
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828
www.elsevier.com/locate/cma

Efficient matrix computation for tensor-product isogeometric
analysis: The use of sum factorization

P. Antolina, A. Buffab, F. Calabròc, M. Martinellib, G. Sangallid,b,∗

a Dipartimento di Ingegneria Civile ed Architettura, Università degli Studi di Pavia, Italy
b Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” del CNR, Pavia, Italy

c DIEI, Università degli Studi di Cassino e del Lazio Meridionale, Italy
d Dipartimento di Matematica, Università degli Studi di Pavia, Italy

Received 1 July 2014; received in revised form 2 December 2014; accepted 4 December 2014
Available online 15 December 2014

Highlights

• We discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis.
• We give an estimate of the quadrature computational cost and compare with the standard approach.
• We perform numerical tests.
• Sum-factorization significantly reduces the quadrature computational cost.

Abstract

In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric
analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the
sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly
reduces the quadrature computational cost.
c⃝ 2014 Elsevier B.V. All rights reserved.

Keywords: Numerical integration; Isogeometric analysis; Splines; NURBS; Sum-factorization

1. Introduction

Isogeometric analysis (IGA) is a computational technique for the solution of boundary value problems. It is re-
cent and at the same time well known in the computational engineering academic community, as an extension of the
classical Finite Element Method (FEM). IGA was proposed in the seminal paper [1], based on the idea of using the
functions adopted in Computer Aided Design (CAD), that is, splines and Non-Uniform Rational B-Splines (NURBS),

∗ Corresponding author at: Dipartimento di Matematica, Università degli Studi di Pavia, Italy.
E-mail addresses: pablo.antolinsanchez@unipv.it (P. Antolin), annalisa@imati.cnr.it (A. Buffa), calabro@unicas.it (F. Calabrò),

martinelli@imati.cnr.it (M. Martinelli), giancarlo.sangalli@unipv.it (G. Sangalli).

http://dx.doi.org/10.1016/j.cma.2014.12.013
0045-7825/ c⃝ 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2014.12.013&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2014.12.013
http://www.elsevier.com/locate/cma
mailto:pablo.antolinsanchez@unipv.it
mailto:annalisa@imati.cnr.it
mailto:calabro@unicas.it
mailto:martinelli@imati.cnr.it
mailto:giancarlo.sangalli@unipv.it
http://dx.doi.org/10.1016/j.cma.2014.12.013

818 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

not only to describe the domain geometry, but also to represent the numerical solution of the problem, in the isopara-
metric framework. For the interested reader, we refer to the book on IGA [2]. A recent overview on the mathematical
aspects of IGA is [3], that covers the known mathematical theory of IGA but also contains an updated bibliography
with references to the major contributions and applications of IGA in various engineering fields.

One of the interesting features of IGA, compared to high order FEM, is that it allows for higher global regularity
of the shape functions, up to C p−1 inter-element continuity for p-degree splines and NURBS. This leads to a higher
accuracy per degree-of-freedom (see [4,5]), improved spectrum properties of the discrete operators (see [6]), and the
possibility of constructing smooth discretizations of the fundamental structures of the differential operators (such as
De Rham diagrams, see e.g. [7,8]).

IGA can be implemented re-using the existing finite element technology. This may be not the most efficient way
to use IGA but surely is one key reason of its fast diffusion and the easiest way to apply IGA on complex problems.
In particular, the construction of the matrix of the linear system arising in a Galerkin isogeometric method is typically
made by the element-by-element quadrature and assembling as in FEMs. However for high regular and high degree
(p ≥ 3) splines and NURBS, it is experienced that most of the CPU time goes in the quadrature and assembling itself.
This may be understood comparing IGA with C0 to C p−1 p-degree splines (or, equivalently, FEM and typical IGA)
on the same mesh: element-wise quadrature has the same computational cost in the two cases, even though the C p−1

case results in a much smaller linear system. The high cost of quadrature has motivated the research on quadrature
rules that keep into account the interelement regularity of IGA functions, see [9–11], improving efficiency w.r.t. Gauss
quadrature. In this paper we consider another significant improvement: one can exploit the tensor-product structure
of multivariate splines by adopting the so called sum-factorization, a well-known technique for spectral elements or
some high-degree finite elements (see e.g. [12–14]), but never used with IGA, at our knowledge.

The aim of this paper is to discuss and benchmark the use of sum-factorization in IGA. We show that there is a
clear advantage versus the standard quadrature approach, and show that the cost of quadrature (by sum-factorization)
is balanced with the cost of the linear solver for high degree IGA. We also discuss the implementation of the proposed
sum-factorization within our isogeometric library i g a t o o l s [15]. We do not consider parallel implementation
though this is clearly a key ingredient for a modern and efficient isogeometric code (see for example [16]).

There are other possibilities to circumvent the element-by-element quadrature issue that however require a change
of paradigm. For example, if the mesh is uniform, one can efficiently and directly compute the entries of the linear
system matrix (see [17–20]) or switch from Galerkin to a collocation formulation [21,22].

