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Abstract

We consider the popular pressure correction scheme for the solution of the time dependent Navier–Stokes equations with
traction boundary condition. A finite element based method to improve the performance of the classical approach is proposed. The
improvement is achieved by modifying the traction boundary condition for the provisional velocity ũn+1 in each time step. The
corresponding term consists of a simple boundary functional involving the normal derivative of the pressure correction that can be
evaluated in a natural and easy way in the context of finite elements.

Computational results show a significant improvement of the solution, in particular for the pressure in the case of smooth
domains.
c⃝ 2014 Elsevier B.V. All rights reserved.
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0. Introduction

Because of their conceptual simplicity and low computational cost projection schemes are very popular methods to
solve the unsteady incompressible Navier–Stokes equation. The history of these schemes dates back to the pioneering
work of Chorin and Temam [1–3]. However, the price one usually has to pay for the simplicity of these schemes is a
strong splitting error becoming manifest in an order reduction of the error. This is caused by the decoupling of velocity
and pressure (that is at the core of the methods) resulting for instance in a non-physical behavior of the pressure close
to the boundary [4]. Consequently much effort has been spent in removing or at least reducing this effect.

It is out of scope of this presentation to cite even the most relevant papers from the abundant literature on splitting
or projection methods. Instead, we refer to the excellent overview paper [5] and the papers cited there for further
reference.
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In this paper we are concerned with the time dependent Navier–Stokes equations, where a traction boundary
condition

σ(u, p)n = g on Γ

is imposed on a part Γ of the boundary of the domain Ω . Here, σ(u, p) =
1

Re D(u)− pI denotes the stress tensor with
the rate of strain tensor D(u) = (∇u + ∇uT ). Re is the Reynolds number and n the outward unit normal on Γ . The
above type of boundary condition is important in itself for instance in certain technical applications and furthermore
(maybe even more important) it constitutes the core problem in solving free boundary problems.

Note that replacing D(u) by ∇u in the boundary condition results in a popular open boundary (or do-nothing)
condition, see for instance [6–8]. This slightly simpler problem is also covered by our approach below.

Unlike for a fully coupled discretization, i.e. solving a saddle point problem in every time step, splitting schemes
applied to flow problems with traction boundary conditions introduce much bigger errors than for Dirichlet boundary
conditions. The reason behind may be seen in the fact that this type of boundary condition additionally couples
velocity and pressure. Furthermore, despite its relevance, the question of splitting schemes for problems with traction
boundary conditions is much less addressed than for Dirichlet conditions.

In this paper we introduce an improvement to the classical pressure correction schemes with traction boundary
condition. Our approach is based on the following simple idea. Naturally, one usually imposes the following boundary
condition for the provisional velocity ũ at time instant tn+1:

σ(ũn+1, pn)n = gn+1 on Γ .

This choice, however, leads to an inconsistent boundary condition for the solution (un+1, pn+1). Therefore we modify
the above boundary condition by adding a still to be determined function ln+1 that hopefully leads to a more consistent
boundary condition:

σ(ũn+1, pn)n = gn+1
+ ln+1 on Γ .

By some differential geometry calculus it is possible to determine ln+1 such that one even ends up with the correct
boundary condition for (un+1, pn+1). However, this would require again a fully coupled approach, since the correct
ln+1 requires the new value of the pressure correction Φn+1 that is not known at this stage of the scheme, see
Section 3.2 below. Instead, an appropriate extrapolation for ln+1 can be used.

Let us mention some related work in the context of finite elements. The only rigorous error analysis for a pressure
correction scheme with open boundary condition we are aware of is [9], see also Section 3.2. In [10] the Navier–Stokes
equations in 2d with open boundary condition on a straight part of the boundary are considered. The approach is based
on a Neumann-to-Dirichlet operator for the pressure in the context of the so called unconstrained Navier–Stokes
equation approach introduced in [11,12]. Poux et al. [13] use an extrapolation for the boundary condition for the
pressure correction Φ, again for the case of a straight part of the boundary of a 2d domain. This approach is somehow
similar to ours, but differs even in the case of planar boundaries. Moreover, it is not obvious how to generalize the
idea in [13] to curved boundaries.

The rest of this article is organized as follows. In Section 1 we state the problem and introduce some notation.
Section 2 gives some results on differential operators on manifolds that are needed to develop our method. In Section 3
the new scheme is introduced. Computational results showing the improvement by the traction correction are discussed
in Section 4. The paper is concluded by some final remarks in Section 5.

