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Abstract

In this paper we consider spaces of bivariate splines of bi-degree (m, n) with maximal order of smoothness over domains
associated to a two-dimensional grid. We define admissible classes of domains for which suitable combinatorial technique allows
us to obtain the dimension of such spline spaces and the number of tensor-product B-splines acting effectively on these domains.
Following the strategy introduced recently by Giannelli and Jüttler, these results enable us to prove that under certain assumptions
about the configuration of a hierarchical T-mesh the hierarchical B-splines form a basis of bivariate splines of bi-degree (m, n) with
maximal order of smoothness over this hierarchical T-mesh. In addition, we derive a sufficient condition about the configuration of
a hierarchical T-mesh that ensures a weighted partition of unity property for hierarchical B-splines with only positive weights.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The spline representations using T-mesh as an underlying structure have absorbed substantial interest among
designers for the last decade. The basic motivation to apply such representations in design and analysis is to break
tensor-product structure of geometric representation used in NURBS. A new interest in this issue has emerged recently
in connection with isogeometric analysis, see Cottrell et al. [1]. In this paper we deal with the concept of splines over
T-meshes stated originally by Deng et al. [2]. The issue of describing splines over a general T-mesh seems hardly
solvable. In order to be able to generate spline basis functions and refine a spline space, we need to restrict ourselves
on reasonable classes of T-meshes.
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For arbitrary TR-meshes, which include T-meshes, the dimension formula and basis functions have been derived for
the C0 case by Schumaker and Wang [3]. For the case of bivariate splines of bi-degree (m, n) with the reduced order
of smoothness (r, r ′), i.e. m > 2r + 1 > 0 and n > 2r ′

+ 1 > 0, spline basis functions have been obtained in terms
of Bernstein–Bézier coefficients for T-meshes without cycles [4]. We note that this class of T-meshes includes the
natural ones obtained as a result of refining a given rectangle by successive splitting rectangles into two subrectangles.
For hierarchical T-meshes, the construction of PHT-splines [5], which are splines of bi-degree (3, 3) and the order of
smoothness (1, 1), showed an efficiency in surface modeling and isogeometric analysis.

The construction of splines of bi-degree (m, n) with the order of smoothness (r, r ′) becomes more sophisticated
for understanding when m < 2r +1 and n < 2r ′

+1. It is worthwhile to analyze the class of hierarchical T-meshes for
which the hierarchical B-splines, showing already their efficiency in applications, provide a basis of a spline space.
Hierarchical B-splines for surface modeling were originally introduced by Forsey and Bartels [6]. Kraft [7] suggested
a selection mechanism for hierarchical B-splines that ensures their linear independence as well as local refinement
control. Vuong et al. [8] considered applications of hierarchical B-splines in isogeometric analysis.

Giannelli and Jüttler [9] have recently proved that for a hierarchical T-mesh, determined by a nested sequence of
domains Ω0

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅ associated with a nested sequence of grids G0
⊂ · · · ⊂ G N−1, the hier-

archical B-splines span the space of splines of bi-degree (m,m) with maximal order of smoothness if each domain
Rℓ = Ω0

\ Ωℓ, ℓ = 1, . . . , N , considered with respect to the grid Gℓ−1, lays in a certain class. Later, that result has
been generalized for splines of tri-degree (m,m,m) [10].

In this paper we extend the results from [9,10] to the case of splines of bi-degree (m, n) with maximal order
of smoothness. This extension requires new definition of admissible classes of domains associated with a two-
dimensional grid. We define these classes inductively and in a purely combinatorial way. For a given bi-degree (m, n),
a two-dimensional grid and a domain from an admissible class, we obtain the dimension of the spline space over
this domain and the number of tensor-product B-splines acting effectively on it; furthermore, it appears that these
two numbers are equal. Then, following the approach used in [9], we prove that for certain assumptions about the
configuration of a hierarchical T-mesh the hierarchical B-splines form a basis of bivariate splines of bi-degree (m, n)
with maximal order of smoothness over this hierarchical T-mesh. Also, we find an additional condition about the
configuration of a hierarchical T-mesh that ensures a weighted partition of unity property for hierarchical B-splines
with only positive weights.

The rest of this paper is organized as follows. In Section 2 we consider the basic one-dimensional case and prove
propositions necessary for Section 3 where the two-dimensional case is considered. For given integers k1, k2 > 0
in Section 3.1 we introduce the class A2

k1,k2
of two-dimensional domains formed by the cells of an infinite two-

dimensional grid. In Section 3.2 we derive the dimension for the space of tensor-product splines of bi-degree (m, n)
with maximal order of smoothness defined on a domain from the class A2

m−1,n−1. In Section 3.3 we show that a basis
of this space can be obtained as the set of tensor-product B-splines acting effectively on the domain. In Section 4, with
the tools obtained in Section 3, we provide a condition on the configuration of a hierarchical T-mesh to guarantee that
hierarchical B-splines span the space of splines of bi-degree (m, n) over this T-mesh (see Theorem 1). In addition, in
Corollary 9 we present a condition on a hierarchical T-mesh ensuring the existence of a weighted partition of unity
for hierarchical B-splines, with only positive weights. We conclude this paper with several remarks in Section 5.

2. Univariate case

Let T ′ be an infinite one-dimensional grid. For the sake of simplicity, we suppose that the distances between
adjacent grid nodes of T ′ are equal to 1. A cell of T ′ is a closed segment of a length 1 between adjacent grid nodes.
Let T ′

1 be the grid that is obtained by shifting T ′ by 1
2 .

Let Ω be a closed bounded domain formed by a finite number of cells of T ′. Then, Ω consists of a number of
segments of finite length. A vertex of a domain Ω is a grid node of T ′ that belongs to Ω . We say that a vertex of Ω is
an inner vertex if it lies in the interior of Ω , which is hereinafter denoted by int Ω . For a given domain Ω we define
the dilatation domains Ω e

k in a recursive manner:

Definition 1. If k = 0, Ω e
0 := Ω . If 0 < k is odd, Ω e

k is the union of the cells of T ′

1 with vertices of Ω e
k−1 as their

centroids. If 0 < k is even, Ω e
k is the union of the cells of T ′ with vertices of Ω e

k−1 as their centroids.
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Fig. 1. The grid nodes of T ′ are denoted by black squares. The connected components of a domain Ω are denoted by thick solid lines. The grid
nodes of T ′

1 are denoted by the small vertical segments. The domain Ωe
1 is a union of Ω and the adjacent segments of the length 1

2 denoted by the

triangles. We note that Ω ∈ A1
2, but Ω ∉ A1

3.

An example of a domain Ω and its dilatation Ω e
1 are shown in Fig. 1. We observe that Ω e

k ⊂ Ω e
k+1 for any integer

k > 0. For a given integer k > 0, the class A1
k of one-dimensional domains is defined as follows:

Definition 2. We say that a domain Ω admits an offset at a distance of k
2 if the number of cells between any two neigh-

boring segments exceeds k. We denote by A1
k the class of one-dimensional bounded domains that admit an offset at a

distance of k
2 .

We observe that A1
0 ⊃ A1

1 ⊃ A1
2 ⊃ · · ·, and the class A1

0 includes all possible one-dimensional bounded domains
formed by cells of T ′. It can be seen that if Ω ∈ A1

n , then Ω e
k has the same number of connected components for any

0 6 k 6 n. Propositions 1 and 2 below will be used in the proof of Proposition 8 in Section 3.1.

