertical tangent of the individual actuation curves. The source of the overall
instabilities however originates from effects occurring on the lower scale, see b): due to the higher stiffness of the inclusion and the high electric
field gradients above and below the inclusion, deformations are mainly induced locally in the matrix material. The regions above and below the
inclusions experience a pronounced compressive strain of approximately 50% that makes the matrix unstable. With increasing volume fraction of
the inclusion this local strain is generated already under lower fields. The contour shows the vertical microscopic current electric field e2 of the
microstructure with 20% volume fraction of the inclusion under macroscopic loading of E2 = 22 [

kV
mm ].

Clearly, the actuation of the material can be enhanced by the addition of ceramic particles. As can be seen, an
increase in actuation for the present setup can already be achieved by the addition of particles with a susceptibility that
is approximately 30 times the susceptibility of the matrix.

4.1.2. Analysis of the influence of the volume fraction of the inclusion
In the above simulation we investigated the overall behavior of a composite with a constant volume fraction of the

inclusion of 20%. It can be expected that the volume fraction of the inclusion will have an impact on the macroscopic
response. Thus, the following analysis will focus on composite materials that are composed of different fractions
of inclusion and matrix material. The shape of the inclusion will again be assumed to be circular, now having a
fraction of 20, 30, 40, 50, 60, and 75%, respectively.7 In all computations, the susceptibility of the inclusion is set to
χ incl

= 100 · χmat. The results are shown in Fig. 5.
As expected, the magnitude of actuation strains under identical fields is higher for the composites with higher

volume fraction. However, we observe that the initiation of instabilities is also a function of the volume fraction in
the sense that instabilities arise under smaller fields when the inclusion fraction is increased. Clear indicators for the
initiation of instabilities are the vertical tangents of the individual actuation curves. It is however enlightening to note
that the source of the observed overall instabilities originates from effects occurring on the lower scale. This can be
explained as follows. Since the inclusion material is stiff compared to the matrix, deformations mainly occur in the
matrix material. Furthermore, since the susceptibility of the inclusion is 100 times higher than that of the matrix, the
electric potential inside the inclusion has a small gradient resulting in a small electric field inside the inclusion. On
the other hand, high electric fields and high electric field gradients arise above and below the inclusion, see Fig. 5(b).
In order to give a clear impression on the amount of the generated electric field gradients a three-dimensional surface
plot of the vertical electric field in the microstructure is shown in Fig. 6.

The described effects yield pronounced electrically induced deformations locally above and below the inclusion
(strains of the order of magnitude of approximately 50% are observed). This finally leads to local instabilities which
are initiated earlier when the amount of inclusion material is increased. We conclude that in composites the appearance
of instabilities may be associated to microscopic phenomena. This is then clearly dependent on the morphology of the
microstructure as well as on the properties of the individual phases. For a detailed analysis of instability phenomena
in dielectric composites see, for example, [44–46].

7 In the present context of a circular inclusion inside a rectangular matrix the upper bound of the volume fraction for non-overlapping inclusions
is given by 78,54 %.
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Fig. 6. Three-dimensional plot of the current electric field within the microstructure with 20% volume fraction of the inclusion. It becomes obvious
that high gradients of the electric field occur above and below the inclusion. The contour shows the microscopic electric field component parallel
to the applied macroscopic field E2 = 22 [ kV

mm ].

Fig. 7. Dielectric polymer–ceramic composite with ellipsoidal inclusions. We consider ellipsoidal inclusions with volume fractions of 20, 30,
and 40%. The individual dimensions are given by {a, b}20 = {0.1706, 0.3732}, {a, b}30 = {0.2424, 0.3939}, and {a, b}40 = {0.3708, 0.4136}

[10−3 mm]. The outer dimensions of the RV E are 1 · 10−3
× 1 · 10−3

[mm2
].

4.1.3. Analysis of the influence of the shape of the inclusion
Next, we investigate the actuation response in consideration of different inclusion geometries. Here, we will focus

on inclusions with ellipsoidal shape and consider the composites with volume fractions of 20, 30, and 40%.8 The
dimensions of the individual ellipsoids are given by {a, b}20 = {0.1706, 0.3732}, {a, b}30 = {0.2424, 0.3939}, and
{a, b}40 = {0.3708, 0.4136}, all in [10−3 mm]. As in the previous computations, the dimensions of the RV E are given
by 1 · 10−3

× 1 · 10−3
[mm2

]. In Fig. 7 a composite structure with ellipsoidal inclusion is depicted.
We now analyze the coupling behavior of these composites under two different loading scenarios. In the first case

we apply a macroscopic electric field that points parallel to the major axes of the ellipsoids, i.e. a field that is aligned
with the major axes. In the second case we rotate the electric field by 90◦ so that it is oriented perpendicular to the
major axes of the ellipsoids. The results of the computations are shown in Fig. 8. Here we compared the individual
coupling responses also to the coupling of the composites with circular inclusions and identical volume fractions.