The outline of the paper is as follows. In Section 2 we set up the notation and briefly describe the setting of an
academic problem. Section 3 introduces the sum-factorization algorithm and discuss its computational cost in terms
of the degree p. Section 4 is devoted to the numerical testing and comparison with other strategies. Finally, we draw
conclusions in Section 5. An Appendix is included in order to describe the treatment of the linear elasticity stiffness
matrix.

2. Preliminaries

We consider the elliptic problem
−µ∇

2u + σu = f in Ω
u = 0 on ∂Ω

(2.1)

as a model problem. Its Galerkin approximation on a discrete space V requires the computation of the following
matrix entries:

• the mass matrix (or mass integrals)

Mi, j =


Ω

σ(x)Ri(x)Rj(x) dx; (2.2)

• the stiffness matrix (or stiffness integrals)

Si, j =


Ω

µ(x)∇ Ri(x) · ∇ Rj(x) dx; (2.3)

where Ri and Rj denote two basis function in V, µ : Ω → R and σ : Ω → R.

P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828 819

In IGA, Ω is given by a spline or NURBS parametrization. For the sake of simplicity, we assume Ω is given by a
d-dimensional single patch spline representation:

Ω = F([0, 1]
d), with F(x̂) =


i

Ci B̂i(x̂),

where Ci are the control points and B̂i are p-degree tensor-product B-spline basis functions defined on the parametric
patch [0, 1]

d .
Being IGA based on the isoparametric paradigm, the basis functions Ri are defined as Ri = B̂i ◦F−1. The integrals

above are then computed by change of variable and element-by-element assembling. For more details, see [2].
Then, we consider the computation of the local matrices related to a parametric element Ω̂ ⊂ [0, 1]

d , Ω̂ :=

[a1, b1] × · · · × [ad , bd]. With an abuse of notation, we denote by B̂α the B-splines that are non-zero on Ω̂ and index
them by the local multi-index α = (α1, . . . , αd), α j ∈ {1, . . . , p + 1} ∀ j = 1, . . . , d, and set x̂ = (x̂1, . . . , x̂d). The
total number of local basis functions is (p + 1)d , i.e. #{α} = (p + 1)d .

The local mass matrix, that corresponds to the global one (2.2) after change of variable x̂ = F−1(x), is
M = {mα,β} ∈ R(p+1)d

×(p+1)d
where:

mα,β =


Ω̂

B̂α(x̂) B̂β(x̂) c(x̂) dx̂, (2.4)

with c(x̂) = σ̂ (x̂)|D̂F(x̂)|.
Moreover, for the local stiffness matrix S = {sα,β} ∈ R(p+1)d

×(p+1)d
we have:

sα,β =


Ω̂


D̂F−T

∇̂ B̂α

T 
D̂F−T

∇̂ B̂β


µ̂ |D̂F| dx̂ =


Ω̂

∇̂ B̂T
α


D̂F−1D̂F−T 

µ̂ |D̂F|


∇̂ B̂β dx̂.

Also in this case we change notations and we write:

sα,β =

d
i, j=1


Ω̂

∂ B̂α

∂ x̂i
(x̂)ci, j (x̂)

∂ B̂β

∂ x̂ j
(x̂) dx̂, (2.5)

so that C(x̂) :=

ci, j (x̂)


i, j=1,...,d is the matrix:

C(x̂) =

D̂F−1(x̂)D̂F−T (x̂)


µ̂(x̂) |D̂F(x̂)|.

Finally, we express the tensor-product structure of the B-splines basis functions writing:

B̂α(x̂) = B̂α1,...,αd (x̂1, . . . , x̂d) =

d
k=1

B̂αk (x̂k). (2.6)

Remark 2.1. If NURBS are used instead of splines, the situation is similar. Writing NURBS in terms of B-splines
then sum-factorization can be used to integrate the B-splines that form the basis. For the mass matrix, the use of
NURBS only affects the coefficient c(x̂), that takes into account the NURBS weight function, and the structure is still
the one in (2.4). For the stiffness matrix instead, the derivation rule will produce a few terms, similar to (2.4) or (2.5).

3. Computation of the local matrices by quadrature

The elements of the local matrices are multidimensional integrals in a d-rectangular domain so that in order
to calculate the integrals we need a multidimensional quadrature rule. For the sake of simplicity we consider a
quadrature formula constructed via the same univariate quadrature rule in each direction (properly scaled) but ev-
erything can be straightforwardly replaced by any tensor-product quadrature scheme. With this aim we introduce a
r -points univariate quadrature rule in the reference domain [0, 1]: we will denote by ζγ , γ = 1, . . . , r the quadra-
ture nodes and with ωγ the relative weights. This formula, then, will be rescaled to be used in the domains [ai , bi]:

ζ
(i)
γ = (bi − ai)ζγ + ai , ω

(i)
γ = (bi − ai)ωγ . In the d-dimensional domain Ω̂ we will have the set of rd quadrature

points ζ γ = (ζ
(1)
γ1 , . . . , ζ

(d)
γd) and relative weights ωγ =

d
i=1 ω

(i)
γi .

