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Abstract

The present paper aims to present a new approach for controlling both maximum and minimum length scales of structural
members in the Solid Isotropic Material with Penalization (SIMP)-based topology optimization framework. In the proposed
approach, length scale control is achieved with help of structural skeleton, which is a key concept in mathematical morphology and
a powerful tool for describing structural topologies. Numerical examples show that the proposed approach does have the capability
to give a complete control of the length scales of an optimal structure in an explicit and local way.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Since the pioneering work of Bendsoe and Kikuchi [1], topology optimization, which aims at distributing available
material in a prescribed design domain in an optimal way, has undergone tremendous development. Nowadays,
topology optimization has been used successfully in many industrial fields, such as automotive, aerospace and so
on. A state-of-the-art review and some recent developments in this field can be found in the review articles [2–4] and
the references therein.

Although remarkable achievements have been made in the field of topology optimization, there still exist some
challenging issues which need to be further addressed. One of them is how to control the length scales (i.e., mini-
mum/maximum feature sizes) of structural members in topology optimization. The importance of length scale control
consists in the fact that without considering this issue, the obtained optimal topology designs may be unmanufac-
turable (e.g., existence of holes with very small radii) or very fragile with respect to some specific loading cases
(e.g., existence of very slender bars which will buckle under slight compression).

A lot of efforts have been devoted to the development of topology optimization approaches that can handle the
issue of length scale control. The pioneering work can be traced back to [5], where a so-called sensitivity filter scheme
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to eliminate mesh-dependent results and checkerboard patterns was suggested. In their paper, it was shown that the
proposed approach also had the ability to control the minimum length scale in the structure implicitly. Later on,
Petersson et al. [6] found that the slope-constrained formulation also had the effect of minimum length scale control
for optimal structural topology. Poulsen proposed a so-called MOLE (MOnotonicity based minimum LEngth scale)
method for achieving the minimum length scale in topology optimization [7]. The key idea is to introduce a global
functional L (ρ, d) which can measure the magnitude of variations of density field (i.e., ρ) along specific directions
within some prescribed length scale. It can be proved theoretically that minimum length scale d can be controlled
by letting L (ρ, d) ≤ 0. Guest et al. suggested a very effective minimum length scale control approach for topology
optimization by using nodal values of density field as primary design variables [8]. In this approach, a projection
operator is introduced to project the nodal values of density field onto the element space to determine the element
density used for stiffness interpolation. In this way, the size of the support set of the weight function appeared in the
projection operator can be used to control the minimum allowable length scale in the optimal topology implicitly.
Guest also developed a scheme for imposing maximum length scale in topology optimization [9]. In this approach,
the radius of the circular test region serves as the value that determines the maximum allowable member size in the
optimized structures. It is worth noting that all of the above treatments are based on the SIMP framework.

Research works on length scale control in topology optimization have also been carried out in level set-based frame-
work. For example, Zhu and Zhang suggested a strain energy based approach to impose the minimum length scale
constraint implicitly [10]. Chen et al. introduced a quadratic energy functional into topology optimization formulation
for length control [11]. Luo et al. also adopted the same idea to the design of hinge-free compliant mechanisms [12].
More recently, Guo et al. proposed a level set-based approach for feature control in optimal topology designs [13]. In
their work, medial surface and signed distance function have been used to give precise definitions of the minimum and
maximum length scales of a structure. Based on these definitions, corresponding problem formulation and numerical
schemes that can control the maximum/minimum length scales locally and explicitly are developed. Furthermore, it
was also found that implicit minimum length scale control can also be achieved by resorting to the wavelet-based
methods [14,15] and robust topology optimization formulations [16–18].

Although a lot of research efforts have been devoted to the length scale control in topology optimization, it has not
reached a mature stage up to now. For example, the sensitivity filter and slope-constrained approaches suffer from the
undesirable boundary diffusion effect (i.e., existence of gray elements along the boundary of the structure). Guest’s
projection scheme also has the same problem. Although almost 0–1 designs can be obtained by post-processing
techniques, the corresponding computational efforts are not negligible. Furthermore, these methods can only be used
to control the minimum length scale of the structure. The common problem associated with Guest’s maximum
length scale control approach and Poulsen’s minimum length scale control approach is that a large number of
nonlinear constraints are involved in the problem formulation. This may render the corresponding numerical treatment
intractable if the resulting optimization problems are solved directly. Chen et al.’s method seems tough for numerical
implementation since a non-local energy term involving double layer boundary integral must be handled. It can only
control the length scale in an implicit way. Although Guo et al.’s approach can control the minimum and maximum
length scales simultaneously, it is only applicable in the level set-based topology optimization framework. As pointed
in [19], the development of more efficient local and explicit length scale control approaches especially in the SIMP
framework, which is the most versatile framework for topology optimization, is still much needed.