In Fig. 8(a) we observe that the shape of the inclusions has a significant influence on the overall response of the
composite. On the one hand, applying electric fields perpendicular to the major axes (i.e. in horizontal direction in
Fig. 8) gives a soft reaction with comparably large obtainable deformations. On the other hand, applying the electric
field parallel to the major axes of the inclusions gives a pronounced electro-active response already under small fields.

8 The inclusions of the composites with higher volume fractions can poorly be transferred into an ellipsoidal shape with representative character
since the boundary of the inclusion is close to the boundary of the RV E .
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a b

Fig. 8. Actuation under applied electric field of the composite: (a) development of actuation in consideration of different shapes of the inclusion
for the volume fractions 20, 30, and 40% (χ incl

= 100 · χmat; “par.” and “perp.” mean that the applied electric field is oriented parallel and
perpendicular to the major axis of the ellipse, respectively); (b) response of the three composites with parallel loading in the small-electric-field
regime. Note that under an applied field of for instance E2 = 7 [

kV
mm ] the actuation is increased by approximately 50% irrespective of the volume

fraction of the inclusion.

Fig. 9. The macroscopic boundary value problem is given by an electric bimorph with dimensions of l = 100 [mm] and h = 1 [mm]. As electric
boundary conditions we apply zero electric potential at the lower boundary of the specimen (φlow = 0 [kV]) and a linearly increasing electric
potential through its center (φmid ≥ 0 [kV]). The electric potential at the upper boundary is left free. The mechanical boundary conditions are
prescribed in such a way that the left end of the specimen is fixed in horizontal direction and the lower left corner is fixed in both horizontal and
vertical direction. At each macroscopic Gauß point we attach an RV E composed of a polymer matrix and a circular ceramic inclusion with a
volume fraction of 20% and χ incl

= 100 · χmat.

In these cases, the electro-mechanical coupling is the highest. When the composites are loaded in this way they show,
however, unstable behavior already at smaller fields compared to the others.

A remarkable outcome of the present computations is revealed by the comparison between the composites with
vertical ellipsoidal inclusions in the small-electric-field range, see Fig. 8(b). There we clearly observe that the response
of the three composites is nearly identical irrespective of e.g. a doubling in volume fraction from 20 to 40%. For
instance under an applied macroscopic field of E2 = 7 [

kV
mm ], the actuation is increased by approximately 50% for all

considered volume fractions of the inclusion. We conclude that, next to the volume fraction, the shape of the inclusions
is a predominant input variable that can be optimized in the development of dielectric composites; in this context see,
for example, [35].

4.2. Two-scale simulation of an electric bimorph

In order to show the general functionality of the proposed two-scale formulation we now consider the simulation
of an electro-active bimorph with composite microstructure. The macroscopic boundary value problem is depicted in
Fig. 9.

The bimorph consists of two layers that are connected through an electrode which is located between the two
layers. At the bottom of the bimorph a second electrode in attached. The driving mechanism of the bimorph is based
on the potential difference between the lower and the middle electrode and its interaction with the upper (passive)
layer: due to the potential difference between the two electrodes an electric field in thickness direction is induced only
in the lower half of the specimen. This gives rise to a local contraction of the material which yields expansion in the
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Fig. 10. Stepwise deformation of the bimorph under applied macroscopic electric potentials φmid = 0, 2, 3, 4, 5, 6 [kV] together with deformed
exemplary RV E s at the tip of the cantilever. Note, that the legend refers to the macroscopic electric potential. On the microscale we compute
the electric potential from (49) so that in each RV E a local distribution of electric potential is obtained. Adding the corresponding (constant)
macroscopic part would not change the situation so that it is simply omitted.

direction perpendicular to the field. Since the upper layer is not electrically activated it acts as a passive component
and restrains lateral deformation. Thus, bending of the cantilever is initiated.