820 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

In order to recover the expected convergence rates we take a quadrature rule of degree of exactness 2p +1, see [23,
Theorem 4.1.6]. In the following we will use r -points Gaussian quadrature. In this case the usual choice is r = p + 1,
which ensures exact integration of (2.4)–(2.5) when the coefficients c(x̂) and


ci, j (x̂)


i, j=1,...,d are element-wise

constant. For non-constant but regular (element-by-element) coefficients, the choice r = p + 1 is proved to guarantee
optimality of the Galerkin formulation with numerical quadrature (see, e.g., [23, Section 4.1]).

The entries of the local mass and stiffness matrices are (p + 1)2d thus if the quadrature procedure is applied
directly one obtains that the overall cost for the local matrix construction results in rd(p + 1)2d . Because r = O(p),
one expects to have an overall cost of O(p3d) for the construction of each local matrix, as usually reported. Aim of this
paper is to reduce this cost to O(p2d+1) by exploiting the tensor product structure via the so-called sum factorization
approach [24]. This technique is widely employed in spectral methods, and has also been applied also for high order
FEMs [12,13]. We will discuss in this paper its’ application to the case of IGA, maintaining the element-by-element
assembly procedure.

In order to clarify the use of the sum factorization algorithm in our framework, we will now present a general
application in the 3D case for the calculation of the integral


Ω̂ B̂α(x̂)B̂β(x̂)c(x̂) dx̂. Simple application of the

quadrature rule leads to:
Ω̂

B̂α(x̂)B̂β(x̂)c(x̂) dx̂ ≈


γ∈{1,...,r}3

ωγ B̂α(ζ γ)B̂β(ζ γ)c(ζ γ) = IM (α, β). (3.1)

In order to exploit the tensor product structure we start from (2.6) and notice that:
Ω̂

B̂α(x̂)B̂β(x̂)c(x̂) d x̂ =

 b1

a1

B̂α1(x̂1)B̂β1(x̂1)

 b2

a2

B̂α2(x̂2)B̂β2(x̂2)

×

 b3

a3

B̂α3(x̂3)B̂β3(x̂3)c(x̂1, x̂2, x̂3) dx̂3


dx̂2


dx̂1.

Then, if we apply the univariate quadrature rules in this nested integrals we obtain:

IM (α, β) =

r
γ1=1

ω(1)
γ1

B̂α1(ζ
(1)
γ1

)B̂β1(ζ
(1)
γ1

)

 r
γ2=1

ω(2)
γ2

B̂α2(ζ
(2)
γ2

)B̂β2(ζ
(2)
γ2

)

×

 r
γ3=1

ω(3)
γ3

B̂α3(ζ
(3)
γ3

)B̂β3(ζ
(3)
γ3

)c(ζ (1)
γ1

, ζ (2)
γ2

, ζ (3)
γ3

)


.

To calculate this sums ∀α, β, we introduce the following recursion:

(i) C(0)(ζ (1)
γ1

, ζ (2)
γ2

, ζ (3)
γ3

) = c(ζ (1)
γ1

, ζ (2)
γ2

, ζ (3)
γ3

)

(ii) C(1)(ζ (1)
γ1

, ζ (2)
γ2

; α3, β3) =

r
γ=1

ω(3)
γ B̂α3(ζ

(3)
γ)B̂β3(ζ

(3)
γ)C(0)(ζ (1)

γ1
, ζ (2)

γ2
, ζ (3)

γ)

(iii) C(2)(ζ (1)
γ1

; α2, β2; α3, β3) =

r
γ=1

ω(2)
γ B̂α2(ζ

(2)
γ)B̂β2(ζ

(2)
γ)C(1)(ζ (1)

γ1
, ζ (2)

γ ; α3, β3)

(iv) IM (α, β) = IM (α1, β1; α2, β2; α3, β3) =

r
γ=1

ω(1)
γ B̂α1(ζ

(1)
γ)B̂β1(ζ

(1)
γ)C(2)(ζ (1)

γ ; α2, β2; α3, β3).

Then we can count the operations:

1. Step (i) costs one function evaluation in r3 quadrature points; these r3 values have to be stored.
2. Step (ii) costs 3r multiplications and (r − 1) additions in r2 quadrature points and for (p + 1)2 coefficients α3, β3;

r2
× (p + 1)2 values have to be stored.

3. Step (iii) costs 3r multiplications and (r − 1) additions in r quadrature points and for (p + 1)4 coefficients
α3, β3, α2, β2; r × (p + 1)4 values have to be stored.

P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828 821

4. Step (iv) costs 3r multiplications and (r − 1) additions for (p + 1)6 coefficients α, β; the final (p + 1)6 values are
the requested approximations of the integrals (2.4).