In the present paper, we intend to discuss how to carry out local and explicit length scale control in structural
topology optimization under SIMP-based computational framework. This is achieved by introducing some new length
scale measures into the problem formulation with which the size of the structure members can be controlled effectively.
The rest of the paper is organized as follows. In Section 2, some basic ideas depending on mathematical morphology
are explained. Then the considered problem is presented in Section 3. In Section 4, numerical solution aspects are
discussed. Some numerical examples are presented in Section 5 to illustrate the effectiveness of the proposed approach.
Finally some concluding remarks are given in the last section.

2. Structural skeleton and the definitions of minimum/maximum length scales of a structure

In order to give a precise length control of a structure, it is necessary to define the minimum/maximum length
scales in a mathematical rigorous way. In the following, this will be achieved by introducing the concept of structural
skeleton of a given structure. The structural skeleton of a structure occupying a region Ω , that is SS (Ω) is constituted
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Fig. 1. Schematic illustration of the concept of structural skeleton.

Fig. 2. Schematic illustration of the minimum and maximum length scale constraints.

by the points which have at least two closest points on ∂Ω -the boundary of Ω . In other word, SS(Ω) is the set of all
centers of the closed maximal balls (see Fig. 1 for reference). With use of the concept of structural skeleton, the length
scale of a structure can be defined in the following form:

Definition 1. The minimum/maximum length scale of a structure.

Suppose that Ω is a closed domain in R3 and SS (Ω) is its structural skeleton. Then the minimum length scale
dmin (Ω) and maximum length scale dmax (Ω) of Ω can be defined as

dmin (Ω) = inf
x∈SS(Ω)

D(x) (2.1a)

and

dmax (Ω) = sup
x∈SS(Ω)

D(x), (2.1b)

respectively, where D(x) is defined as

D(x) = sup
r≥0

{2r | B (x, r) ⊆ Ω} , for ∀x ∈ SS (Ω) . (2.2)

In Eq. (2.2), B (x, r) denotes a closed ball centered at x with radius r . Suppose that the lower and upper bound of the
length scale are d and d , respectively. Obviously, if there exists some point x̃ ∈ SS (Ω) , d ′

∈ D(x̃) such that d ′
≤ d ,

then the corresponding minimum length scale constraint dmin (Ω) ≥ d will be violated. Similarly, if there exists some
point x̃ ∈ SS(Ω), d ′′

∈ D(x̃) such that d ′′
≥ d , then it implies that the inequality dmax (Ω) ≤ d̄ does not hold. The

above definitions are illustrated in Fig. 2.
If the topology of a structure can be represented by a binary bitmap, numerous well established image processing

techniques can be employed to extract its skeleton. In the present work, the straight skeleton algorithm [20] is adopted.
See Section 4 for more discussions.
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3. Problem statement and formulation

In present work, the topology optimization problem under consideration is to minimize the structural compliance
under available volume and minimum/maximum length scale constraints. In the SIMP framework, the optimization
problem can be formulated as follows:

Find ρ = (ρ1, ρ2, . . . , ρn)⊤ , u

Min C = u⊤K (ρ) u

s.t.

K (ρ) u = f ,

V (ρ) =

n
i=1

ρiνi/

n
i=1

νi ≤ V̄ ,

g1 (ρ) =


j∈Imin


ρ j − 1

2
≤ ϵ1,

g2 (ρ) =


k∈Imax

(ρk − ρmin)
2

≤ ϵ2,

ρmin ≤ ρi ≤ 1, ∀i = 1, . . . , n. (3.1)

