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Abstract

We present a practical implementation of an energy-based atomistic-to-continuum (a/c) coupling scheme without ghost forces,
and numerical tests evaluating its accuracy relative to other types of a/c coupling schemes.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Atomistic-to-continuum coupling methods (a/c methods) are a class of computational multiscale schemes that
combine the accuracy of atomistic models of defects with the computational efficiency of continuum models of elastic
far-fields [1–5]. In the present article, we present the first successful implementation of a practical patch test consistent
energy based a/c coupling scheme. Previously such schemes were only available for 2-body interactions [6,7].

In recent years a numerical analysis theory of a/c methods has emerged; we refer to [8] for a review. This theory
has identified three prototypical classes of a/c schemes: patch test consistent energy-based coupling, force-based
coupling (including force-based blending), and energy-based blending. The classical numerical analysis concepts of
consistency and stability are applied to precisely quantify the errors committed in these schemes, and clear guidelines
are established for their practical implementation including optimisation of approximation parameters. The results
in [9,10,8,11,12] indicate that patch test consistent a/c couplings observe (quasi-)optimal error estimates in the energy-
norm. However, to this date, no general construction and implementation of such schemes has been presented. Instead,
one normally compromises by either turning to patch test consistent force-based schemes [13–15,1] or to blending
schemes [3,16] which have some control over the consistency error. Quasi-optimal implementations of such schemes
are described in [16,15].
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Existing patch test consistent schemes are restricted in their range of validity: [4] is only consistent for flat a/c
interfaces and short-ranged interactions, [17] extends the idea to arbitrary range and [12] to domains with corners (but
restricting again to nearest-neighbour interaction). On the other hand, the schemes presented in [6,7,18] are valid for
general interaction range and a/c interfaces with corners, but are restricted to pair interactions.

In the present article, we shall present a generalisation of the geometric reconstruction technique [4,17,12], which
we subsequently denote GRAC. Briefly, the idea is that, instead of evaluating the interatomic potential near the a/c
interface with atom positions obtained by interpolating the continuum description, one extrapolates atom positions
from those in the atomistic region (geometric reconstruction). This idea is somewhat analogous to the implementation
of Neumann boundary conditions for finite difference schemes. There is substantial freedom in how this reconstruction
is achieved, leading to a number of free parameters. One then determines these reconstruction parameters by solving
the “geometric consistency equations” [17], which encode a form of patch test consistency and lead to a first-order
consistent coupling scheme [11].

The works [17,12,11] have demonstrated that GRAC is a promising approach, but also indicate that explicit
analytical determination of the reconstruction parameters for general a/c interface geometries with general interaction
range may be impractical. Instead we propose to compute the reconstruction parameters in a preprocessing step.
Although this is a natural idea it has not been pursued to the best of our knowledge.

A number of challenges must be overcome to obtain a robust numerical scheme in this way. The two key issues we
will discuss are:

(A) If the geometric consistency equations have a solution then it is not unique. The consistency analysis [11] suggests
that a solution is best selected through ℓ1-minimisation of the coefficients. Indeed, we shall demonstrate that the
least squares solution leads to prohibitively large errors.

(B) In [19] we proved that there exists no universally stable a/c coupling of geometric reconstruction type. We will
see that this is in fact of practical concern and demonstrate that the stabilisation mechanism proposed in [19]
appears to resolve this issue.

In the remainder of the paper we present a complete description of a practical implementation of the GRAC
method (Section 2) and numerical experiments focused primarily on investigating approximation errors (Section 3).
We will comment on open issues and possible improvements in Section 4, which are primarily concerned with the
computational cost of determining the reconstruction coefficients.

2. Formulation of the GRAC method

In formulating the GRAC scheme, we adopt the point of view of [20], where the computational domain and
boundary conditions are considered part of the approximation. This setting is convenient to assess approximation
errors. Adaptions of the coupling mechanism to other problems are straightforward.

We first present a brief review, ignoring some technical details, of a model for crystal defects in an infinite lattice
from [20], and some results concerning their structure (Section 2.1). In Section 2.2 we present a generic form of a/c
coupling schemes, which we then specialise to the GRAC scheme in Section 2.3. In Section 2.3 and in Section 2.4 we
address, respectively, the two key issues (A) and (B) mentioned in the introduction.

For the sake of simplicity of presentation, and to emphasise the algorithmic aspects of the GRAC method, we
restrict the presentation to relatively simple settings such as point defects and microcracks as in [16,15]. The concepts
required to generalise the presentation to problems involving dislocations can be found in [20].

2.1. Atomistic model

Let d ∈ {2, 3} denote the problem dimension. Fix a non-singular A ∈ Rd×d to define a Bravais lattice AZd . Let
Λ ⊂ Rd be a discrete reference configuration of a crystal, possibly with a local defect: for some compact domain Ωdef

we assume that Λ \ Ωdef
= AZd

\ Ωdef and Λ ∩ Ωdef is finite. It can be readily seen [20], that certain point defects
(e.g., interstitials, vacancies; see Fig. 1) can be enforced that way.

To avoid minor technical difficulties, we prescribe a maximal interaction neighbourhood in the reference
configuration. This is a restriction that can be lifted with little additional work [20, Remark 2.1]. For each ℓ ∈ Λ
we denote this neighbourhood by N (ℓ) := {ℓ′ ∈ Λ | |ℓ′ − ℓ| ≤ rcut}, for some specified cut-off radius rcut. (Note that
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(a) Vacancy. (b) Interstitial.

(c) QNL construction.