Proposition 1. Suppose that for domains Ω1,Ω2 ∈ A1
0, both intersection domains Ω1 ∩Ω2 and (Ω1)

e
1 ∩ (Ω2)

e
1 belong

to A1
0. Then, (Ω1)

e
1 ∩ (Ω2)

e
1 = (Ω1 ∩ Ω2)

e
1.

Proof. The inclusion (Ω1 ∩ Ω2)
e
1 ⊂ (Ω1)

e
1 ∩ (Ω2)

e
1 is obvious. Let C ⊂ (Ω1)

e
1 ∩ (Ω2)

e
1 be the cell C of T ′

1 centered at
a node v of T ′. Then, v ∈ Ω1 ∩Ω2 and C ⊂ (Ω1 ∩Ω2)

1
e . Since (Ω1)

e
1 ∩ (Ω2)

e
1 ∈ A1

0, it is composed of cells of T ′

1 and,
thus, the inclusion (Ω1)

e
1 ∩ (Ω2)

e
1 ⊂ (Ω1 ∩ Ω2)

e
1 is proved. �

Proposition 2. Suppose that for domains Ω1,Ω2 ∈ A1
1, the intersection domain Ω1 ∩ Ω2 belongs to A1

0. Then,
Ω1 ∩ Ω2 ∈ A1

1.

Proof. Suppose that Ω1 ∩ Ω2 ∉ A1
1, then there exist neighboring segments of Ω1 ∩ Ω2 with one cell between them.

Then, at least either Ω1 or Ω2 does not belong to A1
1. Thus, we have a contradiction. �

Propositions 3 and 4 below will be used in the proof of Proposition 9 in Section 3.1.

Proposition 3. Let Ω1,Ω2 ∈ A1
0. Then,

(Ω1 ∪ Ω2)
e
k = (Ω1)

e
k ∪ (Ω2)

e
k, (1)

for any integer k > 0.

Proof. For k = 0 the identity (1) is trivial. Let us prove (1) for k = 1. Let C ⊂ (Ω1 ∪ Ω2)
e
1 be the cell of T ′

1 centered
at a vertex of Ω1 ∪ Ω2. Then, v is a vertex either of Ω1 or Ω2, i.e. either C ⊂ (Ω1)

e
1 or C ⊂ (Ω2)

e
1. The inclusion

(Ω1 ∪Ω2)
e
1 ⊂ (Ω1)

e
1 ∪(Ω2)

e
1 is proved. The inclusion (Ω1)

e
1 ∪(Ω2)

e
1 ⊂ (Ω1 ∪Ω2)

e
1 is verified in a similar way. Suppose

that (1) is proved for some k > 1, then (Ω1 ∪ Ω2)
e
k+1 = ((Ω1 ∪ Ω2)

e
k)

e
1 = ((Ω1)

e
k ∪ (Ω2)

e
k)

e
1 = ((Ω1)

e
k)

e
1 ∪ ((Ω2)

e
k)

e
1 =

(Ω1)
e
k+1 ∪ (Ω2)

e
k+1. �

We note that Definition 2 does not depend on the distances between grid nodes of T ′ and the classes A1
k, k > 0

can be defined for an arbitrary one-dimensional grid T ′. Hereinafter in this section, we will no longer suppose that the
distances between adjacent grid nodes are equal to 1.

Proposition 4. For a given integer k > 0, let Ω ∈ A1
k . Let us add a new node v to the grid T ′. Then, a domain Ω ,

considered with respect to the grid T ′
∪ {v}, belongs to the class A1

k as well.

Proof. If one adds a node to the grid T ′, then the number of cells between two neighboring segments either does not
change or increases in one. Thus, the proposition is proved. �

Let Rm be the vector space of univariate polynomials of degree m. Let T be a mesh, which is a portion of T ′

included in a domain Ω . We denote by Sm(T ) the vector space of Cm−1 smooth functions defined on Ω that are
polynomials in Rm on each cell of a domain Ω . We denote by f1 and f 0

0 the number of cells forming a domain Ω and
the number of inner vertices of Ω , respectively.



844 D. Berdinsky et al. / Comput. Methods Appl. Mech. Engrg. 283 (2015) 841–855

Proposition 5. For a given domain Ω , the dimension of the corresponding spline space is:

dim Sm(T ) = (m + 1) f1 − m f 0
0 .

Proof. On each cell of T the spline function of Sm(T ) is a polynomial of degree m, and for each inner vertex there
are m linearly independent constraints on the coefficients of these polynomials. Thus, the proposition is proved. �

For a given integer m > 1, let B be the set of segments formed by m + 1 consecutive cells of T ′, so B is the set
of all possible minimal supports for B-splines of degree m defined over T ′ and with knot multiplicities equal to 1. We
denote by B the collection of B-splines whose supports become the elements of B. Let N be the number of elements
of B that have at least one cell in common with a domain Ω .

Proposition 6. For a given integer m > 1, suppose that Ω ∈ A1
m−1. Then, the following identity holds:

N = (m + 1) f1 − m f 0
0 . (2)

Proof. Suppose that Ω has one connected component. Then, the simple observations that: N = m + f1 and f1 − f 0
0

= 1 prove (2). Since Ω ∈ A1
m−1, each element of B may have cells in common with no more than one connected

component of Ω . Thus, the identity (2) holds for any Ω ∈ A1
m−1. �

Corollary 1. For a given m > 1, suppose that Ω ∈ A1
m−1. Then, the basis of a space Sm(T ) can be obtained as

follows:

{b|Ω : b(x) ∈ B ∧ supp b(x) ∩ int Ω ≠ ∅}. (3)

Proof. Corollary 1 is a direct consequence of Propositions 5 and 6, and the fact that the one-dimensional B-splines
from B are locally linearly independent. �

Corollary 2. For a given integer m > 1, suppose that Ω ∈ A1
m−1. Let f ∈ Sm(T ) be a spline function defined

over the corresponding mesh T . Then, there exists a spline function f of degree m defined globally over T ′ such thatf |Ω = f .

Proof. The B-splines from B are defined globally over T ′. Thus, by Corollary 1, the corollary is proved. �

3. Bivariate case

Let T ′ be a two-dimensional infinite grid. For the sake of simplicity, we suppose that the distances between adjacent
grid nodes of T ′ are equal to 1. A cell of T ′ is a closed square with sides of length 1 aligned with the grid lines of T ′.

Let Ω be a closed bounded domain formed by cells of T ′ (for example see the diagonally hatched area shown in
Fig. 3). A vertex of a domain Ω is a grid node of T ′ that belongs to Ω . We say that a vertex is a boundary vertex
if it belongs to ∂Ω , and we say that a vertex is an inner vertex if it lies in the interior of Ω . An edge of a domain
Ω is a closed segment between two adjacent grid nodes of T ′, which is a subset of Ω . We say that an edge is a
boundary edge if it is a subset of ∂Ω , and we say that an edge is an inner edge if it is not a boundary edge. Throughout
this section we will suppose that Ω is a two-dimensional topological manifold with a boundary. A violation of this
restriction can occur only in a neighborhood of a boundary vertex. The admissible and inadmissible configurations for
a neighborhood of a boundary vertex are shown in Fig. 2. Additionally, we remark that a domain Ω may have several
connected components.

