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Abstract

Aeroelastic characteristics of nanocomposite plates reinforced by carbon nanotubes and subjected to supersonic flow are inves-
tigated. Here, carbon nanotube-reinforced composite plates with five different distributions of carbon nanotube are considered. The
material properties are supposed to vary gradually through the thickness of the plate and the rule of mixture is applied to estimate
the effective material properties of nanocomposite plate. The governing equations of nanocomposite plate are derived based on
Kirchhoff’s plate theory and supersonic aerodynamic pressure is approximated by the first-order piston theory. Galerkin’s method
is utilized to obtain the solutions of the coupled governing equations, simultaneously. The suggested model is justified by a good
agreement between the results given by present model and available data in the literature. To illustrate the effects of volume frac-
tion, aspect ratio and non-dimensional in-plane forces on the aeroelastic stability of nanocomposite plates, parametric studies have
been carried out.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Aeroelastic phenomena are key factors in the design of modern structures such as space vehicles, high-speed
aircrafts, skin sub-structures and gas turbine blades. These phenomena may strongly affect the performance of the
structures. Therefore, many researchers have shown a great interest in both the static aeroelastic instability, known as
divergence, and the dynamic aeroelastic instability, known as flutter.

In the past decades, new materials have been utilized to enhance the aeroelastic static and dynamic stabilities of the
structures. Especially, the applications of functionally graded materials (FGMs) to the aeroelastic characteristics of the
skin panels are found in several studies. Prakash and Ganapathi [1] studied the supersonic flutter of FGM rectangular
flat plates subjected to two-dimensional static approximation of aerodynamic pressure in thermal environment. The
nonlinear flutter and thermal buckling of FGM panels have been studied using nonlinear finite element method
and first order shear deformation theory by Ibrahim et al. [2]. Aeroelastic stabilities of functionally graded panels
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subjected to aero-thermal loads have been studied [3] based on the first-order shear deformation theory and von
Karman strain–displacement relation. Hosseini and Fazelzadeh [4] researched on aero-thermo-elastic post-critical
and vibration characteristics of temperature-dependent FGM panels in a supersonic airflow. A review on the aero-
thermo-elasticity of functionally graded panels can be found in [5].

In recent years, carbon nanotubes (CNTs) have attracted a great amount of attention due to their extraordinary
mechanical properties. These exceptional properties such as, high elastic modulus, high tensile strength and
stiffness, naturally make the CNTs to become a kind of most attractive reinforcement for nanocomposites [6–8].
Nanocomposites are a mixture of polymer matrix and CNTs as reinforcement of polymer composites. Extensive
researches on the properties of carbon nanotube reinforced composites (CNTRCs) reveal that adding the CNTs
even at very low volume fractions, improve mechanical properties of polymer matrices [9,10]. Distributions of the
CNTs in the CNTRCs can be either uniform or functionally graded. The latter is well-known as functionally graded
carbon nanotube-reinforced composite (FG-CNTRC). Similar to the FGMs, material properties of FG-CNTRC vary
smoothly from one surface to the other. Due to significant properties of FG-CNTRC, mechanical analysis of FG-
CNTRC plates has become subjects of primary interest in recent studies. Shen [11] studied nonlinear bending of
simply supported, FG-CNTRC plates in thermal environments. Large amplitude vibration of the CNTRC plates resting
on elastic foundation of Pasternak-type has been investigated [12]. Zhu et al. [13] modeled thin-to-moderately thick
FG-CNTRC based on the first order shear deformation plate theory and examined bending and free vibration of
plates via the finite element method. In another study, compressive and thermal postbuckling of sandwich plates with
CNTRC face sheets in thermal environments have been investigated [14]. Bhardwaj et al. [15] analyzed nonlinear
flexural and dynamic response of the CNTRC plates by fast converging finite double Chebyshev polynomials. Large
deflection analysis of the CNTRC plates has been researched by the element-free kp-Ritz method by Lei et al. [16].
Recently, three-dimensional free vibration of the CNTRC rectangular plates with various boundary conditions has
been studied by developing a set of orthogonal admissible functions used in Ritz method [17]. A large deflection
geometrically nonlinear behavior of the FG-CNTRC cylindrical panels under uniform point transverse mechanical
loading has been studied [18]. In another study, dynamic stability analysis of the FG-CNTRC cylindrical panels
under static and periodic axial force by using the mesh-free kp-Ritz method has been investigated [19]. These studies
showed that the meshless method is an appropriate technique for modeling the FG-CNTRC structures. A review on
the meshless methods for laminated and functionally graded plates and shells can be found in Ref. [20].