In order to study the deformation of the bimorph under applied electric fields, we discretize it with 100 quadratic
triangular finite elements with six nodes and three Gauß points. At each Gauß point we attach a microscopic RV E that
is discretized with 1,168 six-noded triangular elements. The RV E s are composed of a polymeric matrix and a circular
ceramic inclusion with a volume fraction of 20%. We employ the same material parameters as in the foregoing studies
and choose a susceptibility of the inclusion of χ incl

= 100 · χmat. As electric boundary conditions we apply zero
electric potential at the lower boundary of the specimen (φlow = 0 [kV]) and a non-zero electric potential on its
center electrode (φmid ≥ 0 [kV]). The electric potential at the upper boundary is left free. The mechanical boundary
conditions are prescribed in such a way that the nodes at the left end of the specimen are fixed in horizontal direction
and the lower left node is fixed completely. The deformation of the bimorph under linearly increasing loading as well
as deformations of an exemplary RV E at the tip of the cantilever are shown in Fig. 10.

We see clearly the resulting pronounced deformations on the macroscale as well as the heterogeneous reactions on
the microscale. In the final stage of loading the tip of the specimen and the attached RV E have performed nearly a
full rotation with respect to the out-of-plane normal. It is remarkable that, although the local deformations (strains) in
the RV E are rather small, the overall rotations of the cantilever are very large. This is due to the slender geometry of
the specimen. In this slender configuration, already small strains are able to produce large rotations.

5. Summary and conclusion

We have presented a two-scale finite-element (FE2) framework for the simulation of electro-elastic materials at
finite strains. The method was derived based on classical micro–macro transition conditions for electro-mechanical
fields. The microscopic boundary value problem was defined on periodic representative volume elements. In order to
account for the effect of electrostatic volume forces we employed the concept of Maxwell stress on the microscale.
The overall macroscopic response was computed by suitable averaging processes over the microscale.

The presented method was then applied to the simulation of electro-elastic polymer-matrix composites with
ceramic inclusions. The influence of the inclusion’s dielectric properties on the overall coupling was analyzed in
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detail. In addition to that, different volume fractions of circular as well as ellipsoidal inclusions were studied. The
simulations confirmed that the actuation performance of a soft polymer can significantly be enhanced by adding
ceramic dispersions. Here, next to electric properties and volume fraction, the shape of the inclusion has shown a
major influence on the overall actuation. This reveals the inclusion shape as an important design variable for the
development of dielectric composites with enhanced properties.

Finally, we applied the framework to the two-scale simulation of an electro-mechanical boundary value problem
given by an electric bimorph actuator. The simulations showed that the method can be used for the detailed study of
electro-elastic coupling phenomena of soft materials at finite deformations on two separate scales.
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Appendix A. Computation of macroscopic tangent

In order to derive the effective macroscopic tangent we consider the discrete forms of the coupled BVP on the
microscale. We first summarize the basic ingredients for the solution of the microscopic BVP like, for example, the
weak formulation and its FE implementation (the strategy follows classical “standard” procedures of FE methods).
After that we arrive at the macroscopic tangent by conducting a sensitivity analysis of the microscopic BVP at an
equilibrium state. For the small-strain analog to the following procedure see [62].
Weak formulation. The weak form of the balance of linear momentum in the referential setting appears as

Gu = −


B

DivP · δw dV =


B
δF : P dV  

Gint
u

−


∂B
δw · (P · N) d A  

Gext
u

(31)

and the corresponding weak form of Gauß’s law of electrostatics is given by

Gφ = −


B

DivD δφ dV = −


B
δE · D dV  
Gint
φ

−


∂B
δφ(D · N) d A  

Gext
φ

. (32)

Here we introduced F = Grad δw and δE := −Grad δφ. The linearization of the above weak forms yields under the
assumption of conservative loadings the linear increment of the virtual mechanical work

∆Gu = ∆G int
u =


B
δF : A : ∆F dV −


B
δF : qT

· ∆E dV, (33)

with [qT
]ijk := qkij. Furthermore we calculate the incremental virtual electrical work as

∆Gφ = ∆G int
φ = −


B
δE · q : ∆F dV −


B
δE · ϵ · ∆E dV . (34)

Finite element approximation. In order to ease the readability of the following derivations we shortly note some details
on the used (standard) FE implementation on the microscale. Here we make use of vector-matrix notation, where all
appearing vectors and matrices are labeled with an underline (for example u → u). The vector notations of the
deformation gradient tensor and of the total first Piola–Kirchhoff stress tensor are assumed as follows