1. Notation and preliminaries

Let Ω ⊂ Rd , d ∈ {2, 3} be an open, connected and bounded domain with a sufficiently smooth traction boundary
Γ . The approach and results of this paper hold, if Γ is a sub-manifold of ∂Ω without boundary and ∂Ω \ Γ is a
Dirichlet boundary. For ease of presentation, however, in what follows, it is assumed that Γ = ∂Ω . Consider the
incompressible Navier–Stokes equation on a time interval ]0, T [: find the velocity u and the pressure p fulfilling

∂t u + u · ∇u − ∇ · σ(u, p) = f in Ω×]0, T [,

div u = 0 in Ω×]0, T [,
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u(t = 0) = u0 in Ω ,
σ (u, p)n = g on Γ×]0, T [.

Note that assuming a smooth boundary is rather natural in the case of free boundary problems, where surface tension
usually tends to smoothen the interface. In the following we skip the nonlinear term, as our focus is the error introduced
by time discretization and splitting. Thus, the time-dependent Stokes equations are considered: find u and p fulfilling

∂t u − ∇ · σ(u, p) = f in Ω×]0, T [, (1.1a)

div u = 0 in Ω×]0, T [, (1.1b)

u(t = 0) = u0 in Ω , (1.1c)

σ(u, p)n = g on Γ×]0, T [. (1.1d)

In what follows Sobolev spaces Hm(Ω) = Hm,2(Ω) (m = 0, 1, . . .) will be used whose norms are denoted by
∥ · ∥m . Moreover, H1

0 (Ω) denotes the subspace of all functions in H1(Ω) with vanishing traces on Γ . At some places
we also make use of fractional order Sobolev spaces H s(Ω), s ∈ R, see for instance [14,15]. For a set G the norm
and inner product of L2(G) = H0(G) are denoted by ∥ · ∥G and (·, ·)G , respectively. If G = Ω , the subscript will be
omitted.

Finally, we write a . b for two functions or quantities a, b, whenever there is a generic constant C , such that
a ≤ C b.

2. Some differential geometry

In the sequel a bit of differential geometry is needed. The results used here are all classical and may be found in
any textbook on differential geometry. We adopt the notation of the nice presentation in [16].

Let n denote the outer normal to Γ . Note that n can be extended to a small neighborhood of Γ , constant in normal
direction. We define the tangential projection P := I − n ⊗ n. With the help of P the tangential gradient of a smooth
function φ given in a neighborhood of Γ is defined by ∇Γφ := P∇φ and for a vector field F, ∇Γ F := (∇F)P ,
i.e.(∇Γ F)i j = (∂kFi )Pk j . The tangential divergence ∇Γ · F is given by ∇Γ · F := tr(∇Γ F) and the Laplace–Beltrami
operator by ∆Γ := ∇Γ · ∇Γ .

The second fundamental form H is defined as H := ∇n = ∇Γ n. The tensor H is symmetric and tr(H) = ∇Γ ·n =

κ with κ the sum of the principle curvatures.
Alternatively, one can equivalently define all these quantities in an intrinsic way.
The following lemma relates the Cartesian Laplacian and the Laplace–Beltrami operator.

Lemma 2.1. Let φ be a smooth function, defined in a neighborhood of Γ . Then the following representation holds
on Γ :

△φ = ∆Γφ + ∂nnφ + ∂nφκ,

where ∂n = n · ∇ denotes the first and ∂nn the second derivative in normal direction, respectively.

Proof.

△φ = tr(∇∇φ) = tr(∇(∇Γφ))+ tr(∇(∂nφn))

= tr(∇(∇Γφ)P)+ tr(∇(∇Γφ)n ⊗ n)  
=:(I )

+tr(∇(∂nφn)) = (∗).

Writing the term (I ) in coordinates and using the convention that repeated indices are summed up from 1 to d one
gets

(I ) = ∂k(∇Γφ)i nkni = ∂k(Pil∂lφ)nkni = ∂n(Pil∂lφ)ni = Pil(∂nlφ)ni = (ni Pil)  
=0

∂nlφ = 0,

where we have used the fact that ∂nn = 0 and thus ∂n(Pψ) = P∂nψ for a function ψ . Then

(∗) = ∇Γ · ∇Γφ + tr(∇(∂nφ)⊗ n)+ tr(∂nφ∇n)  
=∂nφ∇·n

= ∆Γφ + ∂nnφ + ∂nφκ. �
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Lemma 2.2 (Integration by Parts). Let Γ be smooth and closed. For any smooth vector field F on Γ the following
identity holds:

Γ
∇Γ · F =


Γ
κF · n.

Proof. See [16]. �

Also the following formula will be needed.