In spite of the extensive research in the area of the static and dynamic characteristics of the CNTRC, there has been
no attempt to tackle the problem described in the present paper. The aim of this study is to investigate the aeroelastic
characteristics of the FG-CNTRC under a supersonic flow. In the present investigation, various distributions of the
CNTs in thickness of the CNTRC are considered. Here, the material properties of the CNTRC plates are obtained
by a micro-mechanical model. The CNT efficiency parameters are estimated based on matching properties observed
from the molecular dynamics simulations and those obtained from the rule of mixture. The equations of motion are
developed by Kirchhoff’s plate theory and aerodynamic pressure of supersonic flow is modeled by piston theory.
To confirm the validity of the present research, the results are compared with those reported in the literature. The
influences of volume fraction, aspect ratio and non-dimensional in-plane forces on the stability boundaries of FG-
CNTRC plates are also elucidated.

2. Material properties of FG-CNTRC plates

FG-CNTRC plate is a mixture of the CNTs and a polymer matrix. Unlike the isotropic properties of polymer
matrix, the CNTs represent anisotropic behavior. The effective material properties of this mixture can be predicted
by Mori–Tanaka scheme [21,22] or the rule of mixture [23,24]. Based on the extended rule of mixture, the effective
properties of the FG-CNTRCs can be expressed as [11]

E11 = η1VCNT ECNT
11 + Vm Em

η2

E22
=

VCNT

ECNT
22

+
Vm

Em

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm

(1)
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where ECNT
11 and ECNT

22 represent Young’s moduli of the CNTs in directions 1 and 2, respectively, and GCNT
12 indicates

shear modulus of the CNTs. It should be noted that E11, E22 and G12 are the corresponding properties of the FG-
CNTRCs. In addition, Em and Gm represent Young’s modulus and shear modulus of the isotropic polymer matrix.
Due to the presence of small scale effect, the CNT efficiency parameters, ηi (i = 1, 2 and 3) are introduced in
Eq. (1). To calculate the value of the CNT efficiency parameters, elastic modulus of the FG-CNTRCs predicted by the
MD simulations should be matched with those determined from the rule of mixture. Moreover, VCNT and Vm are the
volume fractions of the CNTs and matrix, respectively and relation among these volume fractions is

VCNT + Vm = 1. (2)

Similarly, mass density of the FG-CNTRC plates can be expressed as a function of densities of the CNTs and
matrix as follows:

ρ = VCNTρCNT
+ Vmρm (3)

where ρCNT and ρm indicate the densities of CNTs and matrix. In addition, Poisson’s ratio can be obtained as

ν12 = V ∗

CNTνCNT
12 + (1 − V ∗

CNT) νm (4)

wherein νCNT
12 and νm are Poisson’s ratios of the CNTs and polymer matrix, respectively and V ∗

CNT is defined as
follows [25]

V ∗

CNT =
wCNT

wCNT + (ρCNT/ρm)(1 − wCNT)
(5)

in which wCNT is the mass fraction of the CNTs. Consider a rectangular FG-CNTRC plate of length a in the x di-
rection, width b in the y direction and thickness h in the z direction. CNTs can be distributed either uniformly or
functionally graded in the thickness of the FG-CNTRC plates. As shown in Fig. 1, five kinds of distributions of CNTs
in the FG-CNTRC plates are studied in this paper. Here, the FG-CNTRC plate with uniform distribution of CNTs is
called UD. Moreover, four other types of functionally graded distributions of the CNTs are known as FG-A, FG-V,
FG-O and FG-X. The variations of the CNT volume fraction of these five types are defined as follows:

UD: VCNT(z) = V ∗

CNT (6a)

FG-A: VCNT(z) =


1 −

2z

h


V ∗

CNT (6b)

FG-V: VCNT(z) =


1 +

2z

h


V ∗

CNT (6c)

FG-O: VCNT(z) = 2


1 −
2 |z|

h


V ∗

CNT (6d)

FG-X: VCNT(z) =
4 |z|

h
V ∗

CNT . (6e)

It is noticeable that overall mass fraction of the CNT in different kinds of the FG-CNTRC is equal.