The overall cost is then O(r p6). We notice also that the symmetries can be exploited in each direction. Indeed:

C(1)(ζ (1)
γ1

, ζ (2)
γ2

; α3, β3) = C(1)(ζ (1)
γ1

, ζ (2)
γ2

; β3, α3)

C(2)(ζ (1)
γ1

; α2, β2; α3, β3) = C(2)(ζ (1)
γ1

; α2, β2; β3, α3) = C(2)(ζ (1)
γ1

; β2, α2; α3, β3)

IM (α1, β1; α2, β2; α3, β3) = IM (α1, β1; α2, β2; β3, α3) = IM (α1, β1; β2, α2; α3, β3)

= IM (β1, α1; α2, β2; α3, β3).

Remark 3.1. If, instead of Gaussian quadrature, one adopts the optimal quadrature proposed in [10,9], the overall
computational cost can be reduced up to a factor 1/2.

The above procedure is used for the computation of the mass matrix with numerical quadrature:

mα,β ≈


γ∈{1,...,r}d

ωγ c(ζ γ) B̂α(ζ γ) B̂β(ζ γ). (3.2)

With direct application of the procedure seen before we obtain the requested algorithm, reported in the following box.

Input: p + 1 number of basis functions B̂; r = number of quadrature points;
Input: Ω̂ := [a1, b1] × . . . × [ad , bd] = element in the reference domain ;
Input: (ζγ , ωγ) r -points quadrature in the domain [0, 1];

{Computation of the function evaluations}
Calculate quadrature nodes and weights along directions i = 1, . . . , d:

ζ (i)
γ = (bi − ai)ζγ + ai ; ω(i)

γ = (bi − ai)ωγ .

Pre-calculate the basis functions at the quadrature nodes (for re-use purpose):

B̂α(ζ (i)
γ) ∀i ∈ {1, . . . , d}, ∀γ ∈ {1, . . . , r}, ∀α ∈ {1, . . . , p + 1}

Calculate the function c(x̂) on the nodes:

C(0)(ζ (1)
γ1

, . . . ζ (d)
γd

) = c(ζ (1)
γ1

, . . . ζ (d)
γd

) , C(0)
∈ Rrd

.

{Computation of the mass terms via sum factorization}

for i = 1, . . . , d do
Calculate C(i)

∈ Rrd−i
×(p+1)2i

:

C(i)

ζ (1)
γ1

, . . . , ζ (d−i)
γd−i

; αd−i+1, βd−i+1; . . . ; αd , βd


=

r
γ=1


ω(d−i+1)

γ B̂αd−i+1(ζ
(d−i+1)
γ)B̂βd−i+1(ζ

(d−i+1)
γ) ·

C(i−1)

ζ (1)
γ1

, . . . , ζ (d−i)
γd−i

, ζ (d−i+1)
γ ; αd+i+2, βd+i+2; . . . ; αd , βd

 
end for[i]
Output:

mα,β ≈ IM (α, β) = C(d) (α1, β1; . . . ; αd , βd)

For the calculation of the stiffness matrix, we need to apply the procedure to all the d2 integrals appearing in Eq.
(2.5). Exploiting the tensor product structure of the gradient we can write the following:

∂ B̂α

∂ x̂i
=

d
k=1

Dδik B̂αk (x̂k), (3.3)

822 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

where we have denoted by:

Dδik f (x̂) ≡


f ′(x̂) if i = k
f (x̂) otherwise.

Then the elements of the stiffness matrix can be written as:

sα,β =

d
i, j=1


Ω̂


d

k=1

Dδik B̂αk (x̂k)Dδ jk B̂βk (x̂k)


ci, j (x̂)dx̂. (3.4)

The integrals above are then treated by Gaussian quadrature, for example when d = 3:

sα,β ≈

3
i, j=1

 r
γ1=1

ω(1)
γ1

Dδi1 B̂α1(ζ
(1)
γ1

)Dδ j1 B̂β1(ζ
(1)
γ1

) ·

 r
γ2=1

ω(2)
γ2

Dδi2 B̂α2(ζ
(2)
γ2

)Dδ j2 B̂β2(ζ
(2)
γ2

)

·

 r
γ3=1

ω(3)
γ3

Dδi3 B̂α3(ζ
(3)
γ3

)Dδ j3 B̂β3(ζ
(3)
γ3

)c(ζ (1)
γ1

, ζ (2)
γ2

, ζ (3)
γ3

)


. = IS(α, β). (3.5)

The sum factorization procedure to compute the quantity in Eq. (3.5) is summarized in the following box.

Input: p + 1 number of basis functions B̂; r = number of quadrature points;
Input: Ω̂ := [a1, b1] × . . . × [ad , bd] = element in the reference domain ;
Input: (ζγ , ωγ) r -points quadrature in the domain [0, 1];

{Computation of the function evaluations}
Calculate quadrature nodes and weights along directions:

ζ (i)
γ = (bi − ai)ζγ + ai ; ω(i)

γ = (bi − ai)ωγ .

