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Abstract

This paper studies a posteriori error estimates for the stabilization of low-order mixed finite elements for the Stokes problem.
An interesting property of stabilized P1/P0 and P1/P1 finite element methods is proposed and used to construct new reliable and
efficient error estimators. Moreover, an average technique is applied to improve the error estimators. Numerical results verify the
theoretical results and show the improvement of such an average technique.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the low-order mixed finite element P1/P0 (linear velocity, constant pressure) and P1/P1
(linear velocity and pressure) pairs do not satisfy the inf–sup condition (see, e.g., [1]). Since the low-order pairs
remain a popular practical choice in mixed finite element approximation of incompressible models, several stabilized
finite element methods have been developed in last two decades (see, e.g., [2–8]). The stabilized methods aim to relax
the continuity equation so as to allow application of unstable pairs by adding extra stabilization terms. Bochev and his
co-workers [4] pointed out that the unstable pairs satisfy the weaker form of the discrete inf–sup condition, and terms
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hT ∥∇ ph∥T (1)

reflect the inf–sup ‘deficiency’ of unstable P1/P0 and P1/P1 pairs, respectively. Stabilized methods introduce stabi-
lization terms to counterbalance these key terms. In this paper, we propose an interesting property of the stabilized
methods, that is, these key terms in (1) can be bounded by true errors. The observation provides useful arguments in
a posteriori error estimates for the stabilization of low-order mixed finite element elements for the Stokes problem.
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It is of practical importance to devise reliable and efficient a posteriori error estimators in order to control approx-
imation error and perform adaptive mesh refinement (see, e.g., [9,10]). Many works have been devoted to construct
a posteriori error estimators for the Stokes problem (see, e.g., [11–13]). For stabilized P1/P0 finite element methods,
residual-based a posteriori error estimators have been studied by Kay and Silvester [14] and J. Wang, Y. Wang, and
Ye [15] for the penalizing jump method and by Zheng, Hou and Shi [16] for the projection method; recovery-based
a posteriori error estimators have been proposed by Song, Hou and Cai [17] for both stabilized methods. Moreover,
a posteriori error estimates for low-order nonconforming finite element methods have also been developed e.g. in
[18–20]. Although nonconforming finite element methods usually result in a much larger discrete system than the
conforming methods, they easily fulfill the inf–sup condition and have advantage on parallel computers (see, e.g.,
[21]). In this paper, we use the terms reflecting the inf–sup ‘deficiency’ to construct error estimators for stabilized
P1/P0 and P1/P1 finite element methods. We prove their reliability and efficiency without any regularity assumption
of true solution. The notable difference of our estimates from existing ones lies in using the property of stabilized
methods.

Moreover, we use an average technique to improve the error estimators. The average technique is a post-processing
method that reconstructs numerical approximations to achieve better results. Carstensen [22] studied the averaging
error estimators and made some remarks on the history and future of averaging techniques in a posteriori finite element
error analysis. Differing from his idea, we use the average technique to post process estimators rather than to construct
error estimators. This approach opens up a possibility for improving error estimators for low-order finite elements.
That is, some given classical error estimators can be improved by such post-processing. Numerical results verify the
improvements.

The paper is organized as follows. Section 2 reviews stabilized low-order mixed finite element methods. The
interesting property of stabilized methods is proposed in Section 3. Section 4 presents the error estimators based on
the property of stabilized methods and establishes a posteriori error estimates to show their reliability and efficiency.
Section 5 uses an average technique to improve the error estimators. Numerical results are reported in Section 6. They
verify the theoretical results and show the practical effectivity of error estimators.

2. Stabilized low-order mixed finite element methods

As a simple model problem exhibits the main features for our arguments, we consider the Stokes problem with
homogeneous Dirichlet boundary conditions in a two-dimensional polygonal domain Ω . For given f ∈ L2(Ω)2, the
problem seeks the velocity u and the pressure p satisfying−∆u + ∇ p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on ∂Ω .

(2)

Throughout the paper, we employ the standard notations H l(Ω) and ∥·∥ll ≥ 0 for the Sobolev space and associated
standard norm, respectively. In general, ∥ · ∥D and (·, ·)D denote the L2 norm and inner product associated with any
domain D. When D = Ω , we drop the index D from the norm and inner product designation.

The standard weak form of the Stokes problem (2) reads: find (u, p) ∈ X × M such that

L((u, p), (v, q)) = f (v) ∀ (v, q) ∈ X × M, (3)

where the bilinear and linear forms are defined by

L((u, p), (v, q)) = (∇u, ∇v) − (p, div v) + (q, div u) and f (v) = (f , v),

and

X := H1
0 (Ω)2 and M := L2

0(Ω) =


q ∈ L2(Ω) :


Ω

q dx = 0


.