3. Theory and formulations

Based on Kirchhoff’s plate theory, the displacements of an arbitrary point of the nanocomposite plate can be ex-
pressed as follows:

ux = u(x, y, t) − z
∂w

∂x
u y = v(x, y, t) − z

∂w

∂y
uz = w(x, y, t) (7)

where u, v and w indicate displacement of the point (x, y, 0) along x , y and z directions, respectively. Using von-
Karman strains, the strain–displacement relations are expressed as
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a b

c d

e

Fig. 1. Configurations of the FG-CNTRC plates (a) UD; (b) FG-V; (c) FG-A; (d) FG-X; (e) FG-O.

εxx =
∂u

∂x
− z

∂2w

∂x2 +
1
2


∂w

∂x

2

εyy =
∂v

∂y
− z

∂2w

∂y2 +
1
2


∂w

∂y

2

εxy =
1
2


∂u

∂y
+

∂v

∂x
− 2z

∂2w

∂y∂x
+

∂w

∂x

∂w

∂y


.

(8)

Due to orthotropic characteristics of the CNTs, the mechanical constitutive relations of the FG-CNTRC plates are
defined as
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σxx
σyy
σxy

 =


E11

1 − ν12ν21

ν12 E22

1 − ν12ν21
0

ν12 E22

1 − ν12ν21

E22

1 − ν12ν21
0

0 0 G12


 εxx

εyy
2εxy

 . (9)

Applying Hamilton’s principle, the following governing equations can be obtained:

∂ Nxx

∂x
+

∂ Nxy

∂y
= I0

∂2u

∂t2 − I1
∂3w

∂x ∂t2 (10a)

∂ Nxy

∂x
+

∂ Nyy

∂y
= I0

∂2v

∂t2 − I1
∂3w

∂y ∂t2 (10b)

∂2 Mxx

∂x2 +
∂2 Myy

∂y2 + 2
∂2 Mxy

∂x∂y
+ Nxx

∂2w

∂x2 + Nyy
∂2w

∂y2

+ 2Nxy
∂2w

∂x∂y
= 1p + I0

∂2w

∂t2 + I1


∂3u

∂x ∂t2 +
∂3v

∂y ∂t2


− I2


∂4w

∂x2∂t2 +
∂4w

∂y2∂t2


(10c)

wherein q is the distributed transverse load on the FG-CNTRC plate. Also, I0, I1 and I2 are the normal, coupled
normal-rotary and rotary inertial coefficients, respectively, and are defined by

I0 =

 h/2

−h/2
ρ dz I1 =

 h/2

−h/2
ρ z dz I2 =

 h/2

−h/2
ρ z2dz. (11)

In addition, Nxx , Nyy and Nxy denote in-face stress resultants and Mxx , Myy and Mxy are stress couple resultants
defined as

{Nxx , Nyy, Nxy, Mxx , Myy, Mxy} =

 h
2

−
h
2

{σxx , σyy, σxy, σxx z, σyyz, σxyz}dz. (12)

One can obtain in-face stress resultants and stress couple resultants as functions of displacements by employing
strain–displacement relationships (Eq. (8)), stress–strain relationships (Eq. (9)) and stress resultants definition
(Eq. (12)). Substituting stress resultants into governing equations and ignoring nonlinear terms lead to the governing
differential equations in terms of the transverse and in-plane displacements, i.e.,

A1
∂2u

∂x2 + C1
∂2u

∂y2 + (ν12 B1 + C1)
∂2v

∂x∂y
− A2

∂3w

∂x3 − (ν12 B2 + 2C2)
∂3w

∂x∂y2 = I0
∂2u

∂t2 − I1
∂3w

∂x ∂t2 (13a)

C1
∂2v

∂x2 + B1
∂2v

∂y2 + (ν12 B1 + C1)
∂2u

∂x∂y
− B2

∂3w

∂y3 − (ν12 B2 + 2C2)
∂3w

∂x2∂y
= I0

∂2v

∂t2 − I1
∂3w

∂y ∂t2 (13b)

A3
∂4w

∂x4 + 2(ν12 B3 + 2C3)
∂4w

∂x2∂y2 + B3
∂4w

∂y4 − A2
∂3u

∂x3 − B2
∂3v

∂y3 − (ν12 B2 + 2C2)


∂3u

∂x∂y2 +
∂3v

∂x2∂y


= 1p + Nxx

∂2w

∂x2 + Nyy
∂2w

∂y2 + 2Nxy
∂2w

∂x∂y
− I0

∂2w

∂t2 − I1


∂3u

∂x∂t2 +
∂3v

∂y∂t2



+ I2


∂4w

∂x2∂t2 +
∂4w

∂y2∂t2


(13c)
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where Ai , Bi and Ci (i = 1, 2, 3) are defined byA1
A2
A3

 =

 h
2

−
h
2


E11

(1 − ν12ν21)


1
z
z2

 dz

B1
B2
B3

 =

 h
2

−
h
2


E22

(1 − ν12ν21)


1
z
z2

 dz

C1
C2
C3

 =

 h
2

−
h
2

G12


1
z
z2

 dz.