Pre-calculate the basis functions and derivatives at the quadrature nodes (for re-use purpose):

D0 B̂α(ζ (i)
γ) ≡ B̂α(ζ (i)

γ) , D1 B̂α(ζ (i)
γ) ≡ B̂ ′

α(ζ (i)
γ)

∀i ∈ {1, . . . , d}, ∀γ ∈ {1, . . . , r}, ∀α ∈ {1, . . . , p + 1}

Calculate the functions {ci, j (x̂)}i, j=1,...,d on the nodes:

C(0)
i, j (ζ

(1)
γ1

, . . . ζ (d)
γd

) = ci, j (ζ
(1)
γ1

, . . . ζ (d)
γd

) , C(0)
i, j ∈ Rrd

.

{Computation of the stiffness terms via sum factorization}

for i, j = 1, . . . , d do
for l = 1, . . . , d do

Calculate C(l)
i, j ∈ Rrd−l

×(p+1)2l
:

C(l)
i, j


ζ (1)
γ1

, . . . , ζ (d−l)
γd−l

; αd−l+1, βd−l+1; . . . ; αd , βd


=

r
γ=1


ω(d−l+1)

γ Dδ(il)
B̂αd−l+1(ζ

(d−l+1)
γ)Dδ(jl)

B̂βd−l+1(ζ
(d−l+1)
γ) ·

C(l−1)
i, j


ζ (1)
γ1

, . . . , ζ (d−l)
γd−l

, ζ (d−l+1)
γ ; αd+l+2, βd+l+2; . . . ; αd , βd

 
end for[l]

end for[i, j]
Output:

sα,β ≈ IS(α, β) =

d
i, j=1

C(d)
i, j (α1, β1 . . . αd , βd)

P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828 823

Fig. 1. CPU time vs. degree for calculating the local stiffness-matrix and mass-matrix on a single element using sum-factorization and standard
quadrature.

4. Numerical results

In this section, in order to evaluate numerically the behaviour of the proposed procedure we present some tests that
compare the standard quadrature procedure with the above described sum factorization.

In Section 4.1 we consider the construction of the mass and stiffness matrices in a single mesh element, comparing
the CPU costs when the polynomial degree p increases.

In Section 4.2 we compute the solution of a linear elasticity problem on a mesh of 30 × 15 × 30 elements, while
in Section 4.3 we compute the solution of an advection–diffusion problem on a mesh of 60 × 84 × 12 elements. For
the elasticity problem and the advection–diffusion problem, we have compared the time needed for the computation
of the stiffness matrix with the different quadrature strategies and also the time needed by different solver strategies
to converge to the solution.

The results for all cases refers to a Linux workstation equipped with Xeon E5-2470 processors (running at
2.3 GHz), where we have used only one core for the simulations in order to avoid any time saving due to parallelization.
The previous algorithms have been implemented in the i g a t o o l s, for details see Section 4.4.

4.1. Computation of the local matrices

In Fig. 1 we plot the CPU time needed for the calculations on a single 3D element of the mass and stiffness matrices.
This test confirms what predicted by the general results in Section 3: the time increases as p3d if no attention is paid
to the tensor product structure, while the sum factorization procedure behaves as p2d+1.

Only for p = 1 the usual procedure over-performs the sum factorization: this is due to the fact that the complexity
of the sum-factorization algorithm is not compensated by the saving due to the smaller number of operations w.r.t.
the standard quadrature approach. For degree p = 2 the two approaches cost approximately the same amount of
CPU time, while for degree p ≥ 3 the sum-factorization is less expensive. At degree p = 4 one can see that the
computational cost with the sum factorization procedure is one order of magnitude below the corresponding one
obtained with the standard quadrature.

4.2. Linear elasticity

As a first example it is shown the use of sum factorization technique for a linear elasticity problem:∇ · σ + f = 0 in Ω ,

u = g on ∂ΩD,

σ · n = t on ∂ΩN ,

(4.1)

being σ and u the stress and deformation displacement fields. For the linear elasticity case the Cauchy stress tensor σ

can be expressed as

σ(u) = C : ε(u), (4.2)

824 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

Fig. 2. Geometry (before and after deformation) and displacements solution for the linear elasticity problem (4.1).

Fig. 3. Linear elasticity problem in 3D: comparison of the assembling and solving CPU time vs. degree for a grid of 30 × 15 × 30 elements.
The time of the iterative linear solver is the sum of the preconditioner computation (ILU(0)) and the Conjugate Gradient iterations. Both, direct
and iterative solvers, are ran using a single thread. The number of degrees of freedom for each degree p are: ndofp=2 = 52 224, ndofp=3 =

60 588, ndofp=4 = 69 768, ndofp=5 = 79 800 and ndofp=6 = 90 720.

where C is the fourth-order elasticity tensor and ε is the infinitesimal strain tensor, that is the symmetric part of the
gradient of u.

In this example an isotropic material has been chosen, therefore the components of C are Ci jkl = λδi jδkl +

µ(δikδ jl + δilδ jk), ∀i, j, k, l = 1, . . . , d. λ and µ are the Lamé parameters, which numerical values for this problem
are λ = 576.92 and µ = 384.62 (the corresponding ones to E = 1.0 · 103 and ν = 0.3). Homogeneous Dirichlet
conditions have been applied to all the components of one of the faces, and non homogeneous Neumann conditions
to the opposite face, with t = {1, 0, 0}. In the other faces homogeneous Neumann conditions are applied and
f = {0, 0, 0}.