Lemma 2.3. Let φ be a smooth function, defined in a neighborhood of Γ . On Γ the following relation holds:

∂n∇φ = ∇Γ ∂nφ − H∇Γφ + ∂nnφ n.

Proof.

∂n∇φ = P∂n∇φ + n ⊗ n ∂n∇φ = P∂n∇φ + ∂nnφn,

because ∂nn = 0. Writing ∂n∇φ in coordinates one gets

∂n∂iφ = nk∂k∂iφ = nk∂i∂kφ = ∂i (nk∂kφ)− (∂i nk)∂kφ.

In other words:

∂n∇φ = ∇∂nφ − H∇φ

from which it immediately follows

P∂n∇φ = P∇∂nφ − P H∇φ.

Observing that H = P H = H P the result is proved. �

3. Pressure correction scheme for traction boundary condition

In this section we first describe the pressure correction scheme in its rotational form. The usual and natural way
to impose a traction boundary condition turns out to give only poor results, in particular for the pressure. Instead, we
modify the scheme by adding a traction correction to the boundary condition that leads to an improvement for the
solution (u, p). A variational formulation is given that is the basis for the subsequent discretization in space by finite
elements. Since integration by parts is used at several places, recall that Γ = ∂Ω and is thus closed.

3.1. Classical pressure correction scheme

An implicit, fully coupled discretization in time of system (1.1). can be formulated as follows: given the values
u−1, u0, . . . , un for n ≥ 0 compute un+1, pn+1 fulfilling

αun+1
+ βun

+ γ un−1

∆t
− ∇ · σ(un+1, pn+1) = f n+1 in Ω , (3.1a)

∇ · un+1
= 0 in Ω , (3.1b)

σ(un+1, pn+1)n = gn+1 on Γ (3.1c)

with f n+1
:= f (tn+1, ·) = f ((n + 1)∆t, ·) and gn+1

= g(tn+1, ·). Here, we have used a 2-step method given by
α, β, γ for time discretization and a fixed time step size ∆t for convenience. Choosing α = 1, β = −1, γ = 0 one
gets the implicit Euler scheme, while the choice α = 3/2, β = −2, γ = 1/2 yields the backward difference formula
BDF2 that is of second order and is strongly A-stable. However, any other reasonable choice for a time discretization
scheme and/or variable time steps would be equally suited.
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In contrast to the coupled scheme the natural pressure correction scheme in rotation form takes the form (see [5]):
for n ≥ 0, let u−1, u0, . . . , un and p0, . . . , pn be already computed. Then determine ũn+1, un+1, pn+1 by

αũn+1
+ βun

+ γ un−1

∆t
− ∇ · σ(ũn+1, pn) = f n+1 in Ω , (3.2a)

σ(ũn+1, pn)n = gn+1 on Γ , (3.2b)

α
un+1

− ũn+1

∆t
+ ∇Φn+1

= 0 in Ω , (3.2c)

∇ · un+1
= 0 in Ω , (3.2d)

Φn+1
= 0 on Γ , (3.2e)

pn+1
= pn

+ Φn+1
−

2
Re

∇ · ũn+1 in Ω . (3.2f)

The last term 2
Re∇ · ũn+1 on the right hand side in the definition of pn+1 (3.2f) yields the so-called rotational form

of the pressure correction scheme introduced in [17] and analyzed for instance in [18].
Steps (3.2c)–(3.2e) are equivalent to and realized by:

△Φn+1
=

α

∆t
∇ · ũn+1 in Ω , (3.3a)

Φn+1
= 0 on Γ , (3.3b)

un+1
= ũn+1

−
∆t

α
∇Φn+1 in Ω . (3.3c)

Note that (3.2c)–(3.2e) implies that un+1
= PH ũn+1 with PH the orthogonal projection onto H in the Hodge

decomposition

L2(Ω)d = H ⊥ H⊥

with

H = {v ∈ L2(Ω)d | div v = 0},

H⊥
= {∇χ | χ ∈ H1

0 (Ω)}.

This decomposition is the appropriate functional setting for the Stokes equations with traction boundary condition in
contrast to the Helmholtz decomposition for the case with Dirichlet boundary values.

Let us establish some basic relations for the above scheme (see also [5]). Since ∇ × ∇× = −△ + ∇ div and since
by (3.2c) ∇ × ∇ × ũn+1

= ∇ × ∇ × un+1 we have

∇ · D(un+1) = △un+1
= △ũn+1

− ∇∇ · ũn+1
= ∇ · D(ũn+1)− 2∇∇ · ũn+1. (3.4)

Then taking the sum of (3.2a) and (3.2c), taking into account (3.2f), one gets

∂∆t
t un+1

− ∇ · σ(un+1, pn+1) = f n+1 in Ω (3.5)

with ∂∆t
t un+1

:=
αun+1

+βun
+γ un−1

∆t . This explains the superior behavior of the rotational form of the pressure
corrections scheme: up to the wrong boundary condition, (un+1, pn+1) fulfills a time discrete, implicit, coupled
equation.