3.1. Vertical and horizontal dilatations of a two-dimensional domain

Let T ′

1,0, T ′

0,1 and T ′

1,1 be the grids that are obtained by shifting T ′ by the vectors


1
2 , 0


,


0, 1
2


and


1
2 ,

1
2


,

respectively. For the grid T ′ we will also use the notation T ′

0,0 := T ′. For a given domain Ω and integers k1, k2 > 0,
we define the dilatation domains Ω e

k1,k2
in a recursive manner:
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Fig. 2. The boundary vertices, which are shown with black dots, are at the centroids of 2 × 2 squares that are formed by four cells of T ′. The
diagonally hatched cells belong to Ω . Three admissible configurations are shown at the top. The inadmissible configuration is shown at the bottom.

Definition 3. If k1 = k2 = 0, Ω e
0,0 := Ω . If k1 = 1 and k2 = 0, Ω e

1,0 is the union of cells of T ′

1,0 that are split into
two equal halves by vertical edges of Ω . If k1 = 0 and k2 = 1, Ω e

0,1 is the union of cells of T ′

0,1 that are split into two
equal halves by horizontal edges of Ω . If k1 + k2 > 1, then the following recursion can be defined in both ways:

Ω e
k1,k2

:=


Ω e

k1−1,k2

e

1,0
=


Ω e

k1,k2−1

e

0,1
. (4)

We remark that Ω e
k1,k2

is formed by cells of T ′

k1 mod 2, k2 mod 2.

An example of horizontal dilatation is shown in Fig. 3 and an example of vertical dilatation is shown in Fig. 4. An
example of the domain Ω e

1,1 is shown in [10], Fig. 4 (where the infinite grid T ′

1,1 is denoted as T ′′).
Let the array of cells of T ′ be indexed by Z × Z, i.e. each cell has index (i, j) (where i and j are the indices of row

and column containing this cell, respectively). Without loss of generality suppose that the lowest row and the leftmost
column of this array that contain cells from Ω have index 1. One may represent a domain Ω as a union Ω =

m1
i=1 Ωh

i ,
where each Ωh

i is formed by cells of Ω in the i th row of cells; m1 is the maximal index of row that contains cells
from Ω . Let Hi , 1 6 i 6 m1 be the projection of Ωh

i onto horizontal grid line, i.e. Hi ∈ A1
0. Similarly, one may

represent a domain Ω as a union Ω =
m2

j=1 Ωv
j , where each Ωv

j is formed by cells of Ω in the j th column of cells;
m2 is the maximal index of column that contains cells from Ω . Let V j , 1 6 j 6 m2 be the projection of Ωv

j onto

vertical grid line, i.e. V j ∈ A1
0. We denote by H and V the maps that transform a domain Ω to the ordered sequences

of one-dimensional domains ⟨H1, H2, . . . , Hm1⟩ and ⟨V1, V2, . . . , Vm2⟩, respectively. The following proposition is a
trivial observation from Definition 3.

Proposition 7. Let Ω =
m1

i=1 Ωh
i =

m2
j=1 Ωv

j be a domain with the projections on horizontal and vertical grid-lines:
Hi , 1 6 i 6 m1 and V j , 1 6 j 6 m2, respectively (see Definition 4). Then,

H(Ω e
0,1) = ⟨H1, H1 ∪ H2, . . . , Hm1−1 ∪ Hm1 , Hm1⟩ = σH(Ω), (5)

V (Ω e
1,0) = ⟨V1, V1 ∪ V2, . . . , Vm2−1 ∪ Vm2 , Vm2⟩ = σV (Ω), (6)

where σ is a map σ : ⟨D1, . . . , Dn⟩ → ⟨D1, D1 ∪ D2, . . . , Dn−1 ∪ Dn, Dn⟩.

For given integers k1, k2 > 0, we define the class A2
k1,k2

of two-dimensional domains as follows:

Definition 4. We denote by A2
0,0 the class of all bounded two-dimensional domains formed by the cells of T ′ that are

topological manifolds with boundary.
We say that a domain Ω admits horizontal offset at a distance of 1

2 if H(Ω) ∪ σH(Ω) ⊂ A1
1, i.e. each intersection

of Ω with a horizontal line belongs to the class A1
1 with respect to the one-dimensional grid, which is a horizontal

projection of T ′. We denote by A2
1,0 the class of two-dimensional domains Ω ∈ A2

0,0 that admit horizontal offset at a

distance of 1
2 .

We say that a domain Ω admits vertical offset at a distance of 1
2 if V (Ω) ∪ σV (Ω) ⊂ A1

1, i.e. each intersec-
tion of Ω with a vertical line belongs to the class A1

1 with respect to the one-dimensional grid, which is a vertical
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Fig. 3. The grid T ′ is aligned with thick solid lines. The cells of a domain Ω are diagonally hatched. The grid T ′
1,0, which is shifted by the vector

1
2 , 0


from T ′, is aligned with thin solid vertical lines and thick solid horizontal lines. The domain Ωe

1,0 is the whole shaded area and it is formed

by the cells of T ′
1,0.

Fig. 4. The grid T ′ is aligned with thick solid lines. The cells of a domain Ω are diagonally hatched. The grid T ′
0,1, which is shifted by the vector

0, 1
2


from T ′, is aligned with thick solid vertical lines and thin solid horizontal lines. The domain Ωe

0,1 is the whole shaded area and it is formed

by the cells of T ′
0,1.

projection of T ′. We denote by A2
0,1 the class of two-dimensional domains Ω ∈ A2

0,0 that admit vertical offset at a

distance of 1
2 .

For a given integer k > 1 suppose that classes A2
k1,k2

are defined for all nonnegative k1, k2 such that k1 + k2 6 k.

For nonnegative integers k1, k2 such that k1 + k2 = k + 1, the class A2
k1,k2

is defined as follows:

1. For k2 = 0, Ω ∈ A2
k+1,0 if Ω ∈ A2

k,0 and Ω e
k,0 ∈ A2

1,0.

2. For k1 = 0, Ω ∈ A2
0,k+1 if Ω ∈ A2

0,k and Ω e
0,k ∈ A2

0,1.
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Fig. 5. The grid T ′ is aligned with thick solid lines. The diagonally hatched cells belong to a domain Ω . The indices i −1, i, i +1 and j −1, j, j +1
denote the corresponding rows and columns of T ′, respectively.

Fig. 6. The grid T ′ is aligned with thick solid lines. The diagonally hatched cells belong to a domain Ω . The indices i −1, i, i +1 and j −1, j, j +1
denote the corresponding rows and columns of T ′, respectively.

3. For k1, k2 > 0, then the class A2
k1,k2

might be defined in two equivalent ways:
(a) Ω ∈ A2

k1,k2
if Ω ∈ A2

k1−1,k2
and Ω e

k1−1,k2
∈ A2

1,0.
(b) Ω ∈ A2

k1,k2
if Ω ∈ A2

k1,k2−1 and Ω e
k1,k2−1 ∈ A2

0,1.

The equivalence of two ways to construct A2
k1,k2

given in the items 3(a) and 3(b) is proved in Corollary 3.

An example of a domain from the class A2
1,0 is shown in Fig. 3. An example of a domain from the class A2

0,1 is
shown in Fig. 4.

Corollary 3. For given integers k1, k2 > 0, the following identity between two sets of domains holds:

{Ω ∈ A2
k1−1,k2

|Ω e
k1−1,k2

∈ A2
1,0} = {Ω ∈ A2

k1,k2−1|Ω
e
k1,k2−1 ∈ A2

0,1}. (7)

Proof. Let us denote the left and right parts of (7) as Lk1,k2 and Rk1,k2 , respectively. Then,

Lk1,k2 = {Ω ∈ A2
k1−1,k2−1|Ω

e
k1−1,k2−1 ∈ A2

0,1 ∧ Ω e
k1−1,k2

∈ A2
1,0},

Rk1,k2 = {Ω ∈ A2
k1−1,k2−1|Ω

e
k1−1,k2−1 ∈ A2

1,0 ∧ Ω e
k1,k2−1 ∈ A2

0,1}.

