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Abstract

In this work, we present a ship-hull optimization process combining a T-spline based parametric ship-hull model and an Isogeo-
metric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance. The surface representation of the ship-hull
instances comprise one cubic T-spline with extraordinary points, ensuring C2 continuity everywhere except for the vicinity of ex-
traordinary points where G1 continuity is achieved. The employed solver for ship wave resistance is based on the Neumann–Kelvin
formulation of the problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated
Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface. The hydrody-
namic solver along with the ship parametric model are subsequently integrated within an appropriate optimization environment for
local and global ship-hull optimizations against the criterion of minimum resistance.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Due to an increasing demand for efficiency and robustness in Computer Aided Ship Design (CASD), the available
modeling, analysis and evaluation techniques are being continuously pushed forward so that they can provide
measurable improvements for both the design process and the resulting product. Fortunately, the current availability
of computing power has allowed the employment of sophisticated Computational Fluid Dynamic (CFD) solvers and
their coupling with advanced Geometric Modeling techniques and Optimization strategies, a combination that offers
significant aid to meet the demanding requirements of contemporary CASD.

The optimization of a hull-form with respect to its resistance and resulting fuel consumption has always been a
major task in ship design. Moreover, as the design of the hull form is a prerequisite for the majority of ship design tasks,
it is of great importance to complete this task in the earliest possible time. The present work is focused in developing
an appropriate ship-hull hydrodynamic optimization process, combining modern optimization techniques, a fully
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parametric T-spline ship-hull model and a BEM hydrodynamic solver. Both the parametric model and hydrodynamic
solver are in-house developed. Note that the hydrodynamic solver adopts the concept of Isogeometric Analysis (IGA),
introduced by Hughes et al. [1], which aims to intrinsically integrate CAD with Analysis by communicating the CAD
model of the geometry (ship hull) to the solver without any approximation, e.g., panelization. Furthermore, Bazilevs
et al. [2] and Scott et al. [3] have already demonstrated the efficient usage of IGA in conjunction with T-splines
technology [4,5]. Shape optimization, in the context of IGA, has been presented in various works as, e.g., in [6–8]
for the 2D case and in [9] for the 3D case. In these works, the control points are directly used as shape optimization
parameters. In our case, due to the shape complexity and restrictions of the ship-hull, we have developed a parametric
model that uses high-level parameters with physical meaning for the generation of ship instances. Thus, the control
points of the underlying surface representation are indirectly controlled by these parameters.

The methodology for constructing the parametric ship-hull model is presented in Section 2. The method is materi-
alized within the Rhinoceros R⃝ [10] modeling environment, with the aid of its scripting functionality and Autodesk R⃝’s
T-Splines R⃝ Plug-In [11] for Rhinoceros R⃝. It should be noted that the functionality of parametric modeling is not of-
fered by the above software tools; it is in-house developed using the Rhinoscripting programming language. An early
attempt for building a ship parametric model is due to Lackenby [12] in which hull variants are obtained by modi-
fying the prismatic coefficient, the center of buoyancy and the extent and position of parallel mid-body of a parent
hull. This method has been subsequently generalized towards improving the geometric coverage of the parametric
model through the use of B-spline techniques; see, e.g., Harries and Nowacki [13], Kim [14], Abt and Harries [15],
Harries [16] and Ping [17]. In previous works of ours [18,19], a Ship Parametric Model (SPM) has been developed,
with the aid of CATIA R⃝ [20] modeling environment, resulting in a multi-patch NURBS representation of a ship hull.
This methodology initiated with a list of exposed and internal parameters, which were devised on the basis of par-
ent hulls and proceeded with the generation of control curve networks, appropriately augmented with corresponding
cross-tangent ribbons. The ship-surface construction was thus reduced to a sequence of local Hermite interpolation
problems which were solved through CATIA tools, yielding a tangentially-continuous (G1) NURBS multi-patch rep-
resentation of the ship hull. In this work, in order to remove deficiencies due to the multi-patch NURBS representation,
see [21–23], we use the T-splines technology, for the construction of the SPM. The methodology initiates again with
a list of exposed and internals parameters, extracted from the form of parent ships. Both types of parameters are used
to parametrically construct the Control Cage, which determines the topology of the unstructured T-mesh and acts as
the control “polyhedron” for the generated cubic T-spline surface. This construction uses Autodesk R⃝’s T-Splines R⃝