Furthermore, the bilinear form L satisfies the inf–sup condition: there exists a positive constant β such that

inf
(u,p)∈X×M

sup
(v,q)∈X×M

L((u, p), (v, q))

|||(v, q)||| |||(u, p)|||
≥ β, (4)
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where the energy norm ||| · ||| is defined by |||(v, q)||| = (∥v∥2
1 + ∥q∥

2)
1
2 . This ensures the unique solvability of (3);

see [1].
We consider the mixed finite element method for (3). Let τh = {T } be a family of triangulation of the domain

Ω with the mesh parameter h = maxT ∈τh diam(T ). Denote by Eh the set of all edges in τh lying inside Ω . For any
piecewise constant q , let

[q]e := q|T +
e

− q|T −
e

denote its jump on the edge e ∈ Eh , where T +
e and T −

e are two elements sharing the common edge e. For any piecewise
constant tensor σ , let

[σ · ne] := σ |T +
e

· ne − σ |T −
e

· ne

denote the jump of the normal component of σ on the edge e. Denote by he the length of a given edge e ∈ Eh . The
edge norm

∥u∥Eh :=


e∈Eh

he∥u∥
2
e

 1
2

will prove useful in what follows.
Let us denote by

R1,h := {vh ∈ C0(Ω) : vh |T ∈ P1(T ) ∀T ∈ τh}

the piecewise linear finite element space, where P1(T ) is a space of linear polynomials on element T . Moreover, we
introduce the piecewise constant finite element space

R0,h := {qh ∈ L2(Ω) : qh |T ∈ P0(T ) ∀T ∈ τh},

where P0(T ) is a constant polynomial space on element T .
We recall the classical trace inequality for finite element functions. There exists c > 0 independent of the mesh

size such that

∥qh∥∂T ≤ c h
−

1
2

T ∥qh∥T ∀qh ∈ P1(T ). (5)

For simplicity, symbols c, c1, c2 here and in the rest may represent different quantities at different occurrences, but
they are always independent of the mesh size.

In this paper, we consider the lowest order conforming pair

Xh = X ∩ R2
1,h and Mh = M ∩ R0,h, (6)

and the lowest equal order C0 pair

Xh = X ∩ R2
1,h and Mh = M ∩ R0,h . (7)

It is well known that the velocity–pressure pair (Xh, Mh) does not satisfy the discrete inf–sup condition. However,
the unstable velocity–pressure pairs satisfy the following weaker form of the discrete inf–sup condition; See [4].

Let Xh and Mh be the spaces defined in (6). Then, there exist positive constants c1 and c2 independent of the mesh
size such that

sup
vh∈Xh


Ω ph∇ · vh dx

∥vh∥1
≥ c1∥ph∥ − c2∥[ph]e∥Eh ∀ph ∈ Mh .

Let Xh and Mh be the spaces defined in (7). Then, there exist positive constants c1 and c2 independent of the mesh
size such that

sup
vh∈Xh


Ω ph∇ · vh dx

∥vh∥1
≥ c1∥ph∥ − c2


T ∈τh

hT ∥∇ ph∥T ∀ph ∈ Mh .
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The terms

− ∥[ph]e∥Eh and −


T ∈τh

hT ∥∇ ph∥T (8)

reflect the inf–sup ‘deficiency’ of the unstable pairs (6) and (7), respectively. In some sense, stabilized methods aim
to introduce additional terms to counterbalance terms in (8).

The stabilized low-order mixed finite element methods can be regularized as following formulation.
Find (uh, ph) ∈ Xh × Mh which satisfy

(∇uh, ∇vh) − (∇ · vh, ph) = (f , vh) ∀vh ∈ Xh,

(∇ · uh, qh) + S(ph, qh) = 0 ∀qh ∈ Mh .
(9)

The stabilization term S(ph, qh) is added to the continuity equation to help offset the inf–sup ‘deficiency’ of the
unstable pairs.

The stabilized formulation (9) can be rewritten as

L((uh, ph), (vh, qh)) + S(ph, qh) = f (vh) ∀ (vh, q) ∈ Xh × Mh . (10)

Some typical choices of the stabilization term are defined as follows.