F = [F11,F22,F33,F12,F23,F13,F21,F32,F31]
T,

P = [P11,P22,P33,P12,P23,P13,P21,P32,P31]
T,

(35)

respectively. In the framework of the discretization of the weak forms on the microscale we consider the fluctuations
of the displacements and of the electric potential. The approximations of the fluctuation fields as well as of their virtual
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and incremental counterparts appear in a classical fashion as

{w, δw,∆w} = Ne
u {de

u, δ
de

u,∆de
u} and {φ, δφ,∆φ} = Ne

φ {de
φ, δ

de
φ,∆de

φ} (36)

where Ne
{u,φ} are the interpolation functions associated to the nodes of each finite element andde

u,φ denote the element
degrees of freedom. The approximations of the fluctuations of the deformation gradient and of the electric field are
given correspondingly by

{F, δF,∆F} = Be
u {de

u, δ
de

u,∆de
u} and {E, δE,∆E} = Be

φ {de
φ, δ

de
φ,∆de

φ}, (37)

where Be
{u,φ} contain derivatives of the interpolation functions. We insert the above expressions into the linear

increments of the weak forms (33) and (34) and obtain the discrete representation of the mechanical and the electric
part as

∆Gh
u =

nelem
e=1

δde,T
u

 
Be

Be,T
u A Be

u dV  
ke

uu

∆de
u −


Be

Be,T
u qT Be

φ dV  
ke

uφ

∆de
φ


,

∆Gh
φ =

nelem
e=1

δde,T
φ


−


Be

Be,T
φ

q Be
u dV  

ke
φu

∆de
u −


Be

Be,T
φ
ϵ Be
φ dV  

ke
φφ

∆de
φ


.

with the associated matrix notation of the mechanical, electro-elastic, and dielectric moduli A,q, and ϵ, respectively.
Taking into account a number of nelem finite elements of the microscopic BVP, the assembling procedure yields the
compact notation

nelem
e=1


δde

u

δde
φ

T




ke
uu ke

uφ

ke
φu ke

φφ


  

ke


∆de

u

∆de
φ


  
∆de

u,φ

+


reu
reφ


  

re

 = 0,

with the element residual vectors reu,φ resulting from the discrete counterparts of (31) and (32). Above, we identify the

complete element stiffness matrix ke the incremental element solution vector ∆de
u,φ, and the element residual vector

re. The solution of the global problem gives the global solution vector

∆Du,φ = −K−1R (38)

with the global stiffness matrix and the global residual vector

K =
nelem
A

e = 1

ke and R =
nelem
A

e = 1

re, (39)

where the A denotes suitable assembly operators. Note that the global solution vector should not be confused with the
vector notation of the fluctuations of the electric displacements.

Computation of algorithmically consistent macroscopic tangent. In order to derive the algorithmically consistent
macroscopic tangent from (28) we linearize the microscopic weak forms at an equilibrium state

B
δF : A : (∆F + ∆F) dV −


B
δF : qT

· (∆E + ∆E) dV = 0,

−


B
δE · q : (∆F + ∆F) dV −


B
δE · ϵ · (∆E + ∆E) dV = 0.
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and insert the FE approximations (37). Then we achieve the relation for the mechanical part

nelem
e=1

δde,T
u

 
Be

Be,T
u A dV  
leuu

∆F +


Be

Be,T
u A Be

u dV  
ke

uu

∆de
u

−


Be

Be,T
u qT dV  
leuφ

∆E −


Be

Be,T
u qT Be

φ dV  
ke

uφ

∆de
φ


= 0

(40)

where we have defined suitable FE l-matrices. Analogously we obtain

nelem
e=1

(δde
φ)

T


−


Be

Be,T
φ

q dV  
underlinele

φu

∆F −


Be

Be,T
φ

q Be
u dV  

ke
φu

∆de
u

−


Be

Be,T
φ
ϵ dV  

leφφ

∆E −


Be

Be,T
φ
ϵBe dV  

ke
φφ

∆de
φ


= 0.

(41)

We arrive at the compact notations of (40) and (41)

nelem
e=1

δde,T
u [ leuu ∆F + ke

uu ∆de
u + leuφ∆E + ke

uφ∆de
φ ] = 0,

nelem
e=1

δde,T
φ [ leφu ∆F + ke

φu ∆de
u + leφφ∆E + ke

φφ∆de
φ ] = 0.