Fig. 1. (a, b) Examples of reference configurations Λ with point defects embedded. (c) Construction of the QNL method: ◦ atomistic potential Φℓ;
• interface potential Φi

ℓ
; � Cauchy–Born potential W (precisely, W is applied on elements/triangles); • far-field boundary condition y(ℓ) = Bℓ is

imposed.

we impose a cut-off in the reference configuration. This is done only for the sake of convenience of notation and can be
replaced with a cut-off in deformed configuration as discussed, e.g., in [20].) We define the associated sets N∗(ℓ) :=

N (ℓ) \ {ℓ} and R(ℓ) := {ℓ′ − ℓ | ℓ′ ∈ N∗(ℓ)}. We define the “finite difference stencil” Dv(ℓ) := (Dρv(ℓ))ρ∈R(ℓ) :=

(v(ℓ+ ρ)− v(ℓ))ρ∈R(ℓ). Higher-order finite differences, DρDςv and D2v are defined in a canonical way.

We use this notation to define a discrete energy space. For v : Λ → Rm , let the discrete energy-norm be defined
by

∥v∥Ẇ 1,2 := ∥Dv∥ℓ2 :=


ℓ∈Λ


ρ∈R(ℓ)

|Dρv(ℓ)|2

|ρ|2

1/2

=


ℓ∈Λ


ℓ′∈N∗(ℓ)

|v(ℓ′)− v(ℓ)|2

|ℓ′ − ℓ|2

1/2

,

which we can think of as a discrete H1-seminorm. Then, the associated discrete function space is defined by

Ẇ 1,2
:=

u : Λ → Rm

| ∥u∥Ẇ 1,2 < +∞

.

The space Ẇ 1,2 can be thought of as the space of all relative displacements with finite energy.

For a deformed configuration y : Λ → Rd and ℓ ∈ Λ, let Φℓ(y) = Φℓ((yℓ′)ℓ′∈N (ℓ)) denote a site energy functional
associated with ℓ. For ℓ ∈ Λ \ Ωdef we assume that Φℓ(y) ≡ Φ(y − y(ℓ)), i.e., the crystal is homogeneous outside
Ωdef. By changing the interaction potential inside Ωdef, impurities or “cut bonds” can be modelled.
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The prototypical example is the embedded atom model [21], for which Φℓ is of the form

Φℓ(y) =


ℓ′∈N∗(ℓ)

φ

|y(ℓ′)− y(ℓ)|


+ F

 
ℓ′∈N∗(ℓ)

ψ

|y(ℓ′)− y(ℓ)|


=


ρ∈R(ℓ)

φ

|Dρ y(ℓ)|


+ F

 
ρ∈R(ℓ)

ψ

|Dρ y(ℓ)|


. (2.1)

The energy of an infinite configuration is typically ill-defined, but the energy-difference functional

E(y; z) =


ℓ∈Λ

Φℓ(y)− Φℓ(z)

is a meaningful object. For example, if y − z has compact support, then E(y; z) is well-defined. More generally it is
shown in [20, Thm. 2.2], under natural technical conditions on the site potentials Φℓ, that u → E(yB

+ u; yB), u ∈

Ẇ 1,2, is well-defined and (Fréchet) differentiable, where yB(x) = Bx .
Given a macroscopic applied strain B ∈ Rd×d , we aim to compute

y ∈ arg min


E(y; yB) | y − yB
∈ Ẇ 1,2. (2.2)

A solution to (2.2) will satisfy the far-field boundary condition y(ℓ) ∼ Bℓ as |ℓ| → ∞, imposed through the condition
that y − yB

∈ Ẇ 1,2.
We call a solution y strongly stable if there exists c0 > 0 such that ⟨δ2 E(y)v, v⟩ ≥ c0∥Dv∥2

ℓ2 for all v ∈ Ẇ 1,2.

Here, and throughout, we write δ j E(y) instead of δ j E(y; z) since the variations of the energy difference only
depend on the first component.

Remark 2.1. The far-field boundary condition y(ℓ) ∼ Bℓ can be generalised to any deformation y0 satisfying
δE(y0) ∈ (Ẇ 1,2)∗, for example, to dislocations by replacing Bℓ with the linear elasticity solution of the disloca-
tion [20]. �

2.2. A/C coupling

We begin by giving a generic formulation of an a/c coupling, which we subsequently make concrete employing
concepts and notation from various earlier works, such as [2,13,4,16], but adapting the formulation to our setting of
Section 2. The construction is visualised in Fig. 1(c).

To choose a computational domain let Ω ⊂ Rd be a simply connected, polygonal and closed set. We decompose
Ω = Ω a

∪ Ω c, where Ω a is again simply connected and polygonal, and contains the defect: Ωdef
⊂ Ω a. Let Th be a

regular partition of Ω c into triangles (d = 2) or tetrahedra (d = 3). Let Ih denote the associated nodal interpolation
operator.

Next, we decompose the set Λa,i
:= Λ ∩ Ω a

= Λa
∪ Λi into a core atomistic region Λa and an interface region Λi

(typically a few “layers” of atoms surrounding Λa).
We can now define the space of coarse-grained displacement maps,

Wh :=

uh : Ω c

∪ Λa,i
→ Rm

| uh is continuous and p.w. affine w.r.t. Th , and uh = 0 on ∂Ω

.

The associated space of coarse-grained deformations is yB
+ Wh .

The Cauchy–Born strain energy function is given by

W (F) := |vor(ℓ)|−1Φℓ(F · R(ℓ)) for some ℓ ∈ Λ \ Ωdef,

where vor(ℓ) is the Voronoi cell associated with ℓ. (Due to the homogeneity of the lattice and interaction outside Ωdef,
the definition is independent of ℓ.)