2.1. Direct stabilized methods

The idea here is to directly use the terms in (8) to offset the inf–sup ‘deficiency’ of the unstable pair; see [7,8,14].
For P1/P0 approximation, Hughes and Franca [7] stabilized the approximation by penalizing jumps in pressure

across internal interelement edges. The stabilization term is defined by

S(ph, qh) = β0


e∈Eh

he([ph], [qh])e ∀qh ∈ Mh . (11)

The stabilization parameter β0 must be chosen carefully, for example, the incompressibility will be destroyed if β0 is
too large.

For P1/P1 approximation, Brezzi and Pitkaranta [8] directly used the second term in (8) to obtain the stabilized
method. The stabilization term is defined by

S(ph, qh) = c0


T ∈τh

h2
T (∇ ph, ∇qh) ∀qh ∈ Mh . (12)

The stabilization parameter c0 also needs be chosen carefully.

2.2. Projection stabilized method

The method uses the terms that characterize the LBB ‘deficiency’ of the unstable spaces to stabilize the approxi-
mation, see [4].

The stabilization term in (10) is given by

S(ph, qh) = (ph − Π ph, qh − Π qh) ∀qh ∈ Mh . (13)

The operator Π is defined as follows:

Π =


Π1, if Mh is defined by (6),
Π0, if Mh is defined by (7),

and

Π0 : L2(Ω) → R0,h and Π1 : L2(Ω) → R1,h,



414 L. Song, M. Gao / Comput. Methods Appl. Mech. Engrg. 279 (2014) 410–424

which satisfy the following assumptions:

∥qh − Π qh∥ ≤ c h ∥qh∥1 ∀ qh ∈ R1,h, (14)

∥p − Π ph∥ ≤ c ∥p − ph∥, (15)

where p is the true pressure solution of (3) and ph is the finite element approximation solution of (10).
In particular,

c ∥[qh]e∥Eh ≤ ∥qh − Π1qh∥ ≤ C ∥[qh]e∥Eh ∀ qh ∈ R0,h . (16)

Since the definition of operator Π1 in [4] is in the same fashion of the average operator A(·) in (26), using Lemma 5.1
gives the proof of (16).

3. Property of stabilized low-order mixed finite element methods

In this section, we present two theorems to show the property of stabilized methods. The property is the key terms

∥[ph]e∥Eh and

T ∈τh

hT ∥∇ ph∥T

in (8) can be bounded by true errors in the energy norm.
For P1/P0 approximation, we have the following theorem.

Theorem 3.1. Let Xh and Mh be the spaces defined in (6), (u, p) be the solution of problem (3) and (uh, ph) be
the finite element approximation solution of problem (10) with stabilization term (11) or (13). There exists a positive
constant c independent of the mesh size such that

∥[ph]e∥Eh ≤ c∥(u − uh, p − ph)∥.

Proof. Refer to Lemmas 3.4 and 3.5 in [17] for details. �

For P1/P1 approximation, we first analyze the error between true solutions and approximation solutions of
stabilized methods in L2 norm.

Lemma 3.1. Let Xh and Mh be the spaces defined in (7), (u, p) be the solution of problem (3) and (uh, ph) be the
finite element approximation solution of problem (10) with stabilization term (12) or (13). There exists a positive
constant c independent of the mesh size such that

∥u − uh∥ + ∥p − ph∥−1 ≤ ch (∥u − uh∥1 + ∥p − ph∥).

Proof. We use the Aubin–Nitsche duality argument to estimate.
For (ϕ, φ) ∈ L2(Ω)2

×(H1(Ω)∩L2
0(Ω)), consider the dual Stokes problem: seek (Φ,Ψ) ∈ (H2(Ω)2

∩H1
0 (Ω)2)×

(H1(Ω) ∩ L2
0(Ω)) such that

L((v, q), (Φ,Ψ)) = (v, ϕ) + (q, φ) ∀ (v, q) ∈ X × M. (17)

This problem admits a unique solution (Φ,Ψ) satisfying

∥Φ∥2 + ∥Ψ∥1 ≤ c (∥ϕ∥ + ∥φ∥1). (18)

Moreover, there exist Φh ∈ Xh and Ψh ∈ Mh such that

∥Φ − Φh∥1 ≤ c h ∥Φ∥2 and ∥Ψ − Ψh∥ ≤ c h ∥Ψ∥1. (19)

Taking (v, q) = (u − uh, p − ph) in (17) yields

L((u − uh, p − ph), (Φ,Ψ)) = (u − uh, ϕ) + (p − ph, φ). (20)
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In addition, subtracting (10) from (3) gives

L((u − uh, p − ph), (vh, qh)) − S(ph, qh) = 0 ∀(vh, qh) ∈ Xh × Mh .