In Eq. (3.1), ρ is the vector of the design variables with ρi and νi denoting the density and volume of the i th element.
The symbol n denotes the total number of finite element used for discretizing the prescribed design domain D.
K =

n
i=1 ρ

p
i K0 (p is the penalization index and p = 3 is adopted in the present study) is the global stiffness matrix

with K0 representing the element stiffness matrix corresponding to ρi = 1. ρmin is the lower bound of the element
density. g1 ≤ ϵ1 and g2 ≤ ϵ2 are the minimum and maximum length scale constraint, respectively. V̄ is the prescribed
upper bound of the solid material. f and u are the external load and the displacement field, respectively. In Eq. (3.1),
Imin and Imax are two index sets such that

Imin =

 j | j ∈ {1, . . . , n} ,Ω j ∈


x∈SS(Ω)

B

x, d

 , (3.2a)

and

Imax =

k|k ∈ {1, . . . , n} ,Ωk ∉


x∈SS(Ω)

B

x, d

 , (3.2b)

respectively (see Fig. 3 for reference). In Eq. (3.2), Ω j and Ωk denote the region occupied by the j th and kth element,
respectively. It is obvious that g1 ≤ ϵ1 and g2 ≤ ϵ2 imply dmin (Ω) ≥ d and dmax (Ω) ≤ d when ϵ1 → 0 and ϵ2 → 0.
Numerical examples presented in Section 5 indicate that the above problem formulation can give a local and explicit
control of the minimum and maximum length scale of the optimized structure.

4. Numerical solution aspects

In this section, some numerical solution aspects of the proposed approach for length scale control in topology
optimization are discussed in detail.

4.1. The identification of structural skeleton

As discussed in the above section, the identification of the structural skeleton (i.e., SS (Ω)) plays the essential
role in the proposed approach for length control. However, the well-established image processing techniques for
extracting the skeleton from a binary bitmap cannot be applied directly to the considered problem since gray elements
will inevitably appear during the course of topology optimization. Taking this fact into consideration, we propose to
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Fig. 3. Schematic illustration of the index sets Imin and Imax respectively.

introduce the following projection operator to transform the gray-valued density field (i.e., ρ(x)) into a pure black-
and-white density field (i.e., ρ̂(x)) used for extracting the structural skeleton:

ρ̂(x) =


1, if ρ(x) ≥ ρ̄,

0, otherwise,
(4.1)

where ρ̄ is a threshold value for density projection. In the present work, we will make use of Otsu method [21] to
determine ρ̄ in every optimization step adaptively in order to avoid misrecognition. Once the binary density field is
identified, the iterative skeleton algorithm [22,23] can be adopted to identify the structural skeleton. For the sake of
completeness, the basic ideas of this algorithm will be explained as follows. Let L denote the binary density repre-
sentation, for a specified pixel p ∈ L, we can construct a pattern P of p by collecting all its 8-neighbors, as shown in
Fig. 4(a). If the removal of p does not change the connectivity of P , then pixel p can be denoted as a deletable pixel,
otherwise, p is a retainable pixel (see Fig. 4(b) and (c) for reference). For some special points, such as final point and
contour point (see Fig. 4(d) and (e) for reference), we can make use of the following crossing number indicator to
determine the deletability of p:

X R (p) =

8
i=1

|xi+1 − xi | , (4.2)

where x9 = x1. If X R (p) = 0 or 8, then p is a retainable point. For more detailed discussions about the complete
conditions, we refer the readers to [24].

Following the above instructions, all pixels can be detected as deletable or retainable by searching the whole set
of L, and all deletable pixels are then removed. In present work, this scan operation is carried out only for the pixels
where p = 1, since only the skeletons of solid material are focused on. The produce will be repeated until no pixels
can be removed any more and the retained pixels constitute the set of SS (Ω) which is the skeleton of the structure. We
refer the readers to Fig. 4(f) for a schematic illustration of the above iterative procedure. It is also worth noting that
in the present numerical implementation, the extraction of the structural skeleton is achieved by calling the MATLAB
function BW2 = bwmorph (BW1, OPERATION, N), where BW1 is a input binary image, OPERATION indicates the
type of skeleton (OPERATION = skel is adopted in the present work), N denotes the maximum number of iteration
(N = inf is adopted in the present work) and BW2 is the output skeleton of BW1, respectively.

4.2. Sensitivity analysis

In order to obtain mesh-independent and black-and-white topology optimization results, numerous approaches
have been suggested. Among them, the sensitivity filter approach proposed by Sigmund [5] is the most efficient one
for suppressing the numerical instabilities in SIMP-based topology optimization. The original form of the sensitivity
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(a) Schematic illustration of a pixel p and its
8 neighbors.