For ℓ ∈ Λi, we choose a modified interface site potential Φi
ℓ and an effective cell vi

ℓ ⊂ vor(ℓ) associated
with ℓ (specific choices will be specified in Section 2.3), and define the effective volume associated with ℓ as
ωi
ℓ := |vi

ℓ|/|vor(ℓ)|. Further, for each element T ∈ Th we define the effective volume ωT := |T \ (∪ℓ∈Λi vi
ℓ)|.
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Then, a generic a/c coupling energy difference functional is then defined by

Eac(yh; zh) :=


ℓ∈Λa


Φℓ(yh)− Φℓ(zh)


+


ℓ∈Λi

ωi
ℓ


Φi
ℓ(yh)− Φi

ℓ(zh)


+


T ∈Th

ωT


W (∇ yh |T )− W (∇zh |T )


. (2.3)

Thus, we obtain the approximate variational problem

yh ∈ arg min


Eac(yh; yB) | yh − yB
∈ Wh


. (2.4)

2.2.1. The patch tests
A key condition that has been widely discussed in the a/c coupling literature is that Eac should exhibit no “ghost

forces”. Following the language of [11], we call this condition the force patch test: for Λ = AZd and Φℓ ≡ Φ
(homogeneous lattice without defects)

⟨δEac(yF), v⟩ = 0 ∀v ∈ Wh, F ∈ Rd×d . (2.5)

In addition, to guarantee that Eac approximates the atomistic energy E , it is reasonable to also require that the interface
potentials satisfy an energy patch test

Φi
ℓ(y

F) = Φℓ(yF) ∀F ∈ Rd×d , ℓ ∈ Λi. (2.6)

2.3. General GRAC formulation

To complete the definition of the a/c coupling energy (2.3) and of the associated variational problem (2.4), we
must specify the interface region Λi, the interface site potentials Φi

ℓ and the associated volumes ωi
ℓ. The approach we

present here is an extension of [4,17,12].
First we note that, due to homogeneity of Φℓ outside of Ωdef, we can write

Φℓ(y) = V

Dy(ℓ)


,

for some potential V that is a function of the finite differences instead of a function of positions.
We now define Φi

ℓ in terms of V . For each ℓ ∈ Λi, ρ, ς ∈ R(ℓ), we let Cℓ;ρ,ς be free parameters, and define

Φi
ℓ(yh) := V

 
ς∈R(ℓ)

Cℓ;ρ,ς Dς yh(ℓ)


ρ∈R(ℓ)


. (2.7)

A convenient short-hand is

Φi
ℓ(yh) = V (Cℓ · Dyh(ℓ)) where


Cℓ := (Cℓ;ρ,ς )ρ,ς∈R(ℓ), and

Cℓ · Dy :=

 
ς∈R(ℓ)

Cℓ;ρ,ς Dς y


ρ∈R(ℓ)

.

We call Cℓ;ρ,ς the reconstruction parameters.
The parameters are to be chosen so that the resulting energy functional Eac satisfies the energy and force patch

tests (2.5) and (2.6).

Remark 2.2. The approach (2.7) is labelled quasi-nonlocal coupling in [4] since the coefficients are (typically) chosen
so that the interaction of Λi with the atomistic region Λa is non-local while the interaction of Λi with the continuum
region is local. In [17] the approach is labelled geometric reconstruction since we can think of the operation Cℓ · Dy(ℓ)
as reconstructing atom positions in the continuum region, using only information from the atomistic region and
interface.
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A more pragmatic point of view is to simply view the atomistic model and continuum model as two different finite
difference schemes for the same PDE and to “fit” parameters that would consistently patch them together. �

2.3.1. Energy patch test
A sufficient and necessary condition for the energy patch test (2.6) is that F ·R(ℓ) = Cℓ · (F ·R) for all F ∈ Rm×d

and ℓ ∈ Λi. This is equivalent to

ρ =


ς∈R(ℓ)

Cℓ;ρ,ςς ∀ℓ ∈ Λi, ρ ∈ R(ℓ). (2.8)

2.3.2. Force patch test
The force patch test (2.5) leads to a fairly complex set of equations. From the general GRAC formulation (2.3), we

can decompose the first variation of the A/C coupling energy into three parts,

⟨δEac(yF), u⟩ = ⟨δEa(yF), u⟩ + ⟨δE i(yF), u⟩ + ⟨δEc(yF), u⟩.

To simplify the notation, we drop the yF dependence from the expression, for example, we write Ea instead of
Ea(yF), ∇ρV instead of ∇ρV (DyF), and so forth. Here, ∇ρV denotes the partial derivative of V with respect to the
Dρ y component.

Since ∇ρV = −∇−ρV , we only consider half of the interaction range: we fix R+
⊂ R such that R+

∪ (−R+) =

R and R+
∩ (−R+) = ∅.