Plug-In functionality to produce an analysis suitable T-spline mesh for the ship-hull surface. The produced surface is
of higher smoothness (C2 continuity) compared to its corresponding NURBS multi-patch representation (G1 conti-
nuity), except in the vicinity of the extraordinary points, where G1 continuity is achieved; see [3].

Section 3 is devoted to the presentation of the CFD solver’s basic features. The CFD wave resistance solver is
based on the Neumann–Kelvin formulation of the problem, introduced by Brard [24]; see also [25]. The resulting
BIE is numerically solved using a higher order collocated BEM, which adopts the IGA concept. The analysis suitable
T-Spline representation along with the calculation of collocation points is offered through the IGA export functionality
of the T-Spline Plug-In; see [26]. The in-house developed T-spline based IGA–BEM solver is presented in detail and
tested in [21].

Section 4 presents the optimization environment integrating the SPM, the T-spline based IGA–BEM solver and
the optimization libraries of modeFrontier R⃝ [27] for designing ship hulls with minimum resistance. Finally, two op-
timization cases (local/global) for a container ship are set-up and presented in Section 5. The first case deals with
bulbous bow optimization (local optimization problem) against the criterion of minimum wave resistance under a
given displacement, while the second case involves a global ship-hull minimization problem against two objective
functions: total resistance and deviation from a reference ship capacity, i.e., ship’s deadweight.

2. The T-spline Ship Parametric Model (SPM)

In this section, we describe a methodology for constructing a parametric model for typical ship-hull forms
constructed within the Rhinoceros R⃝ modeling environment with the aid of its scripting functionality and Autodesk R⃝’s
T-Splines R⃝ Plug-In for Rhinoceros R⃝. Rhinoceros is a generic NURBS based surface and solid modeler, providing
a wide range of functionalities. The T-Spline plug-in adds T-spline support to Rhinoceros which, with the aid of
Rhinoscripting, enables the materialization of the methodology for generating a T-spline ship-hull parametric model.
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Finally, the automation offered in Rhinoceros through various scripting languages can easily constitute the developing
framework for the creation of the wrapper required in the optimization process; see Sections 4 and 5.

The basic shape characteristics of a typical ship-hull comprise:

• a partition of the ship-hull into three main parts, namely the bow, the midship part and the stern,
• global dimensions (e.g., length between perpendiculars (Lbp), beam (B), depth (D), draft (T)) as well as dimensions

characterizing each one of the aforementioned ship parts (e.g., extent of the midship part),
• a set of control curves that are of boundary (e.g., stern profile, bow profile) or shape-transition character (e.g., FoS

(flat-of-side) and FoB (flat-of-bottom) curves) and, finally,
• local geometrical characteristics that serve functional, structural and/or hydrodynamic purposes, e.g., bow-angle of

entrance at waterline, bulb-top position, bilge radius, shaft height, etc.