On the other hand, it is possible to completely eliminate the variable un+1 from the computation, which is
advantageous in a finite element context, since un+1 is not a standard finite element function. To this end, shift the
indices in (3.2a) back by −1 and −2, respectively, and substitute un, un−1 by the corresponding expressions for ũ to
get:

∂∆t
t ũn+1

− ∇ · σ


ũn+1, pn

−
β

α
Φn

−
γ

α
Φn−1


= f n+1 in Ω . (3.6)
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3.2. Traction correction

In [9] it was pointed out that a Dirichlet boundary condition for Φ is necessary for stability, which is also observed
numerically. On the other hand, then the natural boundary condition for ũn+1 (3.2b)

σ(ũn+1, pn)n = gn+1 on Γ

yields an inconsistent boundary condition for (un+1, pn+1), which is reflected in an order reduction for the error, both
theoretically as well as in computational experiments. More precisely, in [9] the following error estimates were shown
(in case the problem enjoys full Stokes regularity):

n
∆t∥u(tn)− ũn

∥
2

1/2

. ∆t3/2,


n

∆t∥∇(u(tn)− ũn)∥2
+


n

∆t∥p(tn)− pn
∥

2

1/2

. ∆t.

See also Section 4 for a computational result. The reason behind this poor behavior is the stronger coupling of
velocity and pressure by the traction boundary condition compared to the case of Dirichlet boundary values and the
homogeneous Dirichlet boundary condition for the pressure correction Φ. In order to get a more consistent boundary
condition we modify the above relation by introducing a yet to be determined functional ln+1:

σ(ũn+1, pn)n = gn+1
+ ln+1 on Γ . (3.7)

Inserting the expressions for un+1 and pn+1 in terms of ũn+1,Φn+1, pn and assuming Φn+1
|Γ = 0 one computes

σ(un+1, pn+1)n =
1

Re
D(un+1)n − pn+1n

=
1

Re
D(ũn+1)n −

2∆t

αRe
∂n∇Φn+1

−


pn

+ Φn+1
−

2
Re

∇ · ũn+1


n

= gn+1
+ ln+1

−
2∆t

αRe
∂n∇Φn+1

+
2

Re
∇ · ũn+1n. (3.8)

On Γ one has the identity

∂n∇Φn+1 (Lemma 2.3)
= ∇Γ ∂nΦn+1

+ ∂nnΦn+1n − H∇ΓΦn+1  
=0

(Lemma 2.1)
= ∇Γ ∂nΦn+1

+

△Φn+1

− ∆ΓΦn+1  
=0

−∂nΦn+1κ

n

= ∇Γ ∂nΦn+1
+

α

∆t
∇ · ũn+1n − ∂nΦn+1κn.

Using the above identity in (3.8) one finds

σ(un+1, pn+1)n = gn+1
+ ln+1

−
2∆t

αRe
∂n∇Φn+1

+
2

Re
∇ · ũn+1n

= gn+1
+ ln+1

+
2∆t

αRe


−∇Γ ∂nΦn+1

+ ∂nΦn+1κn

.

Thus we have the following astonishing result.

Proposition 3.1. If ln+1 is defined by

ln+1
=

2∆t

αRe


∇Γ ∂nΦn+1

− ∂nΦn+1κn

,

then by (3.5) Scheme (3.2) is equivalent to an implicit, coupled discretization for (un+1, pn+1).
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Unfortunately, the above scheme needs Φn+1 in order to compute ũn+1. This, however, is not in the spirit
of projection schemes, since it would require an expensive iteration procedure. A natural way out is to use an
extrapolation of Φn+1 in the definition of ln+1, i.e.

ln+1
:=

2∆t

αRe


∇Γ ∂nΦ∗

− ∂nΦ∗κn

.

There are several reasonable choices for Φ∗:

Φ∗
:= 2Φn

− Φn−1,

Φ∗
:= Φn,

Φ∗
:= (Φn

+ Φn−1)/2.

The first choice is a second order extrapolation for Φn+1, which unfortunately turns out to be unstable. However,
heuristically it is sufficient to have a first order extrapolation of Φn+1 in order to get overall second order accuracy (in
case of BDF2), since ln+1 itself is a second order correction to the scheme. Thus, the second choice might be used.
Computational experiments led to the third choice that gave slightly better results. Let us further note that with one of
the latter two choices we never experienced any stability problems.