The first variations in the a/c coupling energy can be expanded into the following expressions,

⟨δEa, u⟩ =


ρ∈R+

ℓ∈Λa−ρ


∇ρV · u(ℓ)


−


ρ∈R+

ℓ∈Λa+ρ


∇ρV · u(ℓ)


,

⟨δE i, u⟩ =


ς∈R

ℓ∈Λi+ς

ωi
ℓ−ς


ρ∈R+

(Cℓ−ς;ρ,ς − Cℓ−ς;−ρ,ς )

∇ρV · u(ℓ)


−


ℓ∈Λi

ωi
ℓ


ρ∈R+


ς∈R

(Cℓ;ρ,ς − Cℓ;−ρ,ς )

∇ρV · u(ℓ)


, and

⟨δEc, u⟩ =


T


ρ∈R+

3
i=1

2
ωT

|vor|
∇Tφ

T
i · ρ


∇ρV · uT

i


,

where the nodes ℓT
i are the three corners of the triangle T , uT

i = u(ℓT
i ) and φT

i are the three nodal linear bases
corresponding to uT

i , i = 1, 2, 3. The complete calculations are shown in Appendix A.1.
Since we require that the force patch test (2.5) holds for all potentials V , we can think of ∇ρV ·u(ℓ) as independent

symbols. Collecting all the coefficients for the terms ∇ρV · u(ℓ), we obtain

⟨δEa, u⟩ =


ℓ∈Λa+R


ρ∈R+

ca
ρ(ℓ)


∇ρV · u(ℓ)


⟨δE i, u⟩ =


ℓ∈Λi+R


ρ∈R+

ci
ρ(ℓ)


∇ρV · u(ℓ)


⟨δEc, u⟩ =


ℓ∈Λc


ρ∈R+

cc
ρ(ℓ)


∇ρV · u(ℓ)


.

The coefficients ca
ρ(ℓ), ci

ρ(ℓ) and cc
ρ(ℓ) are geometric parameters of the underlying lattice and of the interface

geometry, while the coefficients ci
ρ(ℓ) also depend linearly on the unknown reconstruction parameters Cℓ;ρ,ς .

Since force patch test is automatically satisfied for the atomistic model and the Cauchy–Born continuum model,
we only need to consider the force consistency for those sites which the modified interfacial potential can influence,
namely, the extended interface region Λi

+ R := {ℓ ∈ Λ|∃ℓ′ ∈ Λi, ∃ρ ∈ R, such that ℓ = ℓ′ + ρ}.
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Fig. 2. Effective Voronoi cells for the interface nodes (filled circles) are the shaded area in the above figure. Left figure corresponds to METHOD
1, and right figure corresponds to METHOD 2. Different choices of effective cells result in different values of weights ωi

ℓ
, for method 1, ωi

ℓ
= 1,

and for method 2, ωi
ℓ
< 1 for the outmost interface atoms which are adjacent to the continuum region.

We summarise the foregoing calculation in the following result.

Proposition 2.3. A necessary and sufficient condition on the reconstruction parameters Cℓ to satisfy the force patch
test (2.5) for all V ∈ C∞((Rd)R) is

ca
ρ(ℓ)+ ci

ρ(ℓ)+ cc
ρ(ℓ) = 0 (2.9)

for ℓ ∈ Λi
+ R, and ρ ∈ R+.

At this stage there is still some freedom in the design of GRAC type a/c couplings. We implemented the following
two variants which place some additional restrictions, but still do not fully define the method. See also Fig. 2.

• METHOD 1 is an extension of the construction in [12]. We choose vi
ℓ = vor(ℓ) for all ℓ ∈ Λi. No other constraints

are placed on the method.
For practical purposes, this method normally requires that in Ω c, within several layers of atoms surrounding Λi all
nodes of the finite element mesh precisely coincide with the atomic sites in these layers; see Appendix A.2.

• METHOD 2 is a variation and extension of the local reflection method that is briefly discussed in [19]. We choose
vi
ℓ = vor(ℓ) ∩ Ω a, and also constrain

Cℓ;ρ,ς = 0 for ℓ ∈ Λi, ℓ+ ς ∈ Ω c.

This has the advantage that we now only need to impose the force balance equation for (Λi
+ R) ∩ Λa,i.

More details of the implementation of METHOD 1 and METHOD 2 can be found in Appendix A.2.

2.3.3. Rank deficiency
Let I := #Λi be the number of atoms in the interface and R := #R the number of interacting sites. The number

of unknowns Cℓ;ρ,ς is then I R2. For Method 1, the number of force balance equations is 1
2 #(Λi

+ R) × R, and
the number of energy consistency equation is 2I R. For method 2, we have fewer force balance equations, while the
number of constraints for Cℓ,ρ,ς is less than 1

2 I R2. It is therefore easy to see that the number of unknowns is much
bigger than the number of equations.

2.3.4. Least squares computation of reconstruction parameters
Refs. [4,17,12] construct various examples, where reconstruction parameters can be determined analytically

to satisfy the energy and force patch tests (2.8) and (2.9). Instead, we propose to solve them numerically in a
preprocessing step.

Comparing the number of equations against the number of free parameters (see Section 2.3.3), we observe that, if a
solution to (2.8) and (2.9) exists, then it cannot be unique. A natural idea, therefore, is to use a least-squares approach,

minimise

ℓ∈Λi


ρ,ς∈R(ℓ)

|Cℓ;ρ,ς |
2 subject to (2.8) and (2.9). (2.10)

We warn from the outset against using (2.10) and explain in Section 2.4 that error estimates for QNL type a/c coupling
schemes suggest a different selection principle.
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Further, in Section 2.5, we propose to add a stabilisation mechanism to the interface site potentials that we
previously explored in [19]. Our subsequent numerical experiments in Section 3 demonstrate that, in general, both
of these modifications are required to obtain satisfactory accuracy of the a/c method.