On the basis of the above coarse shape description and a set of parent ship-hulls, a list of exposed and internal
parameters is devised. Exposed parameters will be accessible from the outside of the parametric modeling tool and
initiate the modeling process, leading eventually to the production of a corresponding hull instance. On the contrary,
internal parameters are not visible from the outside of the parametric tool and are used to control the surface con-
struction process and eventually retain the basic shape characteristics of the parent hulls. Default values for both
exposed and internal parameters are extracted from the parent ships. Furthermore, a domain of variation is assigned
to each parameter assuring the modeling robustness while at the same time avoiding invalid geometrical models (e.g.,
self-intersections). These ranges can be thought as confidence intervals and have to be defined through extensive ex-
perimentation with the parametric model. Finally, SPM favors the use of non-dimensional parameters where possible,
in order to avoid the interdependency between them. Exposed parameters are categorized in four groups, according to
whether they are global, associated to the midship, bow and stern areas of the ship. Parameters belonging to the global
group correspond to ship’s principal dimensions and their effect is of global nature, e.g., Lwl, B, T; see Fig. 1. The
second category includes parameters that are involved in the generation of the mid-ship part of the ship, e.g., Mid L,
Mid Pos; see again Fig. 1. Although not being global in nature, the effect of these parameters is global as the mid-
ship part is both the initial and supporting entity in the construction of the hull parametric model. The remaining two
categories correspond to the bow and stern parts of the ship and are of more local character as they define shape forms
in the areas of the bow and stern, respectively, see Fig. 2. The total number of exposed parameters is 24 and are split
as follows: 3 global, 9 for the midship and 7, 5 for the bow and stern parts respectively. Both exposed and internal
parameters are used to parametrically construct the Control Cage, which essentially determines the topology of the
T-mesh and acts as the control “polyhedron” for the generated T-spline surface. Specifically, the Control Cage is the
T-mesh for a cubic T-Spline, excluding the outer ring of faces that define the boundary conditions.

The Control Cage is uniquely defined by the connectivity and position of its vertices. The connectivity is ship-type
dependent and defines the topology. On the other hand, the coordinates of the vertices are parameter dependent and
along with the corresponding topology define the final hull-shape. Specifically, if X denotes the vector of parameters
with X ∈ Rm , m being the total number of parameters, the T-Spline control points,1 i.e., the Control Cage vertices
bi are defined as bi (X) = (bi x (X), biy(X), bi z(X)), where bi x,y,z(X) are appropriate designer-defined, polynomial
functions of the parameter-vector X; see, for example, Fig. 6.

SPM Control Cage construction process
Although the whole of the Control Cage is required for the definition of the hull surface, for simplicity’s sake, we

discuss its construction details in three parts, namely the midship, bow and stern part.
Mid-ship cage construction:
For the construction of the mid-ship part, we use six transverse polygonal lines, each comprising six line segments.

The corresponding vertices of these polygonal lines are connected with longitudinal connecting lines (red) as shown
in Fig. 3. The above polygonal lines define the parallel middle body and control the fore and aft flat parts of the side
and bottom of the ship, namely Flat of Side (FoS) and Flat of Bottom (FoB). Specifically, the controlling transverse
polygonal lines are the following:

• Fwd Trans is the boundary of the fore part of the mid-ship and initiates the shape transition region from mid-ship
to bow, while

1 Excluding the outer ring.
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Fig. 1. Exposed global and midship-part parameters.

Fig. 2. Exposed bow- and stern-part parameters.

Fig. 3. Mid-ship cage construction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

• Aft Trans analogously defines the boundary of the aft part of the mid-ship and initiates the shape transition region
from mid-ship to stern.

• M1, M2, M3 and M4 correspond to the same L-shaped polygonal line, which is defined by seven vertices; see Fig. 6
for the case of M1. Given that, for a cubic spline, the existence of a linear segment is guaranteed by the collinearity
of four successive control points, the four L-shaped sections along with the red, orthogonal (w.r.t. the sections)
connecting lines control the boundaries of the so-called parallel middle body, i.e., the hull-part with constant section
curves; see again Fig. 3.

Both Fwd Trans and Aft Trans have a planar part on the side and bottom of the ship and thus, along with corre-
sponding segments of M1, M2, M3, M4, they guarantee planarity in regions on the side and bottom of the ship. Specif-
ically, the planarity of 4 × 4 control points (given the quadrilateral topology) guarantees the existence of the planar
elements in ship’s Flat of Side and Flat of Bottom. For example, the upper parts of Fwd Trans, M3, M1 and M2, which
are coplanar, generate the forward part of the Flat of Side, while M1, M2, M4 and Aft Trans generate FoS’s aft part.