The problem domain Ω and the solution of the problem are shown in Fig. 2 for a mesh of n = 30 × 15 × 30
elements (the second parametric direction corresponds to the thickness of the beam). The quadrature cost for a whole
mesh of n elements will be obviously proportional to n. The algorithm for the evaluation of the stiffness matrix of the
elasticity problem (4.1) using sum-factorization is described in the Appendix.

In Fig. 3 the CPU times for the evaluation of stiffness matrices for both, sum factorization and standard quadrature,
are shown together with the solver time using a direct (Intel MKL PARDISO) and an iterative linear solver (Conjugate
Gradient + ILU(0) preconditioner), both provided by the Trilinos library [25]. For the discussion of these and other
strategies for the linear solvers we refer to [26].

Some important remarks that arise from the results in Fig. 3 are:

• in terms of CPU cost, for p ≥ 3 the standard quadrature is more demanding that the sum-factorization, and
equivalent for p = 2, as already noticed and explained in Section 4.1;

• the CPU time ratio between sum-factorization and the iterative solver is constant w.r.t. p;

P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828 825

Fig. 4. Geometry and solution at the midplane z = 0.5 for the advection–diffusion problem (4.3).

Fig. 5. Advection–diffusion problem in 3D: comparison of the CPU time vs. degree for a grid of 60 × 84 × 12 elements. The time of the iterative
linear solver is the sum of the preconditioner computation with the GMRES iterations. The direct solver (PARDISO) is used with a single thread.
Convection/diffusion ratio b

µ = 103. The number of degrees of freedom for each degree p is: ndofp=1 = 67 405, ndofp=2 = 74 648, ndofp=3 =

82 215, ndofp=4 = 90 112, ndofp=5 = 98 345 and ndofp=6 = 106 920.

• for this problem, the iterative solver outperform the direct solver for p < 5 (for p > 5 the memory requirement of
the direct solver factorization exceeded the available memory on our system).

For the iterative solver the convergence tolerance considered is 10−7 and, in all the cases, the convergence was
achieved without any restart of the method.

4.3. Advection–diffusion problem

For the tests we have selected the domain Ω to be the region of space with cylindrical coordinates 1 ≤ ρ ≤ 4, 0 ≤

θ ≤
π
2 and 0 ≤ z ≤ 1 (see Fig. 4), and considered the elliptic problem:

−µ∇
2u + b · ∇u = 0.5 in Ω ,

u = 0 on ∂Ω .
(4.3)

with b = (1, 0, 0)T and µ = 10−3.
The problem has been solved using a mesh of n = 60×84×12 elements, adapted in order to resolve the boundary

layer along the side with cylindrical coordinate ρ = 4 and avoid spurious oscillations on the numerical IGA solution
of (4.3). The CPU times for the simulation are shown in Fig. 5.

826 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

The curves refer to the CPU time needed for the evaluation of the stiffness matrix using the sum factorization and
the standard quadrature approaches and the time needed by some linear solvers to converge to the solution.

The stiffness matrix arising from the discretization of the problem (4.3) is non-symmetric, and for the solution of
the associated linear system we have tested different solver strategies: both iterative (GMRES+ILU(k) preconditioner)
and direct (Intel MKL PARDISO), provided by the Trilinos library [25].

Regarding the iterative strategy, we have experienced that for this problem is difficult to find a unique combination
of GMRES parameters + ILU(k) preconditioner that works well for all degrees p (we have considered p = 1, . . . , 5).
Increasing the fill-in level k of ILU(k) increases robustness but, at the same time, results in a higher CPU cost for the
linear solver.

Regarding the solution of the linear system with a direct solver we experienced that, at least for the degrees we
have tested (from 1 to 6), the solution is always obtained, and the CPU cost for p ≥ 4 was lower than the iterative
approaches. We were not able to compute a solution for p > 6 because the memory required by the solver during the
factorization phase exceeded the memory available on our system.

Finally, we have noticed the following on the cost for the computation and assembly of the stiffness matrix:

• analogously to the example above, in terms of CPU cost, for p ≤ 2 the standard quadrature is less expensive
(p = 1) or equivalent (p = 2) than sum-factorization;

• for p ≥ 3 the sum-factorization outperform the standard quadrature approach and its CPU cost is always smaller
than the CPU cost for the linear solver, while the stiffness matrix computation with standard quadrature costs more
than the best linear solver approach when p ≥ 4 (that is obtained using the direct solver).

As in the previous example, the convergence tolerance of the iterative solver is 10−7 and no restart was applied to
the method.