Let us prove the inclusion: Lk1,k2 ⊂ Rk1,k2 . For a given Ω ∈ Lk1,k2 , Ω := Ω e
k1−1,k2−1 ∈ A2

0,1 and Ω e
0,1 ∈ A2

1,0. From

Proposition 7 we get that V (Ω) ∪ σV (Ω) ⊂ A1
1 and σH(Ω) ∪ σ 2 H(Ω) ⊂ A1

1.
Assume that H(Ω) ⊄ A1

1, i.e. there exists Hi ∈ H(Ω) for some i such that Hi ∉ A1
1. Since σH(Ω) ⊂ A1

1, thenHi−1, Hi+1 ∈ H(Ω) are non-empty, and Hi ∪ Hi−1 ∈ A1
1, Hi ∪ Hi+1 ∈ A1

1. An assumption Hi ∉ A1
1 means that

there exist neighboring segments of Hi with a distance equal to one between them. Thus, we have the following local
picture of the domain Ω in Fig. 5. From Fig. 5 we see that for V j ∈ V (Ω), V j ∉ A1

1. Since V (Ω) ⊂ A1
1, we have a

contradiction.
Suppose that σ 2V (Ω) ⊄ A1

1, i.e. there exist V j−1, V j , V j+1 ∈ V (Ω) for some j such that V j−1 ∪ V j ∪ V j+1 ∉ A1
1.

Since V (Ω)∪σV (Ω) ⊂ A1
1, then V j−1, V j , V j+1, V j−1∪V j , V j+1∪V j ∈ A1

1. An assumption V j−1∪V j ∪V j+1 ∉ A1
1

means that there are neighboring segments of V j−1 ∪ V j ∪ V j+1 with a distance equal to one between them. Thus, we
have the following local picture of the domain Ω in Fig. 6. From Fig. 6 we see that for Hi−1 ∪ Hi ∪ Hi+1 ∈ σ 2 H(Ω),Hi−1 ∪ Hi ∪ Hi+1 ∉ A1

1. Since σ 2 H(Ω) ⊂ A1
1, we have a contradiction. By contradiction we have proved that

H(Ω)∪ σ 2V (Ω) ⊂ A1
1. Therefore, H(Ω)∪ σH(Ω) ⊂ A1

1 and σV (Ω)∪ σ 2V (Ω) ⊂ A1
1, which imply that Ω ∈ A2

1,0

and Ω e
1,0 ∈ A2

0,1, and, thus, Ω ∈ Rk1,k2 . The inclusion Lk1,k2 ⊂ Rk1,k2 is proved. The reverse inclusion could be
proved in an analogous way.

In order to prove correctness of Definition 4, namely an equivalence of the items 3(a) and 3(b), one needs to apply
the arguments above to the basic case k1 = k2 = 1 and then proceed by induction on k1 + k2. �
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Proposition 8 below will be used in the proof of Corollary 6 in Section 3.2.

Proposition 8. Let Ω =
m1

i=1 Ωh
i =

m2
j=1 Ωv

i ∈ A2
k1,k2

. For some i, j such that 1 6 i 6 m1 −1, 1 6 j 6 m2 −1, let

Hi , Hi+1 ∈ H(Ω) and V j , V j+1 ∈ V (Ω) be the corresponding projections of Ωh
i ,Ω

h
i+1 and Ωv

j ,Ω
v
j+1 respectively.

Then, for one-dimensional domains Hi ∩ Hi+1 = Ωh
i ∩ Ωh

i+1 and V j ∩ V j+1 = Ωv
j ∩ Ωv

j+1, Hi ∩ Hi+1 ∈ A1
k1

and

V j ∩ V j+1 ∈ A1
k2

.

Proof. It follows from Definition 4 that Ω ∈ A2
k1,0

. Let us prove that Hi ∩ Hi+1 ∈ A1
k1

. Firstly, we note that

Hi ∩ Hi+1 = Ωh
i ∩ Ωh

i+1 ∈ A1
0, because Ω is a topological manifold with boundary. Secondly, one can see that

Definition 2 might be given by induction, similarly to Definition 4, namely: D ∈ A1
k+1 if D ∈ A1

k and De
k ∈ A1

1 for
k > 1. Thus, from Propositions 1 and 2 and Definition 4 it follows that:

(Hi )
e
l ∩ (Hi+1)

e
l = (Hi ∩ Hi+1)

e
l ,

for any l 6 k1, and Hi+1 ∩ Hi ∈ A1
k1

. In an analogous way one can prove that V j ∩ V j+1 ∈ A1
k2

. �

We note that Definition 4 does not depend on the distances between grid nodes of T ′ and the classes A2
k, k > 0

can be defined for an arbitrary two-dimensional grid T ′. Hereinafter in this section, we will no longer suppose that the
distances between adjacent grid nodes are equal to 1. Proposition 9 below will be used in the proof of Proposition 12
in Section 4.

Proposition 9. For given integers k1, k2 > 0, let Ω ∈ A2
k1,k2

. Let us add new vertical or horizontal line l1 to the grid

T ′. Then, a domain Ω , considered with respect to the grid T ′
∪ {l1}, belongs to the class A2

k1,k2
as well.

Proof. Suppose that l1 is vertical line. Since Ω ∈ A2
k1,k2

, then Ω ∈ A2
0,k2

. Then, it can be seen from Definition 4

that Ω , considered with respect to the grid T ′
∪ {l1}, belongs to the class A2

0,k2
as well. In addition, we observe that a

domain Ω e
0,k2

does not depend on whether the vertical dilatation of Ω is considered with respect to T ′ or T ′
∪ l1. Since

Ω ∈ A2
k1,k2

, then Ω e
0,k2

∈ A2
k1,0

. It follows straightforwardly from Propositions 3 and 4 that Ω e
0,k2

, considered with

respect to the grid T ′
∪ l1, belongs to the class A2

k1,0
as well. Similarly, one can prove Proposition 9 for a horizontal

line l1. �

Corollary 4. For given integers k1, k2 > 0, let Ω ∈ A2
k1,k2

. Let us add a finite number of new vertical and horizontal
lines l1, . . . , lk to the grid T ′. Then, the domain Ω , considered with respect to the grid T ′

∪ {l1, . . . , lk}, belongs to
the class A2

k1,k2
as well.

Proof. Corollary 4 is a straightforward consequence of Proposition 9. �

Definition 5 below will be needed to state Propositions 13 and 14 in Section 4.

Definition 5. For a given Ω ∈ A2
0,0, let Ω be a sufficiently large rectangle formed by the cells of T ′ such that

Ω ⊂ int Ω . For given integers k1, k2 > 0, we say that Ω ∈ A2
k1,k2

if a domain Ω \ int Ω belongs to A2
k1,k2

. We remark

that A2
0,0 = A2

0,0.

Corollary 5. For given integers k1, k2 > 0, let Ω ∈ A2
k1,k2

. Let us add a finite number of new vertical and horizontal
lines l1, . . . , lk to the grid T ′. Then, the domain Ω , considered with respect to the grid T ′

∪ {l1, . . . , lk}, belongs to
the class A2

k1,k2
as well.