Bow- and stern-part cage construction:
The bow part (see Fig. 4) comprises the bulb, the upper part of the bow and the transition from the parallel middle

body. Fwd Trans along with the FP Crv, generated at the longitudinal position of ship’s Fore Perpendicular (FP),
control the shape transition from mid-ship to Bow. Bow Profile along with Bulb1, 2 polygonal lines define the
bulbous bow shape. Once again the red lines connect the corresponding vertices of the aforementioned polygonal
lines.
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Fig. 4. Bow-part cage construction.

Fig. 5. Stern-part cage construction.

Fig. 6. M1 polygonal line.

The stern part (see Fig. 5) is mainly defined by the Aft Trans, AP Crv and Aft Profile polygonal lines. AP Crv
is positioned at ship’s After Perpendicular (AP) and along with Aft Trans control the shape transition of mid-ship to
stern. For the stern shape the transom polygonal line is also employed.

The topological structures in both the stern and bow part are not strictly quadrilateral and thus, extraordinary points
and T-joints are generated.

3. The IGA–BEM wave resistance solver

For the wave resistance solver, a high-order Boundary Element Method (BEM) based on IsoGeometric Analysis
(IGA) is applied for the numerical solution of the Boundary Integral Equation (BIE) (1), as described in detail in [21].
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Fig. 7. Geometric configuration of the Neumann–Kelvin problem for a surface piercing body.

The IGA approach has been initially proposed by Hughes et al. [1], in the context of Finite Element Method; see
also [28,29].

Following the formulation in Baar and Price [25], the Neumann–Kelvin problem, see Fig. 7, is equivalently
formulated as the weakly singular BIE defined on the wetted surface S and the corresponding waterline ℓ,

µ(P)

2
−


S
µ(Q)

∂G(P, Q)

∂n(P)
d S(Q) −

1
k


ℓ

µ(Q)
∂G∗(P, Q)

∂n(P)
nx (Q)τy(Q)dℓ(Q) = U · n(P), P, Q ∈ S (1)

where µ is the density of the Neumann–Kelvin Green function G (P, Q), G∗(P, Q) is Green function’s regular part,
−U denotes the steady forward speed of the ship and k = g/∥U∥

2 denotes the characteristic wave number, with g
denoting the acceleration due to gravity. From the solution of the above integral equation, various quantities, such as
velocity, pressure distribution, ship wave pattern and ship wave resistance can be obtained.

The IGA philosophy attempts to define the approximate field quantities of the boundary-value problem in question
from the basis that is being used for representing the geometry of the body boundary. In the case of the boundary
integral equation (1), the dependent variable is the source–sink density µ, distributed over the body boundary S. The
latter is accurately and efficiently represented as a T-spline surface, see [3,21], as below:

S =

ne
e=1

Se, Se(ξ̃) =

ncp
i=1

bi Re
i (ξ̃), ξ̃ ∈ Ω̃e, (2)

where ncp is the number of control points, or T-mesh vertices, bi in the T-mesh, Ω̃e is the parametric domain of the
element e, Re

i is the restriction of the rational T-spline basis function Ri at Ω̃e, and ne is the number of elements. In
conformity with the IGA concept, the unknown source–sink surface distribution µ is approximated by the very same
T-splines basis used for the body-boundary representation (2), that is:

µ(P) =

ncp
i=1

µi R̃i (P), P ∈ S, (3)

where R̃i (P) ≡ Re
i (ξ̃(P)), P ∈ Se. Inserting Eq. (3) into the BIE (1) we get:

1
2

ncp
i=1

µi R̃i (P) −

ncp
i=1

µi n(P) · ui (P) = U · n(P), P ∈ S, (4)

where

ui (P) =


S

R̃i (Q)∇P G(P, Q)d S(Q) + k−1


ℓ

R̃i (Q)∇P G∗(P, Q)n1(Q)τ2(Q)dℓ(Q) (5)

are the so-called induced velocity factors and ∇A F(A, B) denotes the gradient of F with respect to A.
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We now collocate Eq. (4) by specifying ncp collocation points P j , j = 1, . . . , ncp, on S. For smooth ship hulls,
these points are chosen to be the 1-ring collocation points for both the non-extraordinary and extraordinary vertices
of the T-mesh, as defined in [3]. This definition of collocation points is a generalization of the Greville abscissae for
the cases of unstructured grids, T-junctions and extraordinary points. However, when T-splines have no T-junctions
or extraordinary points, the 1-ring collocation points described in [3] are equivalent to the two-dimensional Greville
abscissae. In this way, we obtain the following linear system of equations with respect to the unknown coefficients µi :

ncp
i=1

µi


R̃i (P j ) − 2n(P j ) · ui (P j )


= 2U · n(P j ), j = 1, . . . , ncp. (6)

In the above equation, the integrals involved in the calculation of the induced velocity factors (Eq. (5)) are localized
to integrals over Bézier elements. Moreover, since these singular integrals are defined in the Cauchy Principal Value
(CPV) sense, we employ the following technique for their accurate and robust numerical calculation: We exclude
an ϵ-neighborhood, with ϵ → 0, around the singularity at the collocation point Pj and make sure that the size of
integration’s intervals, near the singularity, tend to 0 as ϵ → 0. More details on the treatment of the singular integrals
and the achieved rates of convergence can be found in [30]. In order to maintain a uniform numerical scheme for the
calculation of the CPV integrals, we need to make sure that the collocation point Pj lies inside a Bézier element (and
not on an edge). If this is not the case, we shift appropriately the corresponding collocation point.

4. The optimization environment

Simulation-based optimization is of growing importance in naval engineering, since it allows to improve ship
performance for a moderate cost, in comparison with costly towing tank experiments. Moreover, the optimization is
conducted in a rigorous algorithmic framework that can outclass the experience and intuitions of naval architects.

A major difficulty to apply an automated shape optimization for complex engineering systems is the development
of a fully automated design loop. Indeed, in our application area, for each set of parameters, a geometric hull model
has to be constructed, allowing the generation of the computational domain used by the solver to provide the physical
response and the performance analysis. All these steps should be fully automated, without hand-made repairing nor
arranging process, in order to feed the optimization algorithm and finalize the design loop. In this context, the IGA
paradigm offers a significant improvement over the classical grid-based methods, since it relies on a direct relationship
between the design parameters and the solver, without any geometrical intermediate structures.

A second obstacle arises from the simulation process: for complex test-cases, CFD simulations are expensive, in
terms of computational time. Moreover, the numerical solutions obtained can be polluted by errors arising from the
discretization and iterative methods, yielding noisy performance evaluations. Sometimes, this may lead the optimizer
to spurious local optima or even yield the failure of the optimization procedure. Here again, the isogeometric context
may be helpful because it allows to avoid geometrical approximations, which reduces the error level, and permits to
construct high-order solutions yielding a better computational efficiency.

In summary, isogeometric analysis methods facilitate the development of a design optimization loop for practical
engineering problems and make the resulting tool more efficient. The next section presents briefly the optimizer con-
sidered in the present study and the software environment that integrates the geometric modeler, the solver and the
optimizer.

The employed optimizer, as already stated in the introductory section, is modeFrontier R⃝ from Esteco. For the first
local optimization problem (see Section 5.1) we utilize the simplex deterministic algorithm while the second global
optimization problem (see Section 5.2) is handled using the Evolution Strategy from the evolutionary algorithms
offered by the optimizer.

A design optimization software environment, depicted schematically in Fig. 8, has been set up including the three
main components: the optimizer, the solver and the modeler. Each of these components is wrapped in a corresponding
wrapper, that manages the communication and data exchange among the components of the optimization environment.
The wrappers are implemented using the python programming language and utilize the TCP/IP network protocol for
the required communications. More specifically:

1. Optimizer wrapper (Ow) communicates with the optimizer and broadcasts the generated parameter values to the
parametric modeler wrapper (Mw).
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Fig. 8. Schematic diagram of the optimization environment.