(14)

It is noticed that the governing differential equations are coupled. From Eq. (13c), it is easily seen that the traditional
classical plate theory is recovered if the parameters A2, B2, C2 and I1 are set to zero. Here, it is assumed that the FG-
CNTRC plate is subjected to external fluid flow passing over the top surface of the plate. To evaluate the aerodynamic
pressure of supersonic flow, piston theory is utilized as [26]:

1p =
ρ∞U 2

∞
M2

∞ − 1


∂w

∂x
+


1

U∞


M2

∞ − 2

M2
∞ − 1

∂w

∂t


(15)

where 1p is the aerodynamic pressure and U∞, ρ∞ and M∞ indicate free stream velocity, air density and Mach
number, respectively. The term “piston theory”, as used in this paper, refers to a method for calculating the
aerodynamic loads on the structures in which the local pressure generated by the structure’s motion is related to
the local normal component of fluid velocity in the same way that these quantities are related at the face of a piston
moving in a one-dimensional channel. The piston theory may be employed for large Mach Numbers or high reduced
frequencies of unsteady motion, whenever the surface involved is nearly plane and not inclined too sharply to the
direction of the free stream [27]. It has been shown that for Mach number greater than 1.6, the results based on the
two-dimensional static aerodynamic theory approximation are in good agreement with those obtained from the exact
aerodynamic theory. In addition, for even lower Mach numbers and aspect ratios between 2 and 6, complete agreement
has been confirmed [28,29]. Based on this static approximation, the aerodynamic pressure is expressed as

1p =
ρ∞U 2

∞
M2

∞ − 1

∂w

∂x
. (16)

Applying the approximate aerodynamic pressure, the governing equations are obtained as

A1
∂2u

∂x2 + C1
∂2u

∂y2 + (ν12 B1 + C1)
∂2v

∂x∂y
− A2

∂3w

∂x3 − (ν12 B2 + 2C2)
∂3w

∂x∂y2 = I0
∂2u

∂t2 − I1
∂3w

∂x ∂t2 (17a)

C1
∂2v

∂x2 + B1
∂2v

∂y2 + (ν12 B1 + C1)
∂2u

∂x∂y
− B2

∂3w

∂y3 − (ν12 B2 + 2C2)
∂3w

∂x2∂y
= I0

∂2v

∂t2 − I1
∂3w

∂y ∂t2 (17b)

A3
∂4w

∂x4 + 2(ν12 B3 + 2C3)
∂4w

∂x2∂y2 + B3
∂4w

∂y4 − A2
∂3u

∂x3 − B2
∂3v

∂y3

− (ν12 B2 + 2C2)


∂3u

∂x∂y2 +
∂3v

∂x2∂y


+

ρ∞U 2
∞

M2
∞ − 1

∂w

∂x
= Nxx

∂2w

∂x2 + Nyy
∂2w

∂y2

+ 2Nxy
∂2w

∂x∂y
− I0

∂2w

∂t2 − I1


∂3u

∂x∂t2 +
∂3v

∂y∂t2


+ I2


∂4w

∂x2∂t2 +
∂4w

∂y2∂t2


. (17c)

In this study, to present a realistic model, the viscoelastic property of the FG-CNTRC plates and the aerodynamic
damping are considered by taking into account the total damping coefficient. The total damping coefficient, GT ,
is derived based on summation of aerodynamic damping coefficient, G A [30], and effective structural damping
coefficient, GS . The aerodynamic damping coefficient can be expressed as

G A =
ρ∞U∞
M2

∞ − 1

M2
∞ − 2

M2
∞ − 1

. (18)
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Due to this assumption, third governing equation (Eq. (17c)) is modified as follows:

A3
∂4w

∂x4 + 2(ν12 B3 + 2C3)
∂4w

∂x2∂y2 + B3
∂4w

∂y4 − A2
∂3u

∂x3 − B2
∂3v

∂y3

− (ν12 B2 + 2C2)


∂3u

∂x∂y2 +
∂3v

∂x2∂y


+

ρ∞U 2
∞

M2
∞ − 1

∂w

∂x

= −GT
∂w

∂t
+ Nxx

∂2w

∂x2 + Nyy
∂2w

∂y2 + 2Nxy
∂2w

∂x∂y
− I0

∂2w

∂t2 − I1


∂3u

∂x∂t2 +
∂3v

∂y∂t2



+ I2


∂4w

∂x2∂t2 +
∂4w

∂y2∂t2


. (19)

Up to now, the analysis has been general without reference to the boundary conditions. The boundary conditions
can be set in a number of ways depending on what particular physical models are used for the simulation. In this
study, two experimentally interesting boundary conditions such as four edges fully clamped (CCCC) and four edges
immovable simply supported (SSSS) boundary conditions are considered. In addition, to simplify the analysis, the
following non-dimensional parameters are defined:

X =
x

a
Y =

y

b
H =

h

a
λ =

ρ∞U 2
∞a3

A3


M2
∞ − 1

rxx = −
Nxx a2

A3
ryy = −

Nyya2

A3
rxy = −

Nxya2

A3
τ = t

h

a2


Em

ρm

r =
a

b
gT = gA + gS gS = GS


Em

ρm

Ha3

A3π4 gA = λ


Em

ρm

M2
∞ − 2

M2
∞ − 1

H

U∞π4 .

(20)

Substituting Eq. (20) into the governing equations, the non-dimensional governing equations are developed, i.e.,

∂2u

∂ X2 +
C1

A1
r2 ∂2u

∂Y 2 +


ν12 B1 + C1

A1


r

∂2v

∂ X∂Y
−

A2

A1a

∂3w

∂ X3 −


ν12 B2 + 2C2

A1a


r2 ∂3w

∂ X∂Y 2

= H2


I0 Em

ρm A1


∂2u

∂τ 2 − H2


I1 Em

aρm A1


∂3w

∂ X ∂τ 2 (21a)

∂2v

∂Y 2 +
C1

B1r2

∂2v

∂ X2 +


ν12 B1 + C1

B1r


∂2u

∂ X∂Y
−

B2r

B1a

∂3w

∂Y 3 −


ν12 B2 + 2C2

B1ar


∂3w

∂ X2∂Y

=
H2

r2


I0 Em

ρm B1


∂2v

∂τ 2 −
H2

r


I1 Em

ρm B1a


∂3w

∂Y ∂τ 2 (21b)

∂4w

∂ X4 + 2


ν12 B3 + 2C3

A3


r2 ∂4w

∂ X2∂Y 2 +
B3

A3
r4 ∂4w

∂Y 4 − a


ν12 B2 + 2C2

A3


×


r2 ∂3u

∂ X∂Y 2 + r
∂3v

∂ X2∂Y


−

A2a

A3

∂3u

∂ X3 −
B2a

A3
r3 ∂3v

∂Y 3

= −π4gT
∂w

∂τ
− λ

∂w

∂ X
+ rxx

∂2w

∂ X2 + r2ryy
∂2w

∂Y 2 + 2rrxy
∂2w

∂ X∂Y
− H2


I0 Ema2

ρm A3


∂2w

∂τ 2

− H2


I1 Ema

ρm A3


∂3u

∂ X∂τ 2 + r
∂3v

∂Y ∂τ 2


+ H2


I2 Em

ρm A3


∂4w

∂ X2∂τ 2 + r2 ∂4w

∂Y 2∂τ 2


. (21c)
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4. Solution procedure

It is difficult to achieve the exact solution, as a result of complexity and coupling of the governing differential
equations. Hence, Galerkin’s method is applied to obtain the solution in a general way. Using Galerkin’s method,
partial differential equations are converted into a set of ordinary differential equations. Therefore, the following dis-
placements are assumed to approximate the aeroelastic characteristics of the system [31]:

u (X, Y, τ ) = 8T
u qu

v (X, Y, τ ) = 8T
v qv

w (X, Y, τ ) = 8T
w qw

(22)

where qu , qv and qw are time dependent vectors of generalized coordinates, and 8u , 8v and 8w are shape functions.
Substituting approximate displacement expressions (Eq. (22)) into Eq. (21), multiplying both sides of the equations by
shape functions and integrating over the whole region, the discretized expressions for the equations of motion can be
obtained. Due to the convenient and compact form of state space, the set of ordinary differential equations is derived
in the state space form as follows:

q̇ = A−1B q (23)

where matrix A represents dynamic coupling of the transverse and in-plane displacements. Moreover, matrix B in-
dicates static coupling of generalized coordinates and includes stiffness terms of the system and aeroelastic effect of
supersonic air flow. Components of the above matrices are given in the Appendix. Furthermore, q is the overall vector
of generalized coordinates i.e.,