2.4. Consistency and optimisation of Cℓ

In [11, Thm. 6.1] it is shown that, under the assumptions that d = 2 and that the atomistic region Ω a is connected
(and additional natural technical assumptions), any a/c coupling scheme of the type (2.3) satisfying the force and
energy patch tests (2.5), (2.6) satisfies a first-order consistency estimate: if y = yB in Λ \ Ω and if ỹ is an H2

loc-
conforming interpolant of y, then

δE(y)− δEac(Ih y), uh

≤ C1∥h∇

2 ỹ∥L2(Ω̃ c)
, (2.11)

where C1 is independent of y. (An improved result for a specific variant of GRAC is also proven in [12].)
Of particular interest for the present work is the dependence on C1 on the reconstruction parameters Cℓ, which we

can obtain from Eq. (6.4) in [11, Theorem 6.1] and a brief calculation:

C1 ≤ C ′

1 (1 + width(Λi))

ρ,ς∈R

|ρ| |ς | Mρ,ς + C ′′

1 (2.12)

where Mρ,ς = max
ℓ∈Λi


τ,τ ′∈R(ℓ)

|Vτ,τ ′(Cℓ · Dy(ℓ))| |Cℓ;τ,ρ | |Cℓ;τ ′,ς |.

C ′

1 is a generic constant and C ′′

1 does not depend on the reconstruction parameters.
The estimate (2.12) is of course an overestimation that was convenient for the analysis, whereas intuitively one

may think of

M(ℓ) :=


ρ,ς

|ρ| |ς |


τ,τ ′

Vτ,τ ′(Cℓ · Dy(ℓ))
 |Cℓ;τ,ρ | |Cℓ;τ ′,ς |

to be a realistic (ℓ-dependent) pre-factor. Suppose now that we make the generic structural assumption (see App. B.2
in [22], where this is discussed for an EAM type potential) that |Vτ,τ ′(Cℓ · Dy(ℓ))| . ω(|τ |) ω(|τ ′

|), where ω has
some decay that is determined by the interaction potential, then we obtain that

M(ℓ) .

ρ,ς

|ρ| |ς |


τ,τ ′

ω(|τ |) ω(|τ ′
|) |Cℓ;τ,ρ | |Cℓ;τ ′,ς |

=


ρ,τ

|ρ|ω(|τ |)|Cℓ;τ,ρ |
 

ς,τ ′

|ς |ω(|τ ′
|)|Cℓ;τ ′,ς |


=


ρ,τ

|ρ|ω(|τ |)|Cℓ;τ,ρ |
2
.

This indicates that, instead of ∥C∥ℓ2 , we should minimise maxℓ∈Λi

ρ,τ |ρ|ω(|τ |)|Cℓ;τ,ρ |. Since we do not in general

know the generic weights ω, we simply drop them, and instead minimise

ρ,τ |Cℓ;τ,ρ |. Further, taking the maximum

of ℓ ∈ Λi leads to a difficult and computationally expensive multi-objective optimisation problem. Instead, we propose
to minimise the ℓ1-norm of all the coefficients:

minimise

ℓ∈Λi


ρ,ς∈R(ℓ)

|Cℓ;ρ,ς | subject to (2.8) and (2.9). (2.13)

To justify the two rather significant simplifications, we observe that, intuitively, the reconstruction coefficients at
different sites should take values of roughly the same order of magnitude. Further, the weight factors coming from
the interaction potential should not play a big role since the reconstruction of each “shell” of neighbours is in essence
independent of the rest (due to the fact that the reconstruction coefficients must also be valid for potentials with
smaller interaction neighbourhood). Finally, we remark that ℓ1-minimisation tends to generate “sparse” reconstruction
parameters which may present some gain in computational cost in the energy and force assembly routines for Eac.



C. Ortner, L. Zhang / Comput. Methods Appl. Mech. Engrg. 279 (2014) 29–45 37

2.5. Stability and stabilisation

In order to obtain an energy norm error estimate

∥Dyh − Dy∥ℓ2 ≤ C

∥h∇

2 ỹ∥L2(Ω̃ c)
+ ϵbc


, (2.14)

where ϵbc is the error due to the artificial boundary condition on ∂Ω , we require a best approximation error estimate,
the consistency error estimate (2.11), and most crucially, a stability estimate of the form

⟨δ2 Eac(Ih y)uh, uh⟩ ≥ c0∥Duh∥
2
ℓ2 (2.15)

for some c0 > 0, independent of any approximation parameters.
Estimates of the form (2.15) for any form of A/C couplings in dimension greater than one are still poorly

understood. We refer to [19,23,24] for some preliminary results. For our purposes, the key observations from [19]
are the following:

1. There exists no GRAC type a/c coupling for which (2.15) can be expected for general potentials V and general
boundary conditions y0 even if y itself is stable in the atomistic model.

2. By adding a stabilisation of the form κ|D2 y|
2, with κ sufficiently large, to the interface region, (2.15) can be

expected. (We say “expected” instead of “guaranteed” since the proof of this statement in [19] is restricted to some
specific interaction classes.)

Thus, we shall consider also stabilised GRAC type couplings, where the interface site potential is given by

Φi
ℓ(yh) := V


Cℓ · Dyh(ℓ)


+ κ|D2

nn yh(ℓ)|
2, (2.16)

where κ ≥ 0 is a stabilisation parameter, and |D2
nnuh(ℓ)|

2 is defined as follows: we choose m ≥ d linearly independent
“nearest-neighbour” directions b1, . . . , bm in the lattice, and denoteD2

nnuh(ℓ)
2 :=

m
j=1

yh(ℓ+ b j )− 2yh(ℓ)+ yh(ℓ− b j )
2.

The reconstruction parameters Cℓ are still determined according to (2.10) or (2.13).
It is straightforward to see that the stabilisation does not generate any ghost forces. That is, if the GRAC part of the

potential, V (Cℓ · Dyh), satisfies the two patch tests (2.5) and (2.6), then the stabilised interface potential Φi
ℓ defined

by (2.16) also satisfies both patch tests.