3.3. Variational formulation

In this section we derive a variational formulation of the pressure correction scheme (in the variant of (3.6)) with
traction correction. To this end we introduce the spaces X := H1(Ω)d , Y := L2(Ω) and W := H1

0 (Ω).
Upon multiplying (3.6) by a test function v ∈ X , integrating by parts and taking into account boundary condition

(3.7) one arrives at:

(∂∆t
t ũn+1, v)+

1
2Re

(D(ũn+1), D(v))−


pn

−
β

α
Φn

−
γ

α
Φn−1, div v


= ( f n+1, v)+ (gn+1, v)Γ + (ln+1, v)Γ .

Integrating by parts, the expression for ln+1 can be simplified to:
Γ

ln+1
· v =

2∆t

αRe


Γ
(∇Γ ∂nΦ∗

− ∂nΦ∗κn) · v

=
2∆t

αRe


Γ


∇Γ · (∂nΦ∗v)− ∂nΦ∗

∇Γ · v − ∂nΦ∗κv · n


= −
2∆t

αRe


Γ
∂nΦ∗

∇Γ · v,

where the last step follows from the integration by parts formula Lemma 2.2 with F = ∂nΦ∗v. Note that thanks to this
form of ln+1 it is not necessary to compute the curvature of Γ .

Thus the pressure correction scheme with traction correction can be written in the following variational form: for
n ≥ 0, let ũ−1, ũ0, . . . , un, p0, . . . , pn and 0 := Φ−1

= Φ0,Φ1, . . . ,Φn be already computed. Then determine
ũn+1

∈ X,Φn+1
∈ W, pn+1

∈ Y by

(∂∆t
t ũn+1, v)+

1
2Re

(D(ũn+1), D(v))−


pn

−
β

α
Φn

−
γ

α
Φn−1, div v


= ( f n+1, v)+ (gn+1, v)Γ −

2∆t

αRe


Γ
∂nΦ∗

∇Γ · v for all v ∈ X, (3.9a)

(∇Φn+1,∇ψ) = −
α

∆t
(∇ · ũn+1, ψ) for all ψ ∈ W (3.9b)

and

pn+1
= pn

+ Φn+1
−

2
Re

∇ · ũn+1 in Y. (3.9c)
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If ln+1
∈ X∗, the above scheme is well defined in the respective spaces. Indeed, if ũn, ũn−1

∈ X, pn
∈

Y,Φn,Φn−1
∈ W then by (3.9a) ũn+1

∈ X . Furthermore, by (3.9b) Φn+1
∈ W and finally pn+1

∈ Y .
It remains to show that ln+1

∈ X∗. Let ũ∗
∈ X denote either ũ∗

= ũn or ũ∗
= (ũn

+ ũn−1)/2 depending on the
choice of Φ∗. Now, ∇ · ũ∗

∈ L2(Ω) and then by regularity (since Γ is assumed to be smooth) Φ∗
∈ H2(Ω) fulfilling

the estimate

∥Φ∗
∥2 .

α

∆t
∥∇ · ũ∗

∥.

From this one infers ∂nΦ∗
= n · trΓ∇Φ∗

∈ H1/2(Γ ) with

∥∂nΦ∗
∥1/2,Γ . ∥Φ∗

∥2 .
α

∆t
∥∇ · ũ∗

∥.

Using now Lemma 3.3 below one concludes
Γ
∂nΦ∗

∇Γ · v

 . ∥∂nΦ∗
∥1/2,Γ ∥∇Γ · v∥−1/2,Γ . ∥∂nΦ∗

∥1/2,Γ ∥v∥1/2,Γ . ∥∂nΦ∗
∥1/2,Γ ∥v∥1,Ω .

With the help of the previous estimate this yields

|⟨ln+1, v⟩| =
2∆t

αRe


Γ
∂nΦ∗

∇Γ · v

 .
1

Re
∥∇ · ũ∗

∥ ∥v∥1,Ω

for all v ∈ X .
Using Korn’s inequality we thus have proved:

Proposition 3.2. If Γ is smooth, f n+1
∈ X∗, gn+1

∈ H−1/2(Γ ) for all n ≥ 0 and ln+1 is defined via Φ∗
= Φn or

Φ∗
= (Φn

+ Φn−1)/2, then for all n ≥ 0 Scheme (3.9) admits unique solutions ũn+1
∈ X, pn+1

∈ Y,Φn+1
∈ W .