{q} =


qT

u1 qT
u2 qT

v1 qT
v2 qT

w1 qT
w2


T (24)

where

qu1 = qu qv1 = qv qw1 = qw

qu2 = q̇u1 qv2 = q̇v1 qw2 = q̇w1.
(25)

By solving the eigenvalue problem of Eq. (23), the stability boundaries of the FG-CNTRC plate can be computed.

5. Numerical results and discussion

To verify the accuracy of present formulation, the results of this study are compared against available results in
the literature for three cases. First of all, stability boundaries of an isotropic plate are determined and compared with
those reported by Dugundji [32]. Dugundji assumed that rectangular panel is simply supported on all four edges and
has a structural damping. Here, it is assumed that the aspect ratio is equal to 2 and non-dimensional in-plane force
in y direction, ryy , is equal to zero. The stability boundaries for various values of non-dimensional total damping
coefficient are displayed in Fig. 2. The results are found to be in good agreement with the existing data in Ref. [32].

In second case, to clarify the accuracy of the current solution in the presence of volume fraction exponent, non-
dimensional frequencies of Al–ZrO2 FGM plates with movable simply supported boundary condition are considered.
In this case, we take Em = 68.9 GPa, ρm = 2700 kg/m3 for Al and Ec = 211 GPa, ρc = 4500 kg/m3 for ZrO2 [33].
Also, Poisson’s ratio, υ, is set to 0.33 for both Al and ZrO2 and length to thickness ratio is equal to 100. The non-
dimensional frequencies (ω̃mn = ωmn


a2/h

√
ρc/Ec) for various volume fraction exponents, k, are listed in Table 1.

It is seen that the present results are in good agreement with the previous results [33].
In third case, non-dimensional frequencies of the FG-CNTRC square plates in various distributions of the CNTs

are compared with those reported by Zhu et al. [13]. Properties of carbon nanotube and matrix are assumed the same
as mentioned in Ref. [13]. Also, it is assumed that all edges of plates are movable simply supported and length to
thickness ratio is equal to 50. The results of comparison study are listed in Table 2 and reveal that despite applying
different theory, the suggested model is justified by a good agreement between the results given by present model
and the results reported in Ref. [13]. In final validation case, non-dimensional frequencies (=ω(ab/h)

√
ρm/Em)
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Fig. 2. Comparison between the results of present model and those given by Dugundji [32] for stability boundaries of isotropic plate for different
values of non-dimensional total damping coefficient.

Table 1
Validation of non-dimensional frequencies of Al–ZrO2 FGM plates.

Aspect ratio (a/b) Volume fraction exponents
k = 0 k = 1 k = 10 k = 100

1
Ref. [33] 5.9713 5.1190 4.6765 4.3470
Present 6.0359 5.2545 5.0090 4.5645

1/
√

2
Ref. [33] 4.4788 3.8396 3.5077 3.2605
Present 4.5270 3.9410 3.7569 3.4234

of the clamped UD CNTRC plates with different values of aspect ratio are depicted in Fig. 3 and compared with
those reported by Abdollahzadeh Shahrbabaki and Alibeigloo [17] based on three-dimensional elasticity. Properties of
carbon nanotube and matrix are also assumed the same as mentioned in Ref. [13]. In addition, the length to thickness
ratio is equal to 50 and V ∗

CNT = 0.11. Reasonable agreement between the present results and reported results in
Ref. [17] is seen. After verifying the accuracy and reliability of the present formulation, we now proceed to the
application of this method to various cases.