Taking (vh, qh) = (Φh,Ψh) yields

L((u − uh, p − ph), (Φh,Ψh)) − S(ph,Ψh) = 0,

which together with (20) gives

(ϕ, u − uh) + (φ, p − ph) = L((u − uh, p − ph), (Φ − Φh,Ψ − Ψh)) + S(ph,Ψh). (21)

Firstly, we estimate the term S(ph,Ψh).
If the stabilization term is defined by (13), then using the property of Π0 in (14) and (15) gives

S(ph,Ψh) = ((I − Π0)ph, (I − Π0)Ψh) ≤ c ∥p − ph∥h∥Ψh∥1 ≤ c h∥p − ph∥ ∥Ψ∥1,

where we use

∥Ψh∥1 ≤ ∥Ψ − Ψh∥1 + ∥Ψ∥1 ≤ c h−1
∥Ψ − Ψh∥0 + ∥Ψ∥1 ≤ c ∥Ψ∥1.

If the stabilization term is defined by (12), then using the inverse inequality and the property of Π0 in (15) gives

S(ph,Ψh) = c0


T ∈τh

h2
T (∇ ph, ∇Ψh) ≤ c h2

∥ph − Π0 ph∥1∥Ψh∥1

≤ c h ∥ph − Π0 ph∥ ∥Ψ∥1

≤ c h ∥p − ph∥ ∥Ψ∥1.

Therefore, the inequality

S(ph,Ψh) ≤ c h ∥p − ph∥ ∥Ψ∥1 (22)

holds for all the stabilized methods in above subsection.
Combining (22) with (21) and using the continuity of L(·, ·), (18) and (19) gives

(ϕ, u − uh) + (φ, p − ph) ≤ c|||(u − uh), (p − ph)||||||(Φ − Φh), (Ψ − Ψh)||| + c h ∥p − ph∥ ∥Ψ∥1

≤ c h (∥u − uh∥1 + ∥p − ph∥)(∥Φ∥2 + ∥Ψ∥1)

≤ c h (∥u − uh∥1 + ∥p − ph∥)(∥ϕ∥0 + ∥φ∥1).

Therefore

∥u − uh∥ + ∥p − ph∥−1 ≤ c h (∥u − uh∥1 + ∥p − ph∥).

This ends the proof. �

Theorem 3.2. Let Xh and Mh be the spaces defined in (7), (u, p) be the solution of problem (3) and (uh, ph) be
the finite element approximation solution of problem (10) with stabilization term (12) or (13). There exists a positive
constant c independent of the mesh size such that

T ∈τh

hT ∥∇ ph∥T ≤ c|||(u − uh, p − ph)|||.

Proof. Using the second equation of (9) and letting qh = ph give

(∇ · uh, ph) + S(ph, ph) = 0.

For ph ∈ L2
0(Ω) ∩ P1(Ω), there exists p0

h ∈ P0(Ω) such that

∥ph − p0
h∥ ≤ ch∥ph∥1. (23)
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We use the fact that ∇ · u = 0, the integration by parts, the Cauchy–Schwarz inequality, (23) and trace inequality
(5) to get

S(ph, ph) = −(∇ · uh, ph) = (∇ · (u − uh), ph) = −(u − uh, ∇ ph)

= −


T ∈τh

(u − uh, ∇(ph − p0
h))T

= (∇ · (u − uh), (ph − p0
h)) +


e∈Eh

((u − uh)ne, [ph − p0
h]e)e

≤ c

T ∈τh

hT ∥∇ ph∥∥u − uh∥1 +


e∈Eh

h−1
e ∥(u − uh)ne∥

2
e

 1
2

∥[ph − p0
h]e∥Eh

≤ c

∥u − uh∥1 +


e∈Eh

h−1
e ∥(u − uh)ne∥

2
e

 1
2
 

T ∈τh

hT ∥∇ ph∥T . (24)

On another hand, we estimate the stabilization term S(ph, ph) in two cases.
If the stabilization term is defined by (12), then

S(ph, ph) ≥ c


T ∈τh

hT ∥∇ ph∥T

2

.

If the stabilization term is defined by (13), then using the inverse inequality gives

S(ph, ph) = ∥ph − Π0 ph∥
2

≥ c


T ∈τh

hT ∥∇ ph∥T

2

.

Combining above expressions with (24), using the trace inequality and Lemma 3.1 gives


T ∈τh

hT ∥∇ ph∥T ≤ c


e∈Eh

h−1
e ∥(u − uh)ne∥

2
e

 1
2

+ ∥u − uh∥1

≤ c h−
1
2 ∥u − uh∥

1
2 ∥u − uh∥

1
2
1 + ∥u − uh∥1

≤ c∥(u − uh, p − ph)∥.