Proof. Corollary 5 is a straightforward consequence of Definition 5 and Corollary 4. �

3.2. Dimension of a spline space over a two-dimensional domain

Let Rm,n be the vector space of polynomials of bi-degree (m, n) with respect to two variables x and y. Let T be a
T-mesh, which is a portion of T ′ included in a domain Ω . We denote by Sm,n(T ) the vector space of Cm−1,n−1 smooth
functions defined on Ω that are polynomials in Rm,n on each cell of a domain Ω . We denote by f2, f h,0

1 , f v,01 and f 0
0

the numbers of cells, horizontal inner edges, vertical inner edges and inner vertices of a domain Ω , respectively.
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Fig. 7. The cells of a domain Ω are diagonally hatched. The grid line U ′ is denoted by a dotted red line. The domains Ω1 and Ω2 are to the left
and right of U ′, respectively. The one-dimensional domain U = Ω1 ∩ Ω2 is denoted by solid red line-segments.

Proposition 10 (Mourrain [11], Theorem 3.3 and Corollary 3.2). Suppose that a domain Ω corresponding to the
T-mesh T is simply connected. Then,

dim Sm,n(T ) = (m + 1)(n + 1) f2 − ((m + 1)n f h,0
1 + (n + 1)m f v,01 )+ mn f 0

0 . (8)

In the following lemma we will obtain the dimension of a spline space dim Sm,n(T ) if the corresponding domain
Ω is split into two domains Ω1 and Ω2 (see Fig. 7). Let U ′ be a grid line of T ′. We say that U ′ splits a domain Ω into
two nonempty domains if Ω = Ω1 ∪ Ω2, where Ω1 and Ω2 are contained in different half-spaces divided by U ′. We
denote by U the corresponding one-dimensional domain U = Ω1 ∩ Ω2 formed by one-dimensional cells of U ′.

Lemma 1. Let a grid line U ′ split a domain Ω into two domains: Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = U. Let T1, T2,
and T be the T-meshes corresponding to Ω1, Ω2, and Ω , respectively. For a given integers m, n > 1, suppose that
the dimensions of the spaces Sm,n(T1) and Sm,n(T2) can be obtained from (8). In addition, suppose that U ∈ A1

m−1
(if U is horizontal) and U ∈ A1

n−1 (if U is vertical) with respect to the infinite one-dimensional grid U ′. Then, the
dimension of the spline space Sm,n(T ) is given by (8) as well.

Proof. Suppose that U ′ is a vertical line x = 0. We can define the linear operator

G : Sm,n(T1)⊕ Sm,n(T2) → Sn(U)m

as follows: for given splines φ1 ∈ Sm,n(T1) and φ2 ∈ Sm.n(T2) the corresponding spline-vector G(⟨φ1, φ2⟩) ∈ Sn(U)m
equals

(φ1 − φ2)|x=0,
∂(φ1 − φ2)

∂x
|x=0, . . . ,

∂(φ1 − φ2)

∂xm−1 |x=0


,

so ker G = Sm,n(T ). Thus, we obtain

dim Sm,n(T ) = dim Sm,n(T1)+ dim Sm.n(T2)− dim im G
= (m + 1)(n + 1) f2 − ((m + 1)n f h,0

1 + (n + 1)m( f v,01 − h1))

+ mn( f 0
0 − h0

0)− dim im G, (9)

where h1 and h0
0 are the numbers of cells and inner vertices of the one-dimensional domain U . We remark that cells

and inner vertices of U are inner edges and inner vertices of Ω , respectively, but are not inner edges and inner vertices
of Ω1 and Ω2. Therefore, f h,0

1 , f v,01 − h1 and f 0
0 − h0

0 are the numbers of horizontal inner edges, vertical inner edges
and inner vertices contained in either Ω1 or Ω2.
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In order to prove that G is an epimorphism, let us take an element of Sn(U)m : ψ = ⟨ψ1(y), . . . , ψm(y)⟩. It follows
from Corollary 2 that there exist splines ψ1, . . . , ψm defined globally over the infinite one-dimensional grid U ′ such
that ψi |U = ψi , i = 1, . . . ,m. We define a bivariate spline φ(x, y) globally over T ′ as follows:

φ(x, y) :=

m
i=1

ψi (y)
x i−1

(i − 1)!
.

Let φ1 := φ|Ω1 and φ2 ≡ 0 on Ω2. Then, G(⟨φ1, φ2⟩) = ψ . Thus, by virtue of Proposition 5, we obtain dim im G =

m dim Sn(U) = m((n +1)h1 −nh0
0). For a horizontal grid line U ′ the proof is analogous. Thus, the lemma is proved.

�

Corollary 6. Let Ω ∈ A2
m−1,n−1 be a two-dimensional domain and T be the corresponding T-mesh. Then, the

dimension of a space Sm,n(T ) is

dim Sm,n(T ) = (m + 1)(n + 1) f2 − ((m + 1)n f h,0
1 + (n + 1)m f v,01 )+ mn f 0

0 . (10)

Proof. Suppose that a domain Ω is split into two domains Ω1 and Ω2 by a vertical grid line U ′ of T ′ (see Fig. 7).
From Proposition 8 we obtain that U ∈ A1

n−1. Using a sufficient number of vertical grid lines, a domain Ω can be
split into pieces that are simply connected. By Lemma 1 and Proposition 10, the corollary is proved. �

3.3. Basis of a spline space over a two-dimensional domain

For a given integers m, n > 1, let B be the set of (m +1)× (n +1) rectangles formed by (m +1)(n +1) cells of T ′,
so B is the set of all possible minimal supports for B-splines of bi-degree m, n defined over T ′ with knot multiplicities
equal to 1. We denote by B the collection of B-splines whose supports become the elements of B. Let N be the number
of elements of B that have at least one cell in common with a domain Ω .

Proposition 11. Let f2, f h
1 , f h,0

1 , f v1 , f v,01 , f0 and f 0
0 be the numbers of cells, horizontal edges, horizontal inner

edges, vertical edges, vertical inner edges, vertices and inner vertices of a domain Ω ∈ A2
0,0. Then, the following

identities hold:

f h
1 = 2 f2 − f h,0

1 , (11)

f v1 = 2 f2 − f v,01 , (12)

f0 = 4 f2 − 2( f h,0
1 + f v,01 )+ f 0

0 . (13)

Proof. It is easy to see that the numbers of boundary horizontal and vertical edges are 2 f2 − 2 f h,0
1 and 2 f2 − 2 f v,01 ,

respectively. Thus, 2 f2 − 2 f h,0
1 = f h

1 − f h,0
1 and 2 f2 − 2 f v,01 = f v1 − f v,01 , which imply (11) and (12). As long as Ω

is a two-dimensional topological manifold with boundary, the boundary ∂Ω falls into piecewise linear curves that are
connected, closed, and free of self-intersections. For each of these curves the number of edges is equal to the number
of vertices. Thus, ( f h

1 + f v1 )− ( f h,0
1 + f v,01 ) = f0 − f 0

0 , which implies (13). �

Lemma 2. For a given couple of nonnegative integers k := (k1, k2) let Ω ∈ A2
k1,k2