3. Numerical tests

Our numerical experiments are designed to assess approximation errors, in particular rates of convergence. This
requires the “exact problem” to be infinite-dimensional. Therefore, following Section 2, the “exact atomistic model”
is formulated in an infinite lattice. (This setting has the additional advantage that no special treatment of material
boundaries is required.)

We will compare the GRAC method with a range of other a/c couplings taken from [16,15]. For each scheme we
specify how to choose the atomistic region and continuum finite element mesh relative to one another to obtain a
quasi-optimal rate of convergence in terms of the number of degrees of freedom in the simulation. We then compare
different measures of error committed by the various methods. As predicted by the theory [11] we will observe that
the GRAC scheme is quasi-optimal among all a/c couplings employing P1 finite elements in the continuum region.

3.1. Model problems

Our implementation is for the 2D triangular lattice AZ2 defined by

A =


1 cos(π/3)
0 sin(π/3)


.
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To generate a defect, we remove k atoms
Λdef

k :=

−(k/2 + 1)e1, . . . , k/2e1


, if k is even,

Λdef
k :=


−(k − 1)/2e1, . . . , (k − 1)/2e1


, if k is odd,

to obtain Λ := AZ2
\ Λdef

k . For small k, the defect acts like a point defect, while for large k it acts like a small crack
embedded in the crystal. In our experiments we shall consider k = 2, 11.

We choose an elongated hexagonal domain Ω a containing K layers of atoms surrounding the vacancy sites and the
full computational domain Ω to be an elongated hexagon containing N layers of atoms surrounding the vacancy sites;
see Fig. 1(c) for an illustration. The domain parameters are chosen so that N ≈ K 2. The finite element mesh is graded
so that the mesh size function h(x) = diam(T ) for T ∈ Th satisfies h(x) ≈ (|x |/K )3/2. These choices balance the
coupling error at the interface, the finite element interpolation error and the far-field truncation error (see [20, Sec.
5.2] or [16,15]). One then obtains [20, Prop. 5.5] under additional conditions on the stability of the method and the
magnitude of the reconstruction parameters (we can verify both only a posteriori) that

∥∇ y − ∇ yh∥L2 ≤ CDOF−1, (3.1)

where y is identified with its P1 interpolant on the canonical triangulation of Λ and DOF denotes the total number of
degrees of freedom (i.e. the number of atomistic sites Λa,i plus the number of finite element nodes).

The site energy is given by an EAM (toy-)model (2.1), with

φ(r) = [e−2a(r−1)
− 2e−a(r−1)

], ψ(r) = e−br ,

F(ρ̃) = c

(ρ̃ − ρ̃0)

2
+ (ρ̃ − ρ̃0)

4,
with parameters a = 4.4, b = 3, c = 5, ρ̃0 = 6e−b. The interaction range is N (ℓ) = Λ ∩ B2(ℓ), i.e., next nearest
neighbours in hopping distance.

Remark 3.1. We plot all errors against DOF, which we consider to be a fair measure of the computational cost
involved in computing a solution to an a/c coupling. Other basic approximation parameters can be chosen as well. A
canonical choice would be the size of the atomistic core region, #Λa,i. This would not change the results; see [20]. �

3.1.1. Di-vacancy
In the di-vacancy test two neighbouring sites are removed, i.e., k = 2. We apply 3% isotropic stretch and 3% shear

loading, by setting

B :=


1 + s γII

0 1 + s


· F0

where F0 ∝ I minimises W , s = γII = 0.03.

3.1.2. Micro-crack
In the microcrack experiment, we remove a longer segment of atoms, Λdef

11 = {−5e1, . . . , 5e1} from the computa-
tional domain. The body is then loaded in mixed mode I & II, by setting,

B :=


1 γII
0 1 + γI


· F0

where F0 ∝ I minimises W , and γI = γII = 0.03 (3% shear and 3% tensile stretch).

3.2. Methods

We shall test the GRAC variants METHOD 1, METHOD 2 with both least squares solution (2.10) and
ℓ1-minimisation (2.13) to solve for the reconstruction parameters, and with stabilisation parameters κ = 0, 1. The
resulting methods are denoted by Mi-Lp-Sκ , where i ∈ {1, 2}, p ∈ {2, 1}, κ ∈ {0, 1}. Some additional practical details
for the implementation of METHOD 1 and METHOD 2 are described in Appendix A.2.
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Fig. 3. Convergence rates in the energy-norm (the H1-seminorm) for the divacancy benchmark problem described in Section 3.1.1.

We compare the GRAC methods with the five competitors previously considered in [15,16]:

• ATM: the atomistic model is minimised subject to the constraint y = yB in Λ \ Ω . We emphasise that ATM is
not the exact model, but the simplest approximation scheme for the full atomistic model (where all atoms in Λ are
free to move) against which we compare a/c coupling methods; see also [20, Sec. 4.1] for more details on the ATM
scheme.

• QCE: original quasicontinuum method without ghost-force correction [2].
• B-QCE, B-QCE+: blended quasicontinuum method, implementation based on [16]; B-QCE+ is a variant with

highly optimised approximation parameters described in [15, Sec. 4.3].
• QCF: sharp-interface force-based a/c coupling [25], formally equivalent to the quasi-continuum method with ghost-

force correction [13].
• B-QCF: blended force-based a/c coupling, as described in [15].

3.3. Results

Following [16,15] we present two experiments, a di-vacancy (k = 2) and a “micro-crack” (k = 11). In the first
experiment, we are able to clearly observe the asymptotic behaviour of the a/c coupling schemes predicted in (3.1),
while in the second experiment we observe a significant pre-asymptotic regime where the prediction (3.1) becomes
relevant only at fairly high DOF.