To show the aeroelastic characteristics of FG-CNTRC plates, parametric studies are carried out. The FG-CNTRC
plates are made of carbon nanotubes embedded into polymer matrix. Here, polymethyl methacrylate, well-known
as PMMA, is considered as matrix material. Mechanical properties of PMMA are assumed to be Em

= 2.5 GPa,
νm

= 0.34 and ρm
= 1150 kg/m3. For numerical results, (10, 10) SWCNTs are chosen as reinforcements and the

following properties are considered [13]:

ECNT
11 = 5.6466 TPa, ECNT

22 = 7.0800 TPa, GCNT
12 = 1.9445 TPa,

νCNT
12 = νCNT

21 = 0.175 and ρCNT
= 1400 kg/m3.

Han and Elliott [10] explained that the general macroscopic rule of mixtures cannot be applied directly to
nanocomposites and this method should be modified. Therefore, to modify the rule of mixtures, the CNT efficiency
parameters are estimated based on matching properties predicted by the MD simulations and those obtained from
the rule of mixture. The values of the CNT efficiency parameters for different volume fractions are listed in Table 3
[10,11]. These values will be used in all of the following parametric studies.

To show the effect of boundary condition, the stability boundaries of immovable simply supported and clamped
supported plates subject to aerodynamic load are studied. The stability boundaries of the FG-UD plate for two values
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Fig. 3. Comparison between the results of present model and those given by Abdollahzadeh Shahrbabaki and Alibeigloo [17].

Table 2
Comparison of non-dimensional frequencies of the FG-CNTRC square
plates for various distributions of the CNTs.

V ∗
CNT Ref. [13] Present study

UD
0.11 19.223 20.616
0.14 21.354 23.026
0.17 23.697 25.304

FG-V
0.11 16.252 17.277
0.14 17.995 19.208
0.17 19.982 21.151

FG-X
0.11 22.984 24.923
0.14 25.555 27.916
0.17 28.413 30.658

FG-O
0.11 14.302 15.139
0.14 15.801 16.783
0.17 17.544 18.497

Table 3
CNT efficiency parameters for various volume fractions.

V ∗
CNT η1 η2 η3

0.12 0.137 1.022 0.715
0.17 0.142 1.626 1.138
0.28 0.141 1.585 1.109

of non-dimensional total damping coefficient are displayed in Fig. 4. In this figure, we take r = 2, rxy = 0, ryy = 0,
H = 0.01 and V ∗

CNT = 0.12. It can be seen that the stable region of plate with four edges simply supported is smaller
than that of plate with four edges clamped because clamped boundary condition yields an increase of stiffness of the
plate and the FG-CNTRC plate becomes stiffer.

To illustrate the effect of the aspect ratio, the critical aerodynamic pressure is displayed in Fig. 5 for different distri-
butions of the CNTs. In this figure, we take gT = 0, rxx = 0, rxy = 0, ryy = 0, H = 0.01 and V ∗

CNT = 0.12. It is clear
that the critical aerodynamic pressure increases with an increase in aspect ratio. In another word, the stable region
can be extended by increasing the aspect ratio. The results are actually in good agreement with the previous works
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Fig. 4. Effect of boundary condition on the aeroelastic stability of UD plates.

Fig. 5. Variation of critical aerodynamic pressure with the aspect ratio for different FG-CNTRC plates (V ∗
CNT = 0.12).

[1,5]. It is also seen that the FG-O plate has the greatest stable region in comparison with other plates. Moreover, based
on the numerical calculations, the results reveal that FG-A and FG-V plates have the same aeroelastic characteristics.
Therefore, in this figure and the following numerical results, the results of the FG-V plate are only represented.

Fig. 6(a) and (b) demonstrate the variations of the critical aerodynamic pressure as a function of non-dimensional
in-plane forces in x- and y-directions, respectively. In Fig. 6(a), the parameters are fixed at gT = 0, rxy = 0,
ryy = 0, r = 1 and V ∗

CNT = 0.12. It can be seen that with the increase of non-dimensional in-plane force in x
direction, the critical aerodynamic pressure decreases. Therefore, the FG-CNTRC plate begins to oscillate with a
self-excited harmonic motion at smaller speeds. It physically means that the compressive in-plane force in x direction
decreases the stiffness of the plate, which results in a lower critical freestream pressure than an unstressed plate.
Moreover, at specific value of rxx , the critical aerodynamic pressures for all FG-CNTRC plates except FG-V plate are
approximately identical. Also, the critical dynamic pressures of the FG-V plate are lower than the critical dynamic
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a

b

Fig. 6. Effect of non-dimensional in-plane forces on the aeroelastic stability of various FG-CNTRC plates; (a) Non-dimensional in-plane force in
x-direction and (b) Non-dimensional in-plane force in y-direction.

pressures of other plates. Although it is not shown here, by applying various V ∗

CNT , the stability boundaries of all
FG-CNTRCs do not have noticeable changes.