Lemma 3.3. Define the bilinear form

b(ρ, v) :=


Γ
ρ∇Γ · v

for smooth functions ρ, v, v being vector valued. Then b(·, ·) can be uniquely extended to functions ρ ∈ H1/2(Γ ), v ∈

H1/2(Γ )d fulfilling the estimate

|b(ρ, v)| . ∥ρ∥1/2,Γ ∥v∥1/2,Γ .

Proof. See Appendix. �

3.4. Finite element implementation

With the help of the variational formulation from the previous section, a finite element formulation for the pressure
correction traction correction scheme is now at hand. Let Xh ⊆ H1(Ω)d , Yh ⊆ H1(Ω) be an inf–sup stable pair of
elements with globally continuous pressures corresponding to a conforming triangulation Th . We chose the P2 − P1
Taylor–Hood element for the computational results in Section 4 below, but any other choice would do. Furthermore
let Wh := Yh ∩ H1

0 (Ω) and Nh := {φh : Γ → R | φh = trΓ qh, qh ∈ Yh}, where trΓ is the trace of a function in
Yh ⊆ H1(Ω) on Γ .

The fully discrete pressure correction scheme with traction correction now reads: for n ≥ 0, let ũ−1
h ,

ũ0
h, . . . , un

h, p0
h, . . . , pn

h and 0 := Φ−1
h = Φ0

h ,Φ
1
h , . . . ,Φ

n
h be already computed. Then determine ũn+1

h ∈ Xh,Φn+1
h ∈

Wh, pn+1
h ∈ Yh by

(∂∆t
t ũn+1

h , vh)+
1

2Re
(D(ũn+1

h ), D(vh))−


pn

h −
β

α
Φn

h −
γ

α
Φn−1

h , div vh


= ( f n+1, vh)+ (gn+1, vh)Γ + ⟨ln+1

h , vh⟩Γ for all vh ∈ Xh, (3.10a)
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(∇Φn+1
h ,∇ψh) = −

α

∆t
(∇ · ũn+1

h , ψh) for all ψh ∈ Wh (3.10b)

and

(pn+1
h , qh) =


pn

h + Φn+1
h −

2
Re

∇ · ũn+1
h , qh


for all qh ∈ Yh . (3.10c)

In (3.10a) ln+1
h denotes an approximation of ln+1. It is computed in the following way. First, we need to approximate

the derivative of Φ∗. This can be accomplished in a variational way. To this end, let ρh ∈ Nh denote the approximation
to ∂nΦ∗. Determine ρh by

(ρh, trΓ qh)Γ + ϵ(∇Γρh,∇Γ trΓ qh)Γ =


Ω

∇Φ∗

h · ∇qh +
α

∆t


Ω

∇ · ũ∗

hqh for all qh ∈ Yh . (3.11)

Here, ũ∗

h denotes either ũ∗

h = ũn
h or ũ∗

h = (ũn
h + ũn−1

h )/2 depending on the choice of Φ∗

h . ϵ > 0 is a small parameter.
The meaning of the term on the left hand side multiplied by ϵ is a smoothing by the discrete Laplace–Beltrami operator
of the otherwise possibly wiggly ρh due to discretization effects, see also Section 4.

Note that (3.11) constitutes a linear system involving the mass and a stiffness matrix on the boundary triangulation
Sh induced by the triangulation Th of Ω . Thus Sh and in turn the space Nh can be rather easily realized. In our case
Nh is the space of globally continuous, piecewise linear functions on Γ corresponding to the boundary triangulation
Sh . Since Γ is a hypersurface and thus Sh has much less degrees of freedom than Th , the computational cost to solve
(3.11) is negligible.

Finally, ln+1
h is defined by

⟨ln+1
h , vh⟩ := −

2∆t

αRe


Γ
ρh∇Γ · (trΓ vh) for all vh ∈ Xh . (3.12)

Remark 3.4. Although its derivation is somehow involved, the final form of ln+1 is amazingly simple. Note that in
2D the above integral is given by

Γ
ρh∇Γ · (trΓ vh) =


Γ
ρhτ · ∂τvh,

where τ is a tangential vector on Γ . Thus the evaluation of the integral is straightforward: looping over all triangles,
one can access all boundary edges and then do the computations boundary edge by boundary edge. Thus, in the 2d
case, each boundary edge is a straight line (if one does not use isoparametric elements, for which the computations are
similar) and the tangential component and tangential derivative of a finite element function can be computed easily.
In 3D this computation is more technical, but can be done in a similar fashion, see [19] for details.