. We denote by f2,k , f h
1,k

, f h,0
1,k

, f v
1,k

,

f v,0
1,k

, f0,k , f 0
0,k

the numbers of cells, horizontal edges, horizontal inner edges, vertical edges, vertical inner edges,

vertices and inner vertices of the dilatation domain Ω e
k1,k2

. Then, the following identities hold:

f2,k = (k1 + 1)(k2 + 1) f2 − ((k1 + 1)k2 f h,0
1 + (k2 + 1)k1 f v,01 )+ k1k2 f 0

0 , (14)

f h
1,k

= (k1 + 1)(k2 + 2) f2 − ((k1 + 1)(k2 + 1) f h,0
1 + (k2 + 2)k1 f v,01 )+ k1(k2 + 1) f 0

0 , (15)

f v
1,k

= (k1 + 2)(k2 + 1) f2 − ((k1 + 2)k2 f h,0
1 + (k2 + 1)(k1 + 1) f v,01 )+ (k1 + 1)k2 f 0

0 , (16)

f0,k = (k1 + 2)(k2 + 2) f2 − ((k1 + 2)(k2 + 1) f h,0
1 + (k2 + 2)(k1 + 1) f v,01 )+ (k1 + 1)(k2 + 1) f 0

0 . (17)
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Proof. We will prove the theorem by induction on k1 and k2. For k1 = k2 = 0, identity (14) is straightforward, and
(15), (16) and (17) follow from (11), (12) and (13), respectively. Suppose that the theorem is proved for k′ =

(k1 − 1, k2). By Definitions 3 and 4, we have the following identities:

f2,k = f v
1,k′
, f h

1,k
= f0,k′ , f v,0

1,k
= f2,k′ , f 0

0,k
= f h,0

1,k′
. (18)

Then, from (18) and Proposition 11 we finally have:

f2,k = f v
1,k′
, f h

1,k
= f0,k′ , f v

1,k
= 2 f v

1,k′
− f2,k′ , f0,k = 2 f0,k′ − f h

1,k′
. (19)

From the supposition that (14)–(17) hold for k′ = (k1 − 1, k2) and the identities (19) we obtain that (14)–(17) hold
for k = (k1, k2). Similarly, suppose that the theorem is proved for k′′ = (k1, k2 − 1). By Definitions 3 and 4, we have
the following identities:

f2,k = f h
1,k′′

, f v
1,k

= f0,k′′ , f h,0
1,k

= f2,k′′ , f 0
0,k

= f v,0
1,k′′

. (20)

Then, from (20) and Proposition 11 we finally have:

f2,k = f h
1,k′′

, f v
1,k

= f0,k′′ , f h
1,k

= 2 f h
1,k′′

− f2,k′′ , f0,k = 2 f0,k′′ − f v
1,k′′

. (21)

From the supposition that (14)–(17) hold for k′′ = (k1, k2 − 1) and the identities (21) we obtain that (14)–(17) hold
for k = (k1, k2). �

Corollary 7. Suppose that Ω ∈ A2
m−1,n−1. Then, the following identity holds:

N = (m + 1)(n + 1) f2 − ((m + 1)n f h,0
1 + (n + 1)m f v,01 )+ mn f 0

0 . (22)

Proof. Each (m + 1)× (n + 1) square from B is associated with its centroid. If m and n are odd, then this centroid is
a grid node of T ′; if m is even and n is odd, then this centroid is a grid node of T ′

1,0; if m is odd and n is even, then
this centroid is a grid node of T ′

0,1; if m and n are even, then this centroid is a grid node of T ′

1,1.
It can be seen that an element of B has at least one cell in common with Ω iff its centroid is a vertex of the dilatation

domain Ω e
m−1,n−1. Thus, N = f0,k for k = (m − 1, n − 1) and from (17) we obtain (22). �

Corollary 8. For a given couple of integers m, n > 1, suppose that Ω ∈ A2
m−1,n−1. Then, the basis of a space

Sm,n(T ) can be obtained as follows:

{b|Ω : b(x, y) ∈ B ∧ supp b(x, y) ∩ int Ω ≠ ∅}.

Proof. Corollary 8 is a direct consequence of Corollaries 6 and 7, and the fact that tensor-product B-splines B are
locally linearly independent. �

4. Hierarchical splines

In this section we mostly follow the notations introduced by Giannelli and Jüttler in [9].
For a given integers m, n > 1, let V 0

⊂ V 1
⊂ · · · ⊂ V N−1 be a nested sequence of N spaces of bivariate splines

of bi-degree (m, n), with the knot multiplicities equal to 1, associated with a sequence of infinite two-dimensional
grids G0

⊂ G1
⊂ · · · ⊂ G N−1. We denote by T ℓ a tensor-product B-spline basis that spans the spline space

V ℓ, ℓ = 0, . . . , N − 1. Let us consider a nested sequence of domains Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅

such that each domain Ωℓ is formed by a finite number of cells of Gℓ, ℓ = 0, . . . , N − 1. We require that for
each ℓ = 1, . . . , N − 1 the boundary ∂Ωℓ is aligned with grid lines of Gℓ−1. Let H be the T-mesh determined
by a nested sequence of domains Ω0

⊃ Ω1
⊃ · · · ⊃ Ω N−1

⊃ Ω N
= ∅ associated with a nested sequence of grids

G0
⊂ G1

⊂ · · · ⊂ G N−1. Let Sm,n(H) be the space of splines of bi-degree (m, n), with maximal order of smoothness,
defined over the hierarchical T-mesh H. Fig. 8 (left) shows a simple example of a hierarchical T-mesh H determined
by the nested sequence of two-dimensional domains Ω0

⊃ Ω1
⊃ Ω2

⊃ Ω3
= ∅.
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Fig. 8. A T-mesh H (left) is determined by domains Ω0
⊃ Ω1

⊃ Ω2
: Ω0 is all the hatched area, Ω1 is a union of cross-diagonally shaded

area and dotted area, Ω2 is a dotted area. In order to obtain a T-mesh H1
l1

(right), the T-mesh H is refined by the line-segment l1 ∩ Ω1 (the red
line-segment). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The hierarchical B-splines are defined through the following selection mechanism

Definition 6 ([9], Definition 1). The set of hierarchical B-splines K is defined as

K =

N−1
l=0

Kℓ,

with Kℓ
= {τ ∈ T ℓ : supp τ


int Rℓ−1

= ∅ ∧ supp τ


int Rℓ ≠ ∅}, where Rℓ = Ω0
\Ωℓ+1 for ℓ = 0, . . . , N − 1.

We define R−1
= ∅ to include the case ℓ = 0.

As a consequence of Corollary 8 we obtain Theorem 1:

Theorem 1. For a given nested sequence of domains Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅ associated with the nested
sequence of grids G0

⊂ G1
⊂ · · · ⊂ G N−1, suppose that the domain Rℓ = Ω0

\ Ωℓ+1
∈ A2

m−1,n−1 with respect to

the grid Gℓ for each ℓ = 0, . . . , N − 1. Then, the set of B-splines from K restricted on Ω0 forms a basis of the spline
space Sm,n(H).

Proof. The theorem follows directly from Corollary 8. Indeed, the linear independence of B-splines from K is a trivial
observation due to the fact that tensor-product B-splines are locally linearly independent.

Let us prove that B-splines from K span Sm,n(H). Let f ∈ Sm,n(H). Since R0
∈ A2

m−1,n−1 with respect to the

grid G0, there exists f 0
=


b∈K0 c0

bb ∈ V 0, for some real numbers c0
b, b ∈ K0, such that f |R0 = f 0

|R0 . Since
R1

∈ A2
m−1,n−1 with respect to the grid G1, there exists f 1

=


b∈T 1 c1
bb ∈ V 1 such that f 1

|R1 =


f − f 0

|R1 .