2. Mw listens for data connections from Ow. When data, i.e., parameter values, are received, it triggers the Rhino
construction script that produces the corresponding instance of the SPM and ultimately stores it in an analysis
suitable T-Spline file format (IGA file) at a specified FTP site. If the creation of the IGA file is successful, Ow
establishes a connection with the Solver wrapper (Sw) and reports the IGA file creation. If the construction script
fails a message is returned to Ow reporting the failure and requesting a new parameter set.

3. When a new IGA file is received, Sw initiates a connection to the site where the IGA file has been saved and
retrieves it. IGA–BEM solver is then started and performs the resistance calculations resulting, if successful, in the
broadcasting of the objective function(s) value(s) to Ow. If computation fails, a network message is returned to Ow
reporting the failure and requesting a new parameter set.

As it is obvious from the above discussion Ow, Mw and Sw work at the same time as client and server applications.
This constitutes a flexible and efficient software environment for practical tests, presented in the next section.

5. Container-ship optimization

The deployment platform for the optimization process is the following:

• The solver component runs in parallel and is deployed on a 8 + 1 linux cluster (1 head node and 8 working nodes).
Each working node is equipped with 2 Quadcore Intel Xeon 2.4 GHz CPUs with 12 Gb Ram memory.

• Both the optimizer and the solver are deployed on a typical PC
• The intercommunications are carried out over Fast Ethernet connections.

The average time required for each step of the optimization loop is approximately 186 s. This is split among the
processes as follows: On an average, 150 s are spent in the solving process and 25 secs are used by the modeler. The
remaining part is spent by the optimizer and intercommunications.

5.1. Constrained bow-optimization for minimizing wave resistance

The optimization environment has been firstly tested for optimizing the bow area of a container ship against the
criterion of minimum wave resistance, under the constraint of given displacement V = 88581 m3. The main particulars
of the ship have as follows: Lwl = 277 m, B = 32.2 m, T = 13.0 m, Cb = 0.734 and Vs = 30 knots. Since we are
interested in optimizing the bow ship area, the design parameters are chosen to be: Bulb height, Bulb width,
Bulb length, Fwd rise, Bulb tip height with initial values (0.5, 0.7, 0.7, 0.2, 0.0), respectively; see Fig. 9. The
range of variation of these parameters is given in the table depicted in Fig. 9. The bound constraints are handled by
modeFrontier while the displacement constraint is fulfilled within the SPM construction process.

Fig. 10 illustrates the evolution of the wave resistance during the optimization procedure. In this example we attain
a 27% reduction in wave resistance, however the initial bulbous-bow shape is not an already optimized one, which
justifies the huge attained reduction. Moreover, Figs. 11 and 12 depict the bow-area shape for the initial and optimized
instance of the parametric model.

As for the example’s running time, 446 optimization steps were required for the convergence of the procedure.
Thus, given the average time of 186 secs per optimization step, yields a total running time of around 23 h.
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Fig. 9. Constrained bow optimization bulb parameters.

Fig. 10. Evolution of wave-resistance for the bulbous bow local optimization.

Fig. 11. Initial bulbous-bow shape.

Fig. 12. Optimized bulbous-bow shape.
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Fig. 13. Initial ship.

Fig. 14. “Optimum” on pareto front.

Table 1
2nd test of the optimization environment: range of variation of design parameters.