For both experiments we plot the absolute errors against the number of degrees of freedom (DOF), which is
proportional to computational cost, in the H1-seminorm, the W 1,∞-seminorm and in the (relative) energy.

The results are shown in Figs. 3–5 for the divacancy problem and in Figs. 6–8 for the micro-crack problem.

3.3.1. Effect of ℓ1-minimisation
In all error graphs we observe that computing the reconstruction coefficients via least-squares (ℓ2-minimisation)

leads to large errors in the computed solution and likely even lack of convergence. Stabilisation does not remedy
this, which indicates that the issue indeed lies in the consistency error. By contrast, using (2.13) (ℓ1-minimisation) to
compute the reconstruction parameters leads to errors that are competitive with the provably quasi-optimal schemes
QCF and B-QCF.
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Fig. 4. Convergence rates in the W 1,∞-seminorm for the divacancy benchmark problem described in Section 3.1.1.

Fig. 5. Convergence rates in the relative energy for the divacancy benchmark problem described in Section 3.1.1.

3.3.2. Effect of stabilisation
If no stabilisation is used (κ = 0), then all error graphs display large errors in a pre-asymptotic regime and in some

cases, most pronounced in Fig. 7, non-monotone convergence history.
Adding the stabilisation by setting κ = 1 the H1 and W 1,∞ errors are reduced in both examples, indeed signifi-

cantly so in the important pre-asymptotic regime, and the oscillations in the convergence history are removed. With
stabilisation the convergence rates predicted in [20, Sec. 5.2] are clearly observed.

3.3.3. Comparison of a/c couplings
In all error graphs we clearly observe the optimal convergence rate of GRAC (Mi-L1 − S1 variants) among the

tested energy-based methods (ATM, QCE, B-QCE, B-QCE+, GRAC). Indeed, the errors are even competitive with
the quasi-optimal force-based schemes (QCF, B-QCF): for H1 errors they are essentially comparable, for W 1,∞ errors
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Fig. 6. Convergence rates in the energy-norm (the H1-seminorm) for the microcrack benchmark problem with Λdef
11 described in Section 3.1.2.

Fig. 7. Convergence rates in the W 1,∞-seminorm for the microcrack benchmark problem with Λdef
11 described in Section 3.1.2.

the force-based schemes are only better by a moderate constant factor, while for the energy errors the GRAC methods
are optimal. (Note that, for QCF we evaluate the QCE energy and for B-QCF we evaluate the B-QCE energy.)

4. Conclusion

We have succeeded in presenting the first patch test consistent energy-based atomistic-to-continuum coupling
formulation, GRAC, which is applicable to general a/c interface geometries and general (short-ranged) many-body
interactions, and demonstrated its potential in a 2D implementation.

We have discussed the critical issues of ℓ1-minimisation and of stabilisation, and have demonstrated that our final
formulations yield an energy-based a/c coupling that is optimal among the energy-based methods we tested, which
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Fig. 8. Convergence rates in the relative energy for the microcrack benchmark problem with Λdef
11 described in Section 3.1.2.

represent a fairly generic sample, and are even competitive compared against the quasi-optimal force-based coupling
schemes.

While the construction of the GRAC scheme is involved, it has the advantage that no additional approximation
parameters (e.g., the blending function β in the B-QCE and B-QCF schemes [16,15]) must be adapted to the problem
at hand.

The main challenge that requires additional work is the complexity of the precomputation of the reconstruction
parameters, which may become prohibitive for wider interaction stencils, in particular in 3D. It may then become
necessary to make further simplifications such as the ones we made in METHOD 2, in order to substantially reduce
the computational cost and storage to compute these parameters.

From a theoretical perspective the main open problem is to prove that the geometric consistency equations (2.8)
and (2.9) always have at least one solution. We can, at present, provide no analytical evidence to support this claim,
however, we have so far not encountered a situation where a solution could not be computed numerically.

Finally, we remark that the consistency of the GRAC scheme is still not entirely settled. First-order consistency is
only proven in 1D and in 2D under the restrictive assumption that the atomistic region is connected [11,26].
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Appendix

A.1. First variation of Eac

The following calculations provide the details for the computation of δEac in Section 2.3.2.

A.1.1. Atomistic component

⟨δEa, u⟩ =


ℓ∈Λa


ρ∈R

∇ρV Dρu(ℓ)
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=


ℓ∈Λa


ρ∈R+

∇ρV (u(ℓ+ ρ)− u(ℓ))+ ∇−ρV (u(ℓ− ρ)− u(ℓ))

=


ℓ∈Λa


ρ∈R+

∇ρV (u(ℓ+ ρ)− u(ℓ− ρ))

=


ℓ+ρ∈Λa,ρ∈R+


∇ρV · u(ℓ)


−


ℓ−ρ∈Λa,ρ∈R+


∇ρV · u(ℓ)


.

A.1.2. Interface component

⟨δE i, u⟩ =


ℓ∈Λi

ωi
ℓ


δV


ς∈R

Cℓ;ρ,ς Dς y(ℓ)


ρ∈R


, u


=


ℓ∈Λi

ωi
ℓ


ρ∈R


ς∈R

Cℓ;ρ,ς∇ρV Dςu(ℓ)

=


ℓ∈Λi

ωi
ℓ


ρ∈R+


ς∈R

(Cℓ;ρ,ς − Cℓ;−ρ,ς )∇ρV (u(ℓ+ ς)− u(ℓ))

=


ℓ−ς∈Λi,ς∈R

ωi
ℓ−ς


ρ∈R+

(Cℓ−ς;ρ,ς − Cℓ−ς;−ρ,ς )

∇ρV · u(ℓ)


−


ℓ∈Λi

ωi
ℓ


ρ∈R+


ς∈R

(Cℓ;ρ,ς − Cℓ;−ρ,ς )

∇ρV · u(ℓ)


.