4.4. Implementation details

All the previous algorithms and tests are implemented by the use of the i g a t o o l s library. i g a t o o l s
is an open source general purpose isogeometric library, written in C++11 and designed using the object-oriented
paradigm. Currently i g a t o o l s provides two classes that group the methods for the computation of the local
matrices associated with the elliptic operators

• EllipticOperatorsStdIntegration for the computation using the standard quadrature technique;
• EllipticOperatorsSFIntegration for the computation using the sum-factorization technique.

For further information on the i g a t o o l s library, see [15] and the official website http://www.igatools.org.

5. Summary and conclusions

We have considered the use of the sum-factorization for the calculation of the integrals arising in Galerkin
isogeometric analysis. The minor changes needed in the actual coding in order to implement the proposed technique
are presented in general and then detailed in the framework of the i g a t o o l s code. This modification leads to a
saving in terms of computational cost that allows high degree computations. The proposed numerical tests confirm the
advantage of the sum-factorization when compared to the standard technique.

Acknowledgements

A. Buffa, F. Calabrò and G. Sangalli were partially supported by the GNCS project “Dall’Approssimazione
all’Algebra Lineare: metodi numerici per l’Analisi Isogeometrica”. P. Antolin, A. Buffa, M. Martinelli and G. Sangalli
were also partially supported by the Italian MIUR through the FIRB “Futuro in Ricerca” Grant RBFR08CZ0S and
A. Buffa and G. Sangalli by the Italian MIUR through the PRIN-2012 “Metodologie Innovative Nella Modellistica
Differenziale Numerica” Grant, by the European Research Council through the FP7 Ideas Starting Grant GeoPDEs
(205004) and Consolidator Grant HIgeoM (616563), by the European Commission through the FP7 Factories of the
Future project TERRIFIC (FP7-2011-NMP-ICT-FoF 284981). Finally, P. Antolin and G. Sangalli received support
also from the FP7 Ideas Starting Grant ISOBIO (259229). This support is gratefully acknowledged.

http://www.igatools.org

P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828 827

Appendix. Sum-factorization for the linear elasticity stiffness matrix

In solid mechanics, it is a common practice the use of Voigt notation for expressing the Galerkin approximation of
the strong equation (4.1) as S = {Kα,β} ∈ Rd(p+1)d

×d(p+1)d
, being Kα,β ∈ Rd×d such as

Kα,β =


Ω

BT
α(x)D(x)Bβ(x) dx, (A.1)

see [27] for further details.
For d = 3 the matrix D, that is the Voigt representation of the fourth-order elasticity tensor C in (4.2), can be

expressed as

D(x) =


C1111(x) C1122(x) C1133(x) C1112(x) C1113(x) C1123(x)

C2222(x) C2233(x) C2212(x) C2213(x) C2223(x)

C3333(x) C3312(x) C3313(x) C3323(x)

C1212(x) C1213(x) C1223(x)

sym. C1313(x) C1323(x)

C2323(x)

 (A.2)

and Bα as

Bα(x) =



∂ Bα
∂x1

(x) 0 0

0 ∂ Bα
∂x2

(x) 0

0 0 ∂ Bα
∂x3

(x)
∂ Bα
∂x2

(x) ∂ Bα
∂x1

(x) 0
∂ Bα
∂x3

(x) 0 ∂ Bα
∂x1

(x)

0 ∂ Bα
∂x3

(x) ∂ Bα
∂x2

(x)


=

3
i=1

Mi
∂ Bα
∂xi

(x), (A.3)

where

M1 =


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

 , M2 =


0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 0 1

 , M3 =


0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

 .

Moreover, ∂ Bα
∂xi

(x) =
3

k=1(D̂F−T (x̂))i,k
∂ B̂α

∂ x̂k
(x̂) for i = {1, 2, 3}, therefore

Bα(x) =

3
i=1

Mi
∂ Bα
∂xi

(x) =

3
i=1

Mi

3
k=1

(D̂F−T (x̂))i,k
∂ B̂α

∂ x̂k
(x̂) =

3
k=1

M̂k(x̂) ∂ B̂α

∂ x̂k
(x̂)

with M̂k(x̂) =
3

i=1 Mi (D̂F−T (x̂))i,k, k = {1, 2, 3}.
With these new definitions we can write the integral (A.1) as:

Ω
BT

α (x)D(x)Bβ(x) dx =

3
i=1

3
j=1


Q

∂ B̂α

∂ x̂i
(x̂)D̂i, j (x̂)

∂ B̂β

∂ x̂ j
(x̂) dx̂ (A.4)

where D̂i, j (x̂) is the 3×3 matrix defined by D̂i, j (x̂) = M̂T
i (x̂)D(x̂)|D̂F(x̂)|M̂ j (x̂), i, j = {1, 2, 3}. Using (A.4) we can

use the sum-factorization technique in order to exploit the tensor-product structure of the terms ∂ B̂α

∂ x̂i
(x̂) and

∂ B̂β

∂ x̂ j
(x̂).

An analogous development can be done for d = 2.

828 P. Antolin et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828

References

[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement,
Comput. Methods Appl. Mech. Engrg. 194 (2005) 4135–4195.