Lwl (m) B (m) Mid pos (m) Mid L (m)

[230, 320] [28.9, 32.2] [0.45, 0.55] × Lwl [0.1, 0.3] × Lwl

Bilge R (m) Bulb length (m) Bulb width (m)
[0.05,0.4] × B/2 [0.5, 0.99] × Lwl/15 [0.4, 0.99] × B/5

5.2. Shape optimization for minimizing resistance and deviation from a target deadweight

As a second test of the optimization environment we globally optimize a ship hull with respect to the following
two criteria: (a) minimum total resistance RT and (b) minimum deviation from a reference deadweight of DW T =

55700 tons. Total resistance is evaluated using the solver described in Section 3 as regards its wave component and
the standard ITTC relation for the frictional component. The deadweight of the ship is calculated as the difference
between its displacement and its lightship, the latter being estimated via empirical formulas for containerships; see,
e.g., [31]. The main particulars of the initial ship hull have as follows: Lwl = 277 m, B = 32.2 m, T = 13.0 m,
Cb = 0.734 while the speed is set to Vs = 26 knots.

Seven design parameters are chosen for the optimization process, namely, the waterline length, Lwl, the breadth,
B, the longitudinal position of the parallel mid-body, Mid pos, the extent of the parallel mid-body, Mid L, the bilge
radius, Bilge R, the bulb length, Bulb length and the bulb width, Bulb width; see Figs. 1 and 2. The above
parameters range as in Table 1. The evolution strategy, offered by modeFrontier, is employed to calculate the Pareto
front of the above optimization problem, which is depicted in Figs. 15 and 16, respectively. Fig. 15 corresponds to a
first phase of the optimization process where we try to coarsely cover the feasible space and select a suitable candidate,
as an initial point, for the second phase of the optimization process; see Fig. 16. In the first phase, the algorithm
explores the feasible space with a large step size in order to catch a coarse approximation of the Pareto front, while
the second phase refines the step size starting from the previously selected point at the Pareto front. Obviously, the
optimum shapes lie on the pareto front, red line depicted in Fig. 16. If, for example, we choose to accept a 150 tons
deviation from the target deadweight, the optimum solution would be the following ship-hull instance: Lwl = 295.5 m,
B = 32.3 m, Mid pos+ 0.458, Mid L+ 0.1245, Bilge R+ 0.0575, Bulb length+ 0.973 and Bulb width+ 0.979
resulting in a resistance value of 1.915 × 106 and a deadweight deviation of 139 tons. The shapes of the optimum
solution and the initial one is depicted in Figs. 13 and 14.

The required number of steps in this case was around 4000 and thus, given that the optimization step remains same,
the total running time climbs to 8.5 days for the same deployment platform.

6. Conclusion

In this work, we have presented a ship-hull optimization process combining a T-spline based parametric ship-hull
model and an Isogeometric Analysis (IGA) hydrodynamic solver for the calculation of ship wave resistance.
The parametric modeler is developed within Rhinoceros R⃝ [10] modeling environment using Autodesk R⃝’s T-
Splines R⃝Plug-In. The surface representation of the generated ship-hull instances comprise one cubic T-spline with
extraordinary points, ensuring C2 continuity everywhere except for the vicinity of extraordinary points where G1

continuity is achieved. The developed solver is based on the Neumann–Kelvin formulation of the wave-resistance
problem, where the resulting Boundary Integral Equation is numerically solved using a higher order collocated
Boundary Element Method which adopts the IGA concept and the T-spline representation for the ship-hull surface.
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Fig. 15. Phase 1: Pareto front for the resistance and the deadweight-deviation criteria.

Fig. 16. Phase 2: Pareto front for the resistance and the deadweight-deviation criteria.

The developed optimization process has been tested in two cases: The first case demonstrates the local optimization
of the bulbous-bow area of a container ship, employing 5 relevant parameters, against the criterion of minimum wave
resistance, under the constraint of given displacement value. The corresponding running time is around 23 h for the
deployment platform described in Section 5. The second case involves 7 parameters and 2 objective functions. The
parameters used affect the overall hull shape and the minimization objectives include the wave resistance and the
deviation from a given deadweight. This time, for the sufficient description of the pareto front, a running time of
approximately 8.5 days is required for the same deployment platform.

The two tested cases demonstrate that the developed optimization procedure can be efficiently used for real-life
hull-forms solving real-life problems arising in the shipbuilding industry.
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