A.1.3. Cauchy–Born component

⟨δEc, u⟩ =


T

vT ⟨δW, u⟩

=


T

vT

|vor|


δV

(∇T y · ρ)ρ∈R


, u


=


T

vT

|vor|


ρ∈R

∇ρV ∇T u · ρ

=


T

vT

|vor|


ρ∈R

∇ρV
3

i=1

uT
i ∇Tφ

T
i · ρ

=


T

vT

|vor|


ρ∈R+

2∇ρV
3

i=1

uT
i ∇Tφ

T
i · ρ

=


T


ρ∈R+

3
i=1

2
vT

|vor|
∇Tφ

T
i · ρ


∇ρV · uT

i


.

A.2. Setup of the geometric consistency equations

We now introduce additional details for implementing the GRAC formulation in (2.3). This gives further concrete
details on how to set up the geometric consistency equations (2.8) and (2.9) specifically for the triangular lattice.
The process that we propose is, however, more generally applicable. Here, the interface region is r layers of atoms
around Λa, and r is the radius of interaction range R in terms of hopping distance. We describe the process only for
METHOD 1, as the one for METHOD 2 is very similar.
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To satisfy the force patch test consistency equation, in the nearest neighbour case we considered in [12] we take
the following strategy, where the reconstruction parameters Cℓ are extended to Λ \ Λi by

Cℓ =


Ca, ℓ ∈ Λa,

Cc, ℓ ∈ Λ \ Λa,i.

Define the six nearest-neighbour lattice directions by a1 := (1, 0), and a j := Q j−1
6 a1, j ∈ Z, where Q6 denotes

the rotation through angle 2π/6 and we note that a j+3 = −a j . Then Ca is given by Ca
i, j = δi, j , Cc is given by

Cc
i, j =

2
3δi, j +

1
3δi, j+1 +

1
3δi, j−1, i, j = 1, . . . , 6, where δ is the Kronecker delta function.

The argument employed in [12, Lemma 3.2] can be extended to longer range interactions. There exist matrices Cc
ℓ

such that, upon defining Ψℓ(y) := V (Cc
ℓ · Dy(ℓ)), we have

⟨δΨℓ(Fx), v⟩ =


vor(ℓ)

∂W (F) : ∇v(x) dx ∀ℓ ∈ Λ ∩ Ω c, (A.1)

that is, under uniform deformation, the forces generated by the Cauchy–Born site potential


vor(ℓ) W (∇ y) dx are the
same as those of Φℓ.

Carrying this out in practise requires that several layers of atoms surrounding Λa,i, denoted by Λc, coincide with
the finite element nodes in that region. Upon choosing Tµ to be a uniform partition over Λc, these parameters can be
computed analytically. The details are shown in Appendix A.3 for next nearest neighbour interactions.

Upon defining the coefficients for the atomistic and continuum region, we can use Proposition 2.3 to compute
unknown parameters Cℓ;ρ,ς .

A.3. Determination of the coefficients Cc for next nearest neighbour interaction

We now calculate the coefficients Cc from Eq. (A.1). On the canonical triangular mesh induced by Λ, let

V c
ℓ =

1
6


T ∋ℓ

V (DT u)

be the Cauchy–Born site energy with respect to ℓ ∈ Λ. As the six nearest-neighbour lattice directions are defined in
Appendix A.2, the second nearest-neighbour lattice directions can be expressed as a2 j+5 = 2a j , a2 j+6 = a j +ashift( j),
j = 1, . . . , 6, where shift{1, 2, 3, 4, 5, 6} = {2, 3, 4, 5, 6, 1}. Therefore a j ’s, j = 1, . . . , 18 form the interaction range
R for next nearest neighbour interactions.

V c
ℓ only depends on the first 6 variables Di y of V , a direct calculation shows that

∂1V c
ℓ =

1
3
∂2V +

2
3
∂1V +

1
3
∂6V +

2
3
∂9V +

2
3
∂9V + ∂8V +

4
3
∂7V + ∂18V +

2
3
∂17V

and similarly for ∂i V c
ℓ with i = 2, . . . , 6.

Now we can write down the modified potential Ψℓ defined in (A.1), which generates the same force for arbitrary
uniform deformations. In the following expression of Ψℓ, for i = 1, . . . , 6, Di y are abbreviated by Di ,

Ψℓ = V


2
3

D1 +
1
3

D2 +
1
3

D6,
2
3

D2 +
1
3

D1 +
1
3

D3,
2
3

D3 +
1
3

D2 +
1
3

D4,

2
3

D4 +
1
3

D3 +
1
3

D5,
2
3

D5 +
1
3

D4 +
1
3

D6,
2
3

D6 +
1
3

D5 +
1
3

D1,

4
3

D1 +
2
3

D2 +
2
3

D6, D1 + D2,
4
3

D2 +
2
3

D1 +
2
3

D3, D2 + D3,
4
3

D3 +
2
3

D2 +
2
3

D4, D3 + D4

4
3

D4 +
2
3

D3 +
2
3

D5, D4 + D5,
4
3

D5 +
2
3

D4 +
2
3

D6, D5 + D6,
4
3

D6 +
2
3

D5 +
2
3

D1, D6 + D1


.

Hence the coefficients Cc
ℓ can be drawn from the above expression by using Ψℓ = V (Cc

ℓ · Dy(ℓ)).
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