Since f 1
|R0 = 0, we obtain c1

b = 0 for any b ∉ K1, and thus f 1
=


b∈K1 c1

bb. Repeating this procedure, we obtain
f =

N−1
ℓ=0 f ℓ|Ω0 such that f ℓ|Rℓ = f |Rℓ −

ℓ−1
i=0 f i

|Rℓ and f ℓ =


b∈Kℓ cℓbb for ℓ = 0, . . . , N − 1. For more
detailed proof we refer the reader to [9], Theorem 20. �

Theorem 1 shows that if a T-mesh H is in a suitable class, then hierarchical B-splines from K generates all basis
functions of the spline space Sm,n(H).

In the definition below we will introduce the basic iteration for a refinement of a hierarchical T-mesh. In particular,
we will need this definition to prove Corollary 9 where the sufficient condition for a collection of hierarchical B-splines
to form a partition of unity is given.

Definition 7. Let H be a hierarchical T-mesh determined by a nested sequence of domains Ω0
⊃ Ω1

⊃ · · · ⊃

Ω N−1
⊃ Ω N

= ∅ associated with a nested sequence of grids G0
⊂ G1

⊂ · · · ⊂ G N−1. For a given line
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l1 ⊄ G N−1 and 0 6 j1 6 N − 1, we denote by H j1
l1

the T-mesh determined by the sequence of domains Ω0
⊃ · · · ⊃

Ω j1−1
⊃ Ω j1 ⊃ · · · ⊃ Ω N−1

⊃ Ω N
= ∅ associated the nested sequence of grids G0

⊂ · · · ⊂ G j1−1
⊂ G j1 ∪ {l1}

⊂ · · · ⊂ G N−1
∪ {l1}. We note that if l1 ∩ int Ω j1 = ∅, then H j1

l1
= H. We denote by H j1,..., jk

l1,...,lk
the T-mesh that is

obtained from H by consecutive refinements by the lines l1, . . . , lk at levels j1, . . . , jk , respectively.

Fig. 8 (right) shows an example of the refined T-mesh H1
l1

.
In Proposition 12 below we will show that the condition of Theorem 1 holds true if one continues to refine H in a

way given in Definition 7.

Proposition 12. Let H be a T-mesh determined by a nested sequence of domains Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

=

∅ associated with a nested sequence of grids G0
⊂ G1

⊂ · · · ⊂ G N−1. Suppose that the conditions of Theorem 1 are
fulfilled, i.e. each domain Rℓ = Ω0

\Ωℓ+1, considered with respect to the grid Gℓ, belongs to the class A2
m−1,n−1 for

any ℓ = 0, . . . , N − 1. Then, for the refined T-mesh H j1,..., jk
l1,...,lk

the conditions of Theorem 1 are fulfilled as well.

Proof. Let us prove Proposition 12 for k = 1. For the refined T-mesh H j1
l1

, the domains Ω0
⊃ · · · ⊃ Ω N−1 and

the grids G0
⊂ · · · ⊂ G j1−1 remain untouched, but the grids G j1 ⊂ · · · ⊂ G N−1 change to G j1 ∪ {l1} ⊂ · · · ⊂

G N−1
∪ {l1}, respectively. Thus, we need to prove that the domains R0

⊂ · · · ⊂ R j1−1
⊂ R j

⊂ · · · ⊂ RN−1
= Ω0,

considered with respect to the grids G0
⊂ · · · ⊂ G j1−1

⊂ G j1 ∪ {l1} ⊂ · · · ⊂ G N−1
∪ {l1} respectively, belong to the

class A2
m−1,n−1 as well. For Rℓ, ℓ < j1 there is nothing to prove. For Rℓ, ℓ > j1 the proof follows from Proposition 9.

The proof of Proposition 12 for k > 1 follows by induction on k. �

Proposition 13 below provides us a sufficient condition to apply Theorem 1; the condition is expressed in terms of
domains Ω0, . . . ,Ω N−1 themselves rather than difference sets Ω0

\ Ωℓ+1, ℓ = 0, . . . , N − 1.

Proposition 13. Let H be a T-mesh determined by Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅ associated with the nested
sequence of grids G0

⊂ G1
⊂ · · · ⊂ G N−1. Suppose that Ω0

∈ A2
m−1,n−1 with respect to G0 and Ωℓ

∈ A2
m−1,n−1

with respect to the grid Gℓ−1 for ℓ = 1, . . . , N − 1. In addition, suppose that ∂Ω0
∩ ∂Ω1

= ∅. Then, the conditions
of Theorem 1 are fulfilled.

Proof. An assumption ∂Ω0
∩ ∂Ω1

= ∅ implies that Ωℓ
⊂ int Ω0 for ℓ = 1, . . . , N − 1. Since Ω0

∈ A2
m−1,n−1

with respect G0, it follows from Corollary 4 that Ω0
∈ A2

m−1,n−1 with respect to Gℓ for ℓ = 0, . . . , N − 1. Since

Ωℓ+1
∈ A2

m−1,n−1 with respect to Gℓ and Ωℓ+1
⊂ int Ω0, then Rℓ = Ω0

\ Ωℓ+1
∈ A2

m−1,n−1 with respect to Gℓ for
ℓ = 0, . . . , N − 1. Thus, the conditions of Theorem 1 are fulfilled. �

Proposition 14 below will be used for the proof of Corollary 9 where we show that under the certain condition on
a hierarchical T-mesh hierarchical B-splines provide a weighted partition of unity for some positive weights.

Proposition 14. Let H be a T-mesh determined by Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅ associated with the nested
sequence of grids G0

⊂ G1
⊂ · · · ⊂ G N−1. Let Ω0

∈ A2
m−1,n−1 with respect to G0 and Ωℓ

∈ A2
m−1,n−1 with respect

to the grid Gℓ−1 for ℓ = 1, . . . , N − 1, and ∂Ω0
∩ ∂Ω1

= ∅. In addition, we suppose that Ωℓ
∈ A2

m,n with respect

to the grid Gℓ for ℓ = 1, . . . , N − 1. We denote by K(H) =
N−1
ℓ=0 Kℓ(H) and K(H j1,..., jk

l1,...,lk
) =

N−1
ℓ=0 Kℓ(H j1,..., jk

l1,...,lk
)

the sets of hierarchical B-splines given in Definition 6 for T-meshes H and H j1,..., jk
l1,...,lk

, respectively. If the collection

of hierarchical B-splines K(H) provides a weighted partition of unity

τ∈K(H)w

0
τ τ |Ω0 = 1 for some positive

weights w0
τ , τ ∈ K(H), then the collection of hierarchical B-splines K(H j1,..., jk

l1,...,lk
) provides a weighted partition of

unity

τ∈K(H j1,..., jk

l1,...,lk
)
w1
τ τ |Ω0 = 1 for some positive weights w1

τ , τ ∈ K(H j1,..., jk
l1,...,lk

) as well.