4. Computational results

In this section the scheme with traction correction is computationally compared to the classical scheme. To this
end let Ω be the ellipse Ω := {(x1, x2) | (x1/a)2 + (x2/b)2 < 1} with a = 1/1.2 and b = 1.2. As in [9] u and p are
defined by

u(t, x) =[sin(x1) sin(x2 + t), cos(x1) cos(x2 + t)]T ,

p(t, x) = cos(x1) sin(x2 + t)/5 + 1.

The right hand sides f , g are chosen such that the above pair (u, p) is a solution to Eq. (1.1) for Re = 10. In order to
get close to the semi-discrete case, a fine grid consisting of 2×97, 201 degrees of freedom for the velocity and 25, 325
degrees of freedom for the pressure was used. Consequently the error due to space discretization was very small. For
time discretization the BDF2 scheme was used. The examples were computed with the solver NAVIER [20].

Fig. 1 shows error plots versus time step size. The velocity error in the H1-norm is hardly influenced by the traction
correction. In the L2-norm there is no improvement in the order of convergence, but the quantitative error is noticeably
smaller, see Fig. 2.
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Fig. 1. Errors versus time step size for the scheme with and without traction correction; H1, L2-errors for the velocity, L2, L∞–errors for the
pressure at time tn = 1.0, respectively. Triangles have respective slopes 1.3, 1.7, 2.0, 2.0 (from top left to bottom right); ϵ = 10−3.

The pressure, however, is significantly improved by the new method, both in the L∞(L2)-norm as well as in the
L∞(L∞)-norm. Tables 1 and 2 show that the order of convergence for the pressure is improved from about 1.5 to
2.0. The stagnation of the pressure error for smaller time step sizes is caused by the space discretization error that
eventually becomes dominant for very small values of ∆t .

Fig. 3 shows the L2–error for the pressure using different meshes (the fine one being the one described above).
This proves that the stagnation in the error reduction is indeed caused by the space discretization.

Fig. 4 illustrates the influence of the method on the choice of ϵ. As can be seen, for large values as well as for very
small values of ϵ the behavior of the method is quite poor. This becomes clear from Fig. 5: for very large values of ϵ,
∂nΦ∗ is over-smoothed, while for very small values of ϵ∂nΦ∗ is still wiggly.

The results of a quantitative test with various values of the mesh size h and of ϵ, respectively, are given in Table 3.
As a measure for the oscillation of ∂nΦ∗

h and thus in turn for the needed regularization, we computed the quantity
OSC, defined by

OSC = OSC(h, ϵ) := ∥∂nΦ∗

h (ϵ)− ∂nΦ∗

h (ϵ0)∥L2(Γ ), (4.1)

where ϵ0 := 1e − 3 corresponds to a quite regularized solution. As can been deduced from Table 3, the oscillation
becomes smaller for smaller mesh sizes. Thus less regularization is needed for finer grids.

5. Conclusion

In this paper pressure correction schemes for the computational solution of the time dependent (Navier)–Stokes
equations with traction boundary condition have been considered. We have introduced a finite element based method
to improve the performance of the classical approach, outlined for instance in [9].
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Fig. 2. Time evolution of the L2 velocity errors for the scheme with and without traction correction; ∆t = 3.12510−3.

Fig. 3. L2-errors for the pressure versus time step size for different meshes.

Fig. 4. L2-errors for the pressure versus time step size for different choices of ϵ at time tn = 1.0, ∆t = 0.0125.
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Fig. 5. Normal derivative ∂nΦ∗
h on Γ versus the azimuthal angle for different values of ϵ at time t = 0.25.

Table 1

Errors and experimental orders of convergence (EOC) for the scheme without and with traction correction; ϵ = 10−3; E p = ∥p(tn) − pn
∥,

tn = 1.0.

∆t Trac. corr. E p EOC ∆t Trac. corr. E p EOC

0.2 no 6.8982e−03 – 0.2 yes 2.6139e−03 –
0.1 no 2.5875e−03 1.4147 0.1 yes 5.3031e−04 2.30130
0.05 no 9.5205e−04 1.4424 0.05 yes 1.1069e−04 2.26031
0.025 no 3.4577e−04 1.4612 0.025 yes 2.5763e−05 2.10315
0.0125 no 1.2460e−04 1.4725 0.0125 yes 8.7694e−06 1.55475
0.00625 no 4.4799e−05 1.4758 0.00625 yes 5.5988e−06 0.64736
0.003125 no 1.6730e−05 1.4210 0.003125 yes 5.0699e−06 0.14316

Table 2

L2-errors in time and experimental orders of convergence (EOC) for the scheme without and with traction correction; ϵ = 10−3; Ẽ p =

(


n ∆t∥p(tn)− pn
∥

2)1/2.