(b) A pixel p is deletable. (c) An interior pixel p is retainable.

(d) A contour pixel is retainable. (e) An end pixel is retainable.

Fig. 4. Schematic illustration of the iterative skeleton algorithm.

filter scheme is as follows:

∂̂l

∂ρk
=

1

ρk

N
i=1

Ĥi

N
i=1

Ĥiρi
∂l

∂ρi
, (4.3)

where ∂̂l/∂ρk and ∂l/∂ρi are the filtered and unfiltered sensitivities of the concerned objective/constraint functional
l (for the considered problem, l is the structural compliance). The symbols ρk and ρi denote the densities of the
considered kth element and the i th element contained in the filter region of element k. N is the total number of
elements in the spherical filter region with radius R. The weight factor Ĥi is defined as

Ĥi = R − dist (i, k) , ∀i such that dist (i, k) ≤ R, (4.4)

where dist (i, k) is the distance between the centers of element i and k. Although powerful enough, a side effect of
the filter scheme in Eq. (4.3) is that it will inevitably induce a density transition region along the structural boundary
(i.e., boundary diffusion). In order to alleviate the boundary diffusion effect caused by the original version of the
sensitivity filter approach, here, we propose a modified filter scheme in the following form:
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(f) Iteration of skeleton identification.

Fig. 4. (continued)

∂̂l

∂ρk
=

1

(ρk)
η

+


4

j=1
ρ j

ν

N
i=1

Ĥi (ρi )
γ ∂l

∂ρi

N
i=1

Ĥi

, (4.5)

where 0 < η < 1, γ ≥ 1 and 0 < ν < 1 are three adjustable parameters. In Eq. (4.5), the summation in
4

j=1 ρ j
is taken for the four second-nearest neighborhood elements around element k. Numerical experiments show that the
above filter scheme is effective to eliminate gray elements along the structural boundary and therefore can obtain
much improved black-and-white designs.
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Fig. 5a. The design domain of the short beam example.

By assuming that the index sets Imin and Imax, do not change before and after the perturbations of design variables,
it holds that ∂g1/∂ρ j = 2


ρ j − 1


, ∀ j ∈ Imin, ∂g1/∂ρ j = 0, ∀ j ∉ Imin and ∂g2/∂ρk = 2 (ρk − ρmin) , ∀k ∈

Imax, ∂g2/∂ρk = 0, ∀k ∉ Imax respectively.

4.3. Optimization algorithm

In present paper, the Method of Moving Asymptotes (MMA) [25] is used to update the design variables. It should
be noticed that g1 and g2 in Eq. (3.1) are highly non-convex functions of the design variables and therefore the final
optimization results are expected to be only local minima. Furthermore, in order to prevent the length scale constraints
from hindering the formation of the appropriate load-carrying structural topology at initial stages of optimization,
these constraints should be imposed in a soft way from numerical implementation point of view. Taking the above
facts into consideration, we suggest to employ a continuation strategy to deal with the length scale constraints, that is,
the values of the relaxation parameters ϵ1 and ϵ2 in Eq. (3.1) should be decreased continuously from relatively large
values to some specific tolerance values during the course of optimization.

5. Numerical examples

In this section, several numerical examples are presented to illustrate the effectiveness of the proposed length scale
control measure. For illustration purpose, the material, load and geometry data are chosen as dimensionless. Young’s
modulus and Poisson’s ratio of the solid material are taken as E = 1 and ν = 0.3, respectively. Four-node bilinear
square elements are adopted for finite element discretization. The lower bound of the density variable is ρmin = 10−2

in numerical implementation. Unless otherwise stated, the relaxation parameters ϵ1 and ϵ2 are set to be 102 initially
and reduced to 1 within 20 iterative steps. The filter radius for regularization is chosen as r = 1.2. The values of the
parameters η, ν and γ are chosen as 0.1, 0.05 and 2 in all tested examples, respectively.

5.1. Short beam example

In this example, the classical short beam problem shown in Fig. 5a is examined to investigate the capability of
the proposed method for length scale control. The design domain is discretized by a 160 × 80 finite element (FEM)
mesh. For comparison purpose, first the classical compliance minimization problems without length scale constraints
are solved with V̄ = 0.3, V̄ = 0.4 and V̄ = 0.5, respectively. The optimal structural topologies are shown in Fig. 5b.
From this figure, it is observed that the typical sizes of the structural members in optimized structures increase as the
upper bound of the available material volume increases. It is worth noting that when V̄ = 0.5, the maximum length
scale of the corresponding optimized structure is more than 20 times of the FEM grid size.