[2] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis. Toward Integration of CAD and FEA, Wiley, 2009.
[3] L. Beiraõ da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numer. 23 (2014)

157–287.
[4] J.A. Evans, Y. Bazilevs, I. Babuška, T.J.R. Hughes, n-Width, sup-infs, and optimality ratios for the k-version of the isogeometric finite element

method, Comput. Methods Appl. Mech. Engrg. 198 (2009) 1726–1741.
[5] L. Beiraõ da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h–p–k-refinement in isogeometric analysis, Numer. Math. 118 (2)

(2011) 271–305.
[6] T.J.R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation:

comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg. 197 (2008) 4104–4124.
[7] A. Buffa, J. Rivas, G. Sangalli, R. Vázquez, Isogeometric discrete differential forms in three dimensions, SIAM J. Numer. Anal. 49 (2) (2011)

818–844.
[8] J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations, Math. Models Methods

Appl. Sci. 23 (08) (2013) 1421–1478.
[9] T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg.

199 (2010) 301–313.
[10] F. Auricchio, F. Calabrò, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-

based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 249–252 (2012) 15–27.
[11] D. Schillinger, S.J. Hossain, T.J.R. Hughes, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis,

Comput. Methods Appl. Mech. Engrg. 277 (2014) 1–45.
[12] T. Eibner, J.M. Melenk, Fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison, in: HERCMA 2005 Conference

Proceedings, Techn. Univ. Chemnitz SFB 393, 2006.
[13] J.M. Melenk, K. Gerdes, C. Schwab, Fully discrete hp-finite elements: fast quadrature, Comput. Methods Appl. Mech. Engrg. 190 (32) (2001)

4339–4364.
[14] M. Ainsworth, G. Andriamaro, O. Davydov, Bernstein–Bézier finite elements of arbitrary order and optimal assembly procedures, SIAM J.

Sci. Comput. 33 (6) (2011) 3087–3109.
[15] M.S. Pauletti, M. Martinelli, N. Cavallini, P. Antolı̀n, Igatools: an isogeometric analysis library, I.M.A.T.I.-C.N.R. Technical Report No.

3PV14/1/0, 2014, pp. 1–27.
[16] A. Karatarakis, P. Metsis, M. Papadrakakis, GPU-acceleration of stiffness matrix calculation and efficient initialization of EFG meshless

methods, Comput. Methods Appl. Mech. Engrg. 258 (2013) 63–80.
[17] F. Calabrò, C. Manni, The choice of quadrature in NURBS-based isogeometric analysis, in: M. Papadrakakis, M. Kojic, and Tuncer I. (Eds.),

Proceedings SEECCM III, 2013.
[18] F. Calabrò, C. Manni, F. Pitolli, Computation of quadrature rules for integration with respect to refinable functions on assigned nodes, Appl.

Numer. Math. (2014) http://dx.doi.org/10.1016/j.apnum.2014.11.010.
[19] A. Mantzaflaris, B. Jüttler, Exploring matrix generation strategies in isogeometric analysis, in: Michael Floater, Tom Lyche, Marie-

Laurence Mazure, Knut Mørken, Larry L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces, in: Lecture Notes in Computer
Science, vol. 8177, Springer, Berlin, Heidelberg, 2014, pp. 364–382.

[20] A. Mantzaflaris, B. Jüttler, Integration by interpolation and look-up for Galerkin-based isogeometric analysis, Comput. Methods Appl. Mech.
Engrg. 284 (2015) 373–400.

[21] F. Auricchio, L. Beiraõ da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation methods, Math. Models Methods Appl. Sci.
20 (11) (2010) 2075–2107.

[22] D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, T.J.R. Hughes, Isogeometric collocation: cost comparison with Galerkin methods and
extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg. 267 (2013) 170–232.

[23] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Elsevier, 1978.
[24] S.A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1) (1980) 70–92.
[25] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G.

Salinger, H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, An overview of the Trilinos project, ACM Trans.
Math. Software 31 (2005) 397–423.

[26] N. Collier, L. Dalcin, D. Pardo, V.M. Calo, The cost of continuity: performance of iterative solvers on isogeometric finite elements, SIAM J.
Sci. Comput. 35 (2013) A767–A784.

[27] T. Belytschko, W.K. Moran, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, 2000.

http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref1
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref2
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref3
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref4
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref5
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref6
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref7
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref8
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref9
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref10
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref11
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref13
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref14
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref15
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref16
http://dx.doi.org/doi:10.1016/j.apnum.2014.11.010
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref19
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref20
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref21
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref22
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref23
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref24
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref25
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref26
http://refhub.elsevier.com/S0045-7825(14)00492-7/sbref27

	Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization
	Introduction
	Preliminaries
	Computation of the local matrices by quadrature
	Numerical results
	Computation of the local matrices
	Linear elasticity
	Advection--diffusion problem
	Implementation details

	Summary and conclusions
	Acknowledgements
	Sum-factorization for the linear elasticity stiffness matrix
	References