∆t Trac. corr. Ẽ p EOC ∆t Trac. corr. Ẽ p EOC

0.2 no 6.6140e−03 – 0.2 yes 3.8197e−03 –
0.1 no 2.3499e−03 1.4929 0.1 yes 9.0861e−04 2.0717
0.05 no 8.3667e−04 1.4899 0.05 yes 2.1426e−04 2.0843
0.025 no 2.9765e−04 1.4910 0.025 yes 5.1540e−05 2.0556
0.0125 no 1.0579e−04 1.4924 0.0125 yes 1.3673e−05 1.9144
0.00625 no 3.7738e−05 1.4871 0.00625 yes 5.9854e−06 1.1918
0.003125 no 1.4161e−05 1.4141 0.003125 yes 5.0330e−06 0.2500
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Table 3
Oscillation OSC, defined in Eq. (4.1), for various values of h and ϵ. Here, h0 is the
boundary mesh size of a rather coarse initial grid that is successively refined at the
boundary (tn = 0.25,∆t = 0.0125).

ϵ = 1e − 7 ϵ = 1e − 6 ϵ = 1e − 5

h0 9.7445e−03 9.0924e−03 5.5216e−03
h0/2 5.9016e−03 4.6531e−03 1.5958e−03
h0/4 3.0774e−03 1.6191e−03 3.7214e−04
h0/8 1.2671e−03 4.0770e−04 1.4434e−04

The improvement is accomplished by extrapolating the traction boundary condition in each time step. The
corresponding term consists of a simple boundary functional involving the normal derivative of the pressure correction
Φ and can be evaluated in a natural and easy way in the context of finite elements.

Computational results show a significant improvement of the solution, in particular for the pressure in the case of
smooth domains.

Appendix

It remains to prove Lemma 3.3.

Proof. (Lemma 3.3)
The following proof relies on the techniques and results outlined in [15], Chapter 1.
Let ρ, v be smooth functions. First, it is not difficult to see that

Γ
ρ∇Γ · v

 ≤ ∥ρ∥1/2,Γ ∥∇Γ · v∥−1/2,Γ . ∥ρ∥1/2,Γ ∥∇Γ v∥−1/2,Γ .

Since Γ is assumed to be smooth and compact, there are V1, . . . , Vm open in Rd covering Γ and smooth, invertible φ j ,

φ j : V j → D := {y | y = (y′, yn),−1 < yn < 1}

with the property that

φ j |V j ∩Γ : V j ∩ Γ :→ D ∩ {yn = 0},

i.e.

x ∈ Γ ∩ V j ⇔ x = φ−1
j (y′, 0), (y′, 0) ∈ D.

Furthermore there is a smooth partition of unity α j with compact support subordinate to the covering V1, . . . , Vm .
Any function u on Γ can thus be decomposed as

u =

m
j=1

α j u.

Define

φ∗

j (α j u)(y
′) := (α j u) ◦ φ−1

j (y′, 0) for (y′, 0) ∈ D.

For arbitrary s ∈ R, H s(Γ ) may now be defined by

H s(Γ ) := {u | φ∗

j (α j u) ∈ H s(Rd−1), j = 1, . . . ,m}

with corresponding norm

∥u∥s,Γ :=


m

j=1

∥φ∗

j (α j u)∥
2
s,Rd−1

1/2

.

Using the intrinsic definition of ∇Γ (see for instance [19]) one can write

(∇Γ v)(x) = G j (y
′)∇y′(v ◦ φ j )(y

′, 0) for x = φ−1
j (y′, 0) ∈ Γ
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and with some tensor-valued function G j depending on the local geometry of Γ . In other words:

φ∗

j (∇Γ v)(y
′) = G j (y

′)∇y′(v ◦ φ j )(y
′, 0).

On the other hand, for a bounded C1 function µ on Rd−1 with bounded derivative the mapping Λ,

Λ : u → µ∇y′u,

is a continuous linear mapping both from

H1(Rd−1) → L2(Rd−1) as well as

L2(Rd−1) → H−1(Rd−1).

Interpolating between H1(Rd−1) and L2(Rd−1) one therefore gets

Λ ∈ L([H1(Rd−1), L2(Rd−1)]θ , [L
2(Rd−1), H−1(Rd−1)]θ )

for all 0 < θ < 1, see [15]. In particular, choosing θ = 1/2, one finds

Λ ∈ L(H1/2(Rd−1), H−1/2(Rd−1)).

Applying this result to µ = α j G j the desired estimate follows. �
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