Next, the same problem is solved under problem formulation (3.1) with d = 3 × min (∆x,∆y) and d̄ =

7 × min (∆x,∆y) , respectively. Figs. 5c–5e show the corresponding optimal designs and the structural skeletons.
When V̄ = 0.3, it can be observed clearly that the structural members close to the clamped boundary are split into
two slender beams in order to satisfy the minimum length scale constraint. Additionally, some slender beams whose
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Fig. 5b. The optimized design of the short beam example without length scale control.

length scales are greater than d are also introduced to make the volume constraint active. This is because the structural
compliance is a monotonic decreasing function of the structural volume for design independent external load. When
the upper bound of volume constraint is increased, more and more slender beams grow out and the load path is more
complex. It is also worth noting that introducing the maximum and minimum length scale constraints will generally
degenerate the performance of the optimized structure (see Table 1 for reference). This is the price we must pay for
considering the geometrical constraints.

It is worth noting that when no feature size constraint is considered, horizontal beams should be appeared in the
region next to the clamped boundary in order to enhance the stiffness of the structure more efficiently. When feature
size constraint is considered, however, the density changes at every iteration step of optimization are determined by the
sensitivities and the current values of the objective function and the feature size constraint functions simultaneously.
Basically, when the upper bound feature size constraint is violated, there are two mechanisms to improve the current
design: one is bilateral material deletion while the other is unilateral material deletion with respect to the skeleton.
When the upper bound feature size constraint is violated severely (this is usually the case when d̄ is relatively small),
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Fig. 5c. The optimized design of the short beam example with length scale control and the corresponding structural skeleton (V̄ = 0.3,
d = 3 × min (∆x,∆y), d̄ = 7 × min (∆x,∆y)).

Fig. 5d. The optimized design of the short beam example with length scale control and the corresponding structural skeleton (V̄ = 0.4,
d = 3 × min (∆x,∆y), d̄ = 7 × min (∆x,∆y)).

it seems that the bilateral material deletion is the more effective way to alleviate the constraint violation. If this is the
case and the material deletion is not uniform along the direction of skeleton, inclined beams as shown in Fig. 5c will
appear. If the appearance of this kind of inclined beams is at the final stage of iteration, it will be retained in the final
optimized structure.
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Fig. 5e. The optimized design of the short beam example with length scale control and the corresponding structural skeleton (V̄ = 0.5,
d = 3 × min (∆x,∆y), d̄ = 7 × min (∆x,∆y)).

Table 1
Optimization results for the short beam problem.

Compliance Compliance Volume
d = 0 d = 3 × min (∆x,∆y)

d̄ = +∞ d̄ = 7 × min (∆x,∆y)

104.82 128.52 0.3
78.65 117.28 0.4
65.26 104.80 0.5

Furthermore, in order to illustrate the robustness of the presented approach, the same problem is also solved with
use of a refined FEM mesh (i.e., 240 × 120) and V̄ = 0.3. In order make a comparison under the same upper/lower
bound of the structural feature size, we set d = 4.5 × min (∆x,∆y) and d̄ = 10.5 × min (∆x,∆y), respectively, for
the refined FEM mesh. The optimized structure obtained under refined finite element mesh is shown in Fig. 5f. It can
be observed from Figs. 5c and 5f that the optimal structural topologies obtained under coarse and refined meshes are
almost identical. This demonstrates clearly the mesh-independence of the proposed approach.

5.2. Compliant mechanism example

In this example, the compliant inverter problem depicted in Fig. 6a is investigated under minimum length scale
constraint. The design domain is a 2×1 rectangular sheet discretized with a 100×100 FEM mesh. The left-upper and
left-lower sides of the design domain are clamped as shown in Fig. 6b. Taking the symmetry property of this example
into consideration, only lower half of the design domain is optimized. As suggested in [26], the displacement in the
negative direction at the output point is chosen as the objective to maximize. The elastic constant of the artificial spring
are Kin = 0.1 and Kout = 0.1, respectively. The actuation force applied at the left-upper point in positive direction is
fin = 0.1. First the considered problem is solved with V̄ = 0.3. It can be observed from Fig. 6b that the optimized
structure has a hinge which is important to enhance the GA (Geometric Advantage) of this compliant mechanism. In
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Fig. 5f. The optimized design of the short beam example under refined finite element mesh (240 × 120) with V̄ = 0.3, d = 4.5 × min (∆x,∆y)

and d̄ = 10.5 × min (∆x,∆y), respectively.