This completes the proof. �

4. A posteriori error estimates

Based on the property of stabilized methods, we present the following error estimator ηS for the stabilization of
low-order mixed finite elements for the Stokes equations. It can be constructed locally by

Case 1: if Xh and Mh are spaces defined in (6):

η2
0,T :=

1
2


e∈∂T ∩Ω

he∥[∇uh · ne]∥
2
e +

1
2


e∈∂T ∩Ω

he∥[ph]e∥
2
e + ∥∇ · uh∥

2
T .

Case 2: if Xh and Mh are spaces defined in (7):

η2
1,T :=

1
2


e∈∂T ∩Ω

he∥[∇uh · ne]∥
2
e + h2

T ∥∇ ph∥
2
T + ∥∇ · uh∥

2
T .

The global estimators can be defined as follows:

η2
S :=


η2

0 :=


T ∈τh

η2
0,T = ∥[∇uh · ne]∥

2
Eh

+ ∥[ph]e∥
2
Eh

+ ∥∇ · uh∥
2, Case 1,

η2
1 :=


T ∈τh

η2
1,T = ∥[∇uh · ne]∥

2
Eh

+


T ∈τh

h2
T ∥∇ ph∥

2
T + ∥∇ · uh∥

2, Case 2.
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4.1. Reliability

Firstly, we introduce the weighted Clément-type interpolation operator Ih defined in [23]. It is often used for
establishing the reliability bound of a posteriori error estimators; see [23–25]. It has following properties.

Lemma 4.1. There is a constant c, which depends only on the shape parameter such that

(f , v − Ihv) ≤ c Hf ∥v∥1 ∀v ∈ X,

and 
e∈Eh

h−1
e ∥v − Ihvh∥

2
e

 1
2

≤ c ∥v∥1 ∀v ∈ X.

Here Hf :=


z∈N \Nh

|ωz | ∥f∥2
ωz

+


z∈Nh
|ωz | ∥f − −


ωz

f dx∥
2
ωz

 1
2

and −


ωz

f dx denotes the average of f over ωz .

N and Nh denote the vertices in τh and those lying inside Ω , respectively. ωz denotes the union of all triangles that
share the same vertex z.

Proof. Refer to the Lemmas 3.1, 6.1 and 6.2 in [23]. �

Remark 1. The second term in Hf is a higher-order term for f ∈ L2(Ω)2 and so is the first term for f ∈ L p(Ω)2 with
p > 2; (see [23,24]).

Theorem 4.1 (Reliability). Let (u, p) be the solution of problem (3) and (uh, ph) be the finite element approximation
solution of problem (10) with stabilization term (11), (12) or (13). There exists a positive constant c independent of
the mesh size such that

|∥(u − uh, p − ph)|∥ ≤ c (ηS + Hf ).

Proof. Subtracting (10) from (3) gives

L((u − uh, p − ph), (vh, qh)) − S(ph, qh) = 0 ∀(vh, qh) ∈ Xh × Mh .

Taking qh = 0 and vh = Ihv yields

L((u − uh, p − ph), (Ihv, 0)) = 0 ∀ v ∈ X. (25)

For any (v, q) ∈ X × M , (25), integration by parts, Lemma 4.1 and the Cauchy–Schwarz inequality imply in the
standard way

L((u − uh, p − ph), (v, q)) = L((u − uh, p − ph), (v − Ihv, q))

= (f , v − Ihv) +


T ∈τh

(∆uh − ∇ ph, v − Ihv)T +


e∈Eh

([(∇uh − phI) · ne], v − Ihv)e − (q, ∇ · uh)

≤ c


Hf +


T ∈τh

hT ∥∇ ph∥T + ∥[∇uh · ne]∥Eh + ∥[ph]∥Eh + ∥∇ · uh∥


|∥(v, q)|∥.

According to definition of Xh and Mh , it is easy to check

L((u − uh, p − ph), (v, q)) ≤ c

Hf + ηS


|∥(v, q)|∥,

together with the inf–sup condition (4) yields

|||(u − uh, p − ph)||| ≤ β−1 sup
(v,q)∈X×M

L((u − uh, p − ph), (v, q))

|||(v, q)|||

≤ c (ηS + Hf ).

It completes the proof of the reliability. �
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4.2. Efficiency

In this subsection, we use the properties of general stabilized methods to show the estimator ηS is efficient.