Proof. Before proving Proposition 14 let us note that from Propositions 12, 13 and Theorem 1 we have that the
hierarchical B-splines from K(H) and K(H j1,..., jk

l1,...,lk
), restricted on the domain Ω0, form bases of the spaces Sm,n(H)

and Sm,n(H j1,..., jk
l1,...,lk

), respectively. We will prove Proposition 14 for the basic case k = 1; for k > 1 it follows by
induction on k.
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In order to prove Proposition 14, we need to show that for any τ ∈ Kℓ(H j1
l1
), ℓ > j1 there exists τ ′

∈ Kℓ(H) such

that supp τ ⊂ supp τ ′.1 We suppose that supp τ ∩ (Ωℓ
∩ l1) ≠ ∅; otherwise, τ ′ simply equals to τ . If τ ∈ K0(H j1

l1
),

then, by Definition 6, supp τ ∩ int R0
≠ ∅. Obviously, there exists τ ′

∈ T 0 such that supp τ ⊂ supp τ ′, therefore
supp τ ′

∩ int R0
≠ ∅ which implies that τ ′

∈ K0(H). Hereinafter we will assume that τ ∈ Kℓ(H j1
l1
) for ℓ > 1. The

support B := supp τ is a rectangle formed by (m + 1) × (n + 1) cells of the grid Gℓ
∪ l1, where B ⊂ Ωℓ. Thus, we

need to show that there exists a rectangle B ′
⊂ Ωℓ formed by (m +1)× (n +1) cells of the grid Gℓ such that B ⊂ B ′.

Let us assume that l1 is a vertical line. If B ∩ l1 = ∂B ∩ l1, i.e. one side of the rectangular boundary of B is aligned
with l1, then there is nothing to prove since the desired rectangle B ′ always exists due to the condition that ∂Ωℓ is
aligned with the lines of the grid Gℓ−1

⊂ Gℓ. If l1 splits B, then B is a rectangle formed by m × (n + 1) cells of
the grid Gℓ. We denote by B ′′ a rectangle formed by (m + 2)× (n + 1) cells of the grid Gℓ that contains B and two
columns of cells from the left and right sides of B. Let us index the columns of B ′′ by the numbers 0, . . . ,m + 1
from the left to the right and rows by the numbers 1, . . . , n + 1 from the bottom to the top. Then, each cell from B
is indexed by a pair (i, j), where 1 6 i 6 n + 1 and 1 6 j 6 m are the indices of row and column respectively
that contain this cell. The cells of the column from the left and from the right side of B are indexed by pairs (i, 0)
and (i,m + 1) respectively, where 1 6 i 6 n + 1. We denote the left and right columns by C1 and C2 respectively,
i.e. B ′′

= B ∪ C1 ∪ C2. By Definition 5 we have that Ωℓ
:= Ω \ Ωℓ

∈ A2
m,n with respect to the grid Gℓ, where Ω is a

sufficiently large rectangle that contains Ωℓ in its interior int Ω .
Let us prove by contradiction that either C1 ⊂ Ωℓ or C2 ⊂ Ωℓ. Assume that there exist at least one cell in C1 and

one cell in C2 that do not belong to Ωℓ. From this assumption we have that Ωℓ has at least one common cell with each
of the columns C1 and C2. Since Ωℓ

∈ A2
m,n with respect to the grid Gℓ, then Ωℓ

∈ A2
m,0 with respect to the same

grid. From Definition 4 one may conclude that there exist i1, i2, where 1 6 i1, i2 6 n + 1 and |i1 − i2| > 1, such that
the cells with the indices (i1, 0) and (i2,m + 1) belong to Ωℓ, but the cell with the indices (i, 0), for i ∈ (i1, i2], and
(i,m + 1), for i ∈ [i1, i2), does not belong to Ωℓ.

Let us take the dilatation domain (Ωℓ)em,0. This domain is formed by the cells of the grid Gℓ
m mod 2 , 0. Also, it

follows from Definition 3 that there exists a rectangle C formed by 2 × (n + 1) cells of the Gℓ
m mod 2 , 0 (with the

columns and rows indexed by the numbers 1, 2 and 1, . . . , n + 1, respectively) with following property: a cell of C1
with the index (i, 0) belongs to Ωℓ iff the cell of C of the index (i, 1) belongs (Ωℓ)em,0, and a cell of C2 with the index

(i,m +1) belongs to Ωℓ iff the cell of C of the index (i, 2) belongs (Ωℓ)em,0. From Definition 4 we know that (Ωℓ)em,0,

considered with respect to Gℓ
m mod 2 , 0, belongs to the class A2

0,n . But, since |i1 − i2| 6 n, we get that (Ωℓ)em,0 ∉ A2
0,n ,

which implies that Ωℓ
∉ A2

m,n . Thus, we have a contradiction. Therefore, either C1 ⊂ Ωℓ or C2 ⊂ Ωℓ. So B ′ might
be chosen either as B ∪ C1 or B ∪ C2. Fig. 9 shows the example for the case m = 2 and n = 3, and the indices i1 = 1
and i2 = 4. For a horizontal line l1 the proof could be given in an analogous way. �

Corollary 9. Let H be a T-mesh determined by Ω0
⊃ Ω1

⊃ · · · ⊃ Ω N−1
⊃ Ω N

= ∅ associated with the nested
sequence of grids G0

⊂ G1
⊂ · · · ⊂ G N−1. Suppose that Ω0

∈ A2
m−1,n−1 with respect to G0, and Ωℓ

∈ A2
m,n with

respect to the grid Gℓ−1 for ℓ = 1, . . . , N − 1. In addition, we suppose that ∂Ω0
∩ ∂Ω1

= ∅. Then, a collection of
hierarchical B-splines K(H) provides a weighted partition of unity


τ∈K(H)wτ τ |Ω0 = 1 for some positive weights

wτ , τ ∈ K(H).

Proof. Let H0 be a tensor-product mesh determined by Ω0
⊃ ∅ associated with the grid G0. Then,


τ∈K(H0) τ |Ω0 =

1. It can be seen that H may be constructed from H0 by successive refinements in a way given in Definition 7. Thus,
Corollary 9 is a direct consequence of Proposition 14. �

5. Remarks

Remark 1. It can be seen that for k1 = k2 = k the class A2
k,k given in Definition 4 coincides with the class A2

k given

in [10] (see Definition 3). The description of the basic class A2
1 [10] (see Definition 4) coincides with the one given

1 This condition is also mentioned by Vuong et al. [8], see Section 2.5; in that subsection the partition of unity property for a weighted hierarchical
B-splines is discussed under more general settings.
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Fig. 9. A rectangle B′′ (left) is shown for the case m = 2 and n = 3. The diagonally hatched cells (corresponding to the indices i1 = 1 and i2 = 4)
belong to a domain Ωℓ. The diagonally hatched cells in a rectangle C (right) belong to a domain (Ωℓ)e2,0.

in the original paper [9], where the admissible types of intersections between a domain and the cells from the offset
region are shown.

Remark 2. In Corollary 9 the condition that Ωℓ
∈ A2

m,n with respect to the grid Gℓ−1 for ℓ = 1, . . . , N − 1 cannot
be simply weakened. Under the more general condition on a hierarchical T-mesh, given in Theorem 1, a weighted
partition of unity cannot be always achieved for only positive weights. However, partition of unity property always
holds for the modified hierarchical B-splines, namely THB-splines introduced in [12].

Remark 3. We note that Definition 4, Corollaries 6–9 and Theorem 1 can be straightforwardly extended for the
d-variate case (m1, . . . ,md) for an arbitrary d > 2.

6. Addendum

The preprint version of this paper appeared in May 2013. In July 2013 Mokriš and Jüttler published the first version
of [13] where they extended the results of [9]. We note that Theorem 1 can be alternatively obtained as a consequence
of Theorem 3.5 [13]; it follows from the observation that the restriction on the configuration of domains given in
Theorem 3.5 [13] is weaker than that of Theorem 1.
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