Fig. 6a. The design domain of the compliant mechanism example.

Fig. 6b. The optimized design of the compliant mechanism without length scale control.

order to obtain optimized compliant mechanism without hinge, we can introduce minimum length scale constraint into
the problem formulation. Figs. 6c and 6d show the optimized topologies and the corresponding structural skeletons
when d = 5 × min (∆x,∆y) , d = 7 × min (∆x,∆y), respectively. From these figures, it can be seen clearly that the
hinge does have been eliminated due to the existence of minimum length scale constraint. Although the GA measure
of the optimized structure is degenerated (see Table 2 for reference), the risk of damage and fatigue of the resulting
compliant mechanism at the hinge point can also be reduced. This is very helpful to guarantee the reliability of the
optimal structure.

5.3. Heat conduction example

As pointed out in the previous subsection, the present length scale control measure is pure geometric in nature
and is independent on the physics of the problem. It can also be applied to non-structural topology optimization
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Fig. 6c. The optimized design of the compliant mechanism with length scale control and the corresponding structural skeleton (V̄ = 0.3 and
d = 5 × min (∆x,∆y)).

Fig. 6d. The optimized design of the compliant mechanism with length scale control and the corresponding structural skeleton (V̄ = 0.3 and
d = 7 × min (∆x,∆y)).
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Table 2
Optimization results for the compliant mechanism problem.

Uout Uout Uout Volume
d = 0 d = 5 × min (∆x,∆y) d = 7 × min (∆x,∆y)

−0.7901 −0.7690 −0.7430 0.3

Fig. 7a. The design domain of the heat conduction example.

Fig. 7b. The optimized design of the heat conduction problem without length scale control.

problems. To illustrate this point more explicitly, the heat conduction problem shown in Fig. 7a, where the objective
is to maximize the heat transfer capacity, is examined under minimum length scale control constraint. We refer the
readers to [26] for a more detailed description of this problem. The design domain where distributed unit thermal
loading uniformly applied is discretized with a 100 × 100 FEM mesh and the temperature of left-middle side is set to
0, as shown in Fig. 7a. It is worth noting that since the problem under consideration has the gray elements naturally,
the original filter form is utilized for obtaining the mesh-independent results. When the upper bound of the available
solid material volume is V̄ = 0.5, the optimized structure without length scale constraints is shown in Fig. 7b. It can
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Fig. 7c. The optimized design of the heat conduction problem with length scale control and the corresponding structural skeleton (V̄ = 0.3 and
d̄ = 7 × min (∆x,∆y)).

be seen that this optimal design is unfavorable for manufacturing due to the existence of a large number of fins with
small thickness.

Next, the same problem is reconsidered with length scale constraint being taken into consideration. It is required
that the minimum length scale of the thermal fins should be greater than d = 7 × min (∆x,∆y). The optimized
design and the corresponding structural skeleton are shown in Fig. 7c. From Fig. 7c, it can be seen that compared
with the design shown in Fig. 7b, several main heat transfer paths are still retained in the optimal design subjected
to length scale constraint. However, the fins with small widths have been eliminated. The optimal design shown in
Fig. 7c is more reasonable from manufacturability point of view. Accordingly, the value of the objective function has
been decreased from 186.63 to 133.35, due to the existence of length scale constraint.
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6. Concluding remarks

In the present paper, a novel approach for explicit and local control of both minimum/maximum length scales
in topology optimization of continuum structures is proposed. Our method is established based on the concept of
structural skeleton, which has been well addressed in the field of image processing. Once the structural skeleton
is identified, the minimum/maximum length scales can be measured accurately, which is the basis to formulate the
corresponding functions in a mathematical rigorous way. Numerical examples demonstrate that the proposed approach
does have the capability to give a complete control of the length scales of structural features in an explicit and
local way. Although mainly structural optimization problems are considered in the present paper, the same idea and
the corresponding implementation techniques can also be applied to other multi-disciplinary topology optimization
problems. Research results along these directions will be reported elsewhere.
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