Lemma 4.2. Let (u, p) be the solution of problem (3) and (uh, ph) be the finite element approximation solution of
problem (10) with stabilization term (11), (12) or (13). There exists a positive constant c independent of the mesh size
such that

h
1
2
e ∥[σ h · ne]∥e ≤ c∥(u − uh, p − ph)∥ωe + che inf

fh∈Xh
∥f − fh∥ωe ,

where σ h := ∇uh − phI and ωe denotes the union of the two triangles sharing the edge e.

Proof. The proof is straightforward extensions of the works of Verfürth [11,10] for the Stokes equations. Reader can
refer to [17] for details. �

Theorem 4.2 (Efficiency). Let (u, p) be the solution of problem (3) and (uh, ph) be the finite element approximation
solution of problem (10) with stabilization term (11), (12) or (13). There exists a positive constant c independent of
the mesh size such that

ηS ≤ c ∥(u − uh, p − ph)∥ + c

e∈Eh

he inf
fh∈Xh

∥f − fh∥ωe .

Proof. If Xh and Mh are spaces defined in (6), then using Lemma 4.2, the property of the stabilized method in
Theorem 3.1 and the fact that ∇ · u = 0 give

η2
0 ≤ c


e∈Eh

he(∥[σ h · ne]∥
2
e + 2∥[ph]e∥

2
e) + ∥∇ · (u − uh)∥2

≤ c ∥(u − uh, p − ph)∥2
+ c


e∈Eh

inf
fh∈Xh

∥f − fh∥ωe

2

.

If Xh and Mh are spaces defined in (7), then using Lemma 4.2, the property of the stabilized method in Theorem 3.2
and the fact that ∇ · u = 0 give

η2
1 ≤ c


e∈Eh

he∥[σ h · ne]∥
2
e +


T ∈τh

h2
T ∥∇ ph∥

2
T + ∥∇ · (u − uh)∥2

≤ c ∥(u − uh, p − ph)∥2
+ c


e∈Eh

inf
fh∈Xh

∥f − fh∥ωe

2

.

Combination of above expressions completes the proof of the efficiency bound. �

5. Postprocess with the average technique

The average techniques are post-processing methods that reconstruct numerical approximations from finite element
solution to achieve better results. The procedure is to approximate a quality qh by some globally continuous piecewise
polynomials of higher degree A(qh).

A classical example [22] for piecewise constant function qh reads as follows. Let the nodal value of A(qh) at any
node z ∈ N be the area-weighted average of qh over ωz . ωz is the union of all triangles that share the same vertex z.
It can be written as

A(qh)(z) = −


ωz

qh dx :=


ωz

qh dx


ωz

1 dx .

Then define A(qh) by interpolation with nodal basis function φz associated with z,

A(qh) =


z∈N

A(qh)(z)φz . (26)
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This average technique has the following property.

Lemma 5.1. Let qh be piecewise constant finite element function and A(qh) is defined by (26). Then, there exist two
positive constants c1 and c2 independent of the mesh size such that

c1 ∥[qh]e∥Eh ≤ ∥qh − A(qh)∥ ≤ c2 ∥[qh]e∥Eh .

Proof. Refer to Lemma 2.3 in [4] and Theorem 5 in [22]. �

We use such an average technique to improve the piecewise constant finite element functions in the estimator ηS .
The improved estimator is defined by

η2
S A :=


η2

0,A := ∥∇uh − A(∇uh)∥2
+ ∥ph − A(ph)∥2

+ ∥∇ · uh∥
2, Case 1,

η2
1,A := ∥∇uh − A(∇uh)∥2

+


T ∈τh

h2
T ∥∇ ph∥

2
T + ∥∇ · uh∥

2, Case 2.

Here, for vector v = (v1, v2), we denote A(v) = (A(v1), A(v2)).

Theorem 5.1. Let (u, p) be the solution of problem (3) and (uh, ph) be the finite element approximation solution of
problem (10) with stabilization term (11), (12) or (13). There exist positive constants c1 and c2 independent of the
mesh size such that

|∥(u − uh, p − ph)|∥ ≤ c1 (ηS A + Hf ),

ηS A ≤ c2∥(u − uh, p − ph)∥ + c2


e∈Eh

he inf
fh∈Xh

∥f − fh∥ωe .

Proof. The combination of Lemma 5.1, Theorems 4.1 and 4.2 completes the proof. �

6. Numerical results

In this section, we aim to show that both the estimators ηS and ηS A work well for stabilized P1/P0 and P1/P1 finite
element methods. Meanwhile, we present the practical effectivity of the average technique and show the improved
estimator ηS A is more exact than the estimator ηS .