(42)

Using the FE assembling procedure we write this statement in the global setting


δDu

δDφ
T 

Kuu Kuφ
Kφu Kφφ

∆Du

∆Dφ


+


Luu ∆F + Luφ∆E
Lφu ∆F + Lφφ∆E


= 0 (43)

where we have assembled the global stiffness and L-matrices

{K,L}ij =
nelem
A

e = 1

{ke, le}ij with i, j := {u,φ}. (44)

From (43) we formally compute the incremental nodal fluctuations as
∆Du

∆Dφ


= −


Kuu Kuφ
Kφu Kφφ

−1


Luu ∆F + Luφ ∆E
Lφu ∆F + Lφφ ∆E


. (45)

The effective macroscopic moduli can now be derived by using the finite element approximations of the deformation
gradient and the electric field (37). We insert them, together with the L-Matrices (44) into the Eq. (28) so that we
achieve the matrix form of the effective macroscopic moduli


A −qT

−q −ϵ


=

1
V


B


A −qT

−q −ϵ


dV +

1
V


Luu Luφ
Lφu Lφφ

T


∂

∂F
∆Du

∂

∂E
∆Dφ

 . (46)
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The partial derivatives of the incremental fluctuations with respect to the macroscopic gradient fields can be computed
on the basis of the solution of the global BVP (45) as follows

∂

∂F
∆Du

∂

∂E
∆Dφ

 = −


Kuu Kuφ
Kφu Kφφ

−1 Luu Luφ
Lφu Lφφ


. (47)

Finally, inserting this result into (46) gives us the algorithmically consistent macroscopic moduli as
A −qT

−q −ϵ


=

1
V


B


A −qT

−q −ϵ


dV −

1
V


Luu Luφ
Lφu Lφφ

T Kuu Kuφ
Kφu Kφφ

−1 Luu Luφ
Lφu Lφφ


.

Appendix B. Reformulation of Hill–Mandel condition

In order to derive suitable boundary conditions on the microscale we reformulated the Hill–Mandel condition (21)
into the expression (22). This reformulation can be obtained by some consecutive steps, which are briefly summarized
in the following. Here we will exemplarily concentrate on the electrical contribution only. The following derivations
are a direct extension of the elementary ideas provided in [48,49,53,51] to electrostatic quantities.

As a first step, we take into account that the electric field is defined as the negative gradient of the electric potential,
so that the second volume integral in (21) can be mapped onto the surface of the RV E via

⟨D · Ė⟩B = −⟨D · Grad φ̇⟩B = −⟨Div (D φ̇)− Div D  
=0

φ̇⟩B = −⟨(D · N) φ̇⟩∂B, (48)

where we consecutively used the product rule, Gauß’s law (19)2, and the divergence theorem. Now, by using the
definition of the microscopic electric potential and the superposition principle of the electric displacement

φ̇ = −
˙E · X + ̇φ and D := D +D, (49)

respectively, the last term in the latter equation can further be transformed into

−⟨(D · N) φ̇⟩∂B = −D · ⟨N ̇φ⟩∂B  
=0

−⟨(D · N) ̇φ⟩∂B +
˙E · ⟨(D · N)X⟩∂B. (50)

Here we extracted the macroscopic (constant) quantities D and ˙E from the volume integrals and noticed that the
remaining surface integral of the first term on the right-hand side vanishes by definition (27)2. Furthermore, the last
term on the right-hand side can be recast in

˙E · ⟨(D · N)X⟩∂B = −
˙E · ⟨Q X⟩∂B =

˙E · D (51)

where we used (17)2. Combining the latter equation with (48) and (50) gives the relation

D ·
˙E − ⟨D · Ė⟩B  

=:P2

= −⟨(D · N) ̇φ⟩∂B (52)

so that, by taking into account that P2 = 0 in (21), we arrive at

−⟨(D · N) ̇φ⟩∂B = 0. (53)

By again using the relations given in (49) we arrive finally at

−⟨(D · N) ̇φ⟩∂B = ⟨[Q + D · N] [φ̇ +
˙E · X]⟩∂B  P2

= 0 (54)
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which is identical to the expression that has been given in (22). The above procedure can analogously be applied to
the mechanical part of the Hill–Mandel condition.
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in: CISM International Centre for Mechanical Sciences, vol. 550, Springer Vienna, 2014, pp. 1–64.
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