We consider two numerical tests to illustrate the practical effectivity of estimators ηS and ηS A. One is a flow
problem with a smooth solution. Another models a flow problem in a cracked domain with a singular solution.

Moreover, to show the wide application of these estimators, we consider all the stabilized methods mentioned in
Section 2. One is the penalizing jump stabilized method, namely, the stabilized method (10) with stabilization term
(11). Another is the pressure gradient stabilized method, referring to the stabilized method (10) with stabilization term
(12). The third one is the projection stabilized method, namely, the stabilized method (10) with stabilization term (13).

The experiments are implemented by the public software Freefem++ [26]. The adaptive strategy is carried out as
follows. Given a user-specified tolerance η∗ and an initial mesh τ 0. Refine the mesh by using the mesh refinement
strategy in Freefem++ until the global error estimator η (i.e., either ηS or ηS A) satisfies η ≤ η∗. See [17] for details of
the mesh refinement strategy.

For the sake of convenience, we introduce the following notions.

• DOF j
:= number of elements for the triangulation τ

j
h ;

• e j
r := ∥(u − u j

h, p − p j
h)∥/∥(u, p)∥ denotes the relative error in the energy norm.

• η
j
S A,r := η

j
S A/∥(u, p)∥ denotes the relative value of global estimator ηS A on τ

j
h .

• η
j
S,r := η

j
S/∥(u, p)∥ denotes the relative value of global estimator ηS on τ

j
h .

• Order :=
2 log(e j+1

r /e j
r )

log(DOF j /DOF j+1)
denotes the convergence rate of the error.

• E j
S := η

j
S,r/e j

r denotes effectivity index for the global estimator η
j
S on τ

j
h .

• E j
S A := η

j
S A,r/e j

r denotes effectivity index for the global estimator η
j
S A on τ

j
h .
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Table 1
Results for adaptive refinements via penalizing jump
stabilized P1/P0 method with ηS .

j DOF j e j
r Order η

j
S,r E j

S

0 208 0.2670 – 0.8526 3.1928
1 368 0.2067 0.8973 0.6556 3.1716
2 625 0.1407 1.4505 0.4714 3.3486
3 1111 0.1106 0.8363 0.3695 3.3392
4 2054 0.0758 1.2296 0.2601 3.4294

Table 2
Results for adaptive refinements via projection stabilized
P1/P0 method with ηS .

j DOF j e j
r Order η

j
S,r E j

S

0 208 0.3072 – 0.9146 2.9771
1 346 0.2423 0.9322 0.7176 2.9612
2 569 0.1628 1.5987 0.5175 3.1784
3 1008 0.1299 0.7890 0.4088 3.1464
4 1693 0.0919 1.3339 0.3014 3.2782

Table 3
Results for adaptive refinements via pressure gradient
stabilized P1/P1 method with ηS .

j DOF j e j
r Order η

j
S,r E j

S

0 208 0.2379 – 0.8183 3.4391
1 384 0.1774 0.9573 0.6120 3.4496
2 633 0.1238 1.4390 0.4427 3.5752
3 1200 0.0938 0.8658 0.3403 3.6251
4 2094 0.0665 1.2351 0.2431 3.6518

6.1. A smooth problem

The first example is a flow problem with a smooth solution, given by

u1 = 2π sin2(πx) sin(πy) cos(πy),

u2 = −2π sin(πx) cos(πx) sin2(πy),

p = cos(πx) cos(πy),

where domain Ω = (0, 1) × (0, 1).
Firstly, we solve the problem via different stabilized low-order FE methods and use the adaptive strategy with

estimator ηS .
Tables 1 and 2 report the results obtained by the penalizing jump stabilized and projection stabilized P1/P0 meth-

ods, respectively. It is clear that the refinements get a good approximate solution as h → 0 and optimal convergence
order (about 1.0). In addition, the effectivity index E j

S of estimator ηS keeps stable.
Tables 3 and 4 report the results obtained by pressure gradient stabilized and projection stabilized P1/P1 methods,

respectively. They show the convergence rate of energy norm keeps order 1.0 and the effectivity index E j
S is around

3.5 and keeps stable. The results are consistent with those in Tables 1 and 2.
From all the results in Tables 1–4, we can see the estimator ηS works well for general stabilized methods of

low-order mixed finite elements for the Stokes equations.
In order to show improvements of the average technique, we solve the problem again by using the adaptive strategy

with improved estimator ηS A. Table 5 reports the results associated with ηS A on the successive adaptive refined
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Table 4
Results for adaptive refinements via projection stabilized
P1/P1 method with ηS .

j DOF j e j
r Order η

j
S,r E j

S

0 208 0.2483 – 0.8487 3.4170
1 374 0.1844 1.0139 0.6349 3.4416
2 634 0.1249 1.4769 0.4474 3.5813
3 1225 0.0954 0.8179 0.3447 3.6122
4 2150 0.0675 1.2296 0.2462 3.6469

Table 5
Results for adaptive refinements via stabilized methods with ηS A ( j = 2, 3, 4).

Stabilized methods DOF j e j
r Order η

j
S A,r E j

S,A

P1/P0 Penalizing jump 548 0.1440 1.1551 0.1475 1.0247
950 0.1082 1.0379 0.1095 1.0118

1639 0.0811 1.0560 0.0817 1.0077
Projection 528 0.1550 1.2144 0.1575 1.0157

923 0.1171 1.0041 0.1172 1.0013
1569 0.0872 1.1122 0.0874 1.0028

P1/P1 Pressure gradient 597 0.1284 1.1924 0.1325 1.0317
1068 0.0953 1.0233 0.0970 1.0174
1923 0.0703 1.0369 0.0710 1.0107

Projection 586 0.1299 1.2854 0.1328 1.0227
1040 0.0968 1.0255 0.0976 1.0082
1862 0.0722 1.0025 0.0726 1.0045

meshes. Comparing the results with those in Tables 1–4, it is clear that ηS A can work as well as ηS in terms of e j
r and

Order. Moreover, the fact that E j
S,A keeps almost 1.0 shows that estimator ηS A stays much close to the true error. In

this sense, ηS A is more exact than ηS .

6.2. A singular problem

In the second example, we consider Ω to be a disk of radius 1 with a crack joining the center to the boundary as
presented in [11] and the exact solution u = (u1, u2) and p are given as follows:

u1 = 1.5r1/2(cos(0.5θ) − cos(1.5θ)),

u2 = 1.5r1/2(3 sin(0.5θ) − sin(1.5θ)),

p = −6r−1/2 cos(0.5θ),

where (r, θ) is the polar representation of a point in the disk. This problem is singular at the end of the crack, i.e., at
the center of the disk. f is determined by (2) and u is enforced with appropriate inhomogeneous boundary conditions.

We solve this problem via the projection stabilized method and use the adaptive strategy with both estimators ηS
and ηS A.

In Table 6, we compare the results of uniform refinements with those of adaptive refinements. The comparison
shows that the refinements based on estimators ηS and ηS A perform similarly, and both get much better approximation
than the uniform refinements. Moreover, the convergence rate for adaptive refinements is higher than that for the
uniform refinements.

Next, we will show the improved estimator ηS A is more exact than ηS .
Figs. 1 and 2 show the adaptive meshes and comparisons of true error with estimators ηS and ηS A via the projection

stabilized P1/P0 method. From the refined mesh in Fig. 1, we can see both estimators ηS and ηS A capture the
singularity at the origin and produce very similar meshes. From the comparisons of true error with ηS and ηS A in
Fig. 2, it is clear that ηS A stays more close to the true error than ηS .
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Table 6
Comparison of the uniform and adaptive refinements via
projection stabilized method.

Strategy DOF er Order

P1/P0 Uniform 6412 0.1759 0.5213
Adaptive with ηS 2033 0.0899 1.0405
Adaptive with ηS A 2097 0.0845 0.9092

P1/P1 Uniform 6412 0.2066 0.5742
Adaptive with ηS 2234 0.0824 1.0463
Adaptive with ηS A 2213 0.0863 1.0585

X

Y

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
X

Y

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 1. Refined meshes with ηS (left) and ηS A (right) via projection stabilized P1/P0 method.
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Fig. 2. Comparison of true error with estimators ηS (left) and ηS A (right) via projection stabilized P1/P0 method.

Similarly, Figs. 3 and 4 show the adaptive meshes and comparisons of true error with estimator ηS and ηS A via
the projection stabilized P1/P1 method. Fig. 3 shows mesh refinements based on both ηS and ηS A occur at the origin.
Fig. 4 shows that the estimator ηS A is more exact than ηS . These observations are consistent with the results in Figs. 1
and 2.
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Fig. 3. Refined meshes with ηS (left) and ηS A (right) via projection stabilized P1/P1 method.
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Fig. 4. Comparison of true error with estimators ηS (left) and ηS A (right) via projection stabilized P1/P1 method.
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