The effect of non-dimensional in-plane force in y direction, ryy , on the aeroelastic characteristics of the FG-
CNTRC is illustrated in Fig. 6(b). The parameters needed for numerical calculation in this figure are assumed to be
gT = 0, rxy = 0, rxx = 0, r = 3, H = 0.01 and V ∗

CNT = 0.12. Unlike the non-dimensional in-plane force in x
direction, the presence of non-dimensional in-plane force in y direction does not affect dynamic stability boundaries
and dynamic unstable region remains unchanged. Similar to rxx , applying ryy can be caused divergence instability.
As observed, FG-O plate has the greatest stable region with respect to other plates. Also, FG-X has the greatest static
unstable region and FG-V has the greatest dynamic unstable region. The influence of the various V ∗

CNT on the FG-O
square plate is plotted in Fig. 7. It is seen that by applying various V ∗

CNT , static stability boundaries vary and dynamic
stability boundaries remain unchanged. It is observed that FG-O plate with V ∗

CNT = 0.17 has the greatest stable region
with respect to other values of V ∗

CNT .
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Fig. 7. Variation of the critical aerodynamic pressure of FG-O plate with respect to ryy for three values of V ∗
CNT .

Fig. 8. Variation of stability boundaries with respect to total damping coefficient for various kinds of FG-CNTRC plates.

Fig. 8 shows aeroelastic characteristic of the FG-CNTRC plates in the presence of non-dimensional total damping
coefficient, gT . Here, we take rxx = 0, rxy = 0, ryy = 0, r = 1, H = 0.01 and V ∗

CNT = 0.12. It should be noted that
with the increase of gT , the critical aerodynamic pressure increases. These results reveal that the damping appreciably
improves the flutter boundaries and so it can be concluded that the damping could stabilize the flutter boundaries of
systems. Numerical analysis demonstrates that the FG-X plate has the greatest stable region.

As a final numerical example, Fig. 9 represents the variation of the stability boundaries of the FG-X plate with
respect to total damping for various V ∗

CNT . The results show that by increasing V ∗

CNT , the critical aerodynamic pressure
increases. This is to be expected, because the increase of the carbon nanotube volume fraction yields an increase of
stiffness of the plate and the FG-CNTRC plate becomes stiffer.
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Fig. 9. Effect of V ∗
CNT on the variation of λ with respect to total damping coefficient.

6. Conclusion

We have presented the first attempt to predict the aeroelastic characteristics of the FG-CNTRC plates under the su-
personic flow. In spite of some achievement in vibration analysis of the FG-CNTRC plates, to the authors’ knowledge,
there has been no attempt to tackle the problem described in the present investigation. Evaluation of the aeroelastic
characteristics of FG-CNTRC plates is the main contribution of the present paper. In this work, on the basis of the
rule of mixture, the effective properties of the FG-CNTRC plates were obtained. The governing equations of motion
were derived by utilizing Kirchhoff’s plate theory and Hamilton’s principle. Since the FG-CNTRC plate is subjected
to supersonic flow, the first order piston theory was applied. The critical aerodynamic pressure was obtained for five
types of FG-CNTRC plates. The obtained results have been successfully compared to existing data in the literature.
To study the aeroelastic behavior, the effects of aspect ratio, non-dimensional in-plane forces and non-dimensional
total damping coefficient on the stability boundaries were examined. Based on the numerical results, it was found
that with the increase of aspect ratio and total damping, the critical aerodynamic pressure increases. Moreover, it
was observed that by increasing the non-dimensional in-plane force in x direction, the critical aerodynamic pressure
decreases whereas applying ryy does not affect dynamic stable region. Furthermore, it was revealed that FG-A and
FG-V plates have the same aeroelastic behavior. Our results indicated that FG-O plate has the largest stable region
with respect to other plates particularly for smaller value of total damping coefficient. The results presented in this
paper may be helpful for the aeroelastic analysis of supersonic aero-structures.

Finally, it should be noted that the thermal effect can be included in the aeroelastic analysis of the functionally
graded carbon nanotube-reinforced composite plates. This would be an interesting issue for future work.

Appendix

One can determine matrices A and B by integration as follows.

Ai j =

 1

0

 1

0
Mi j d X dY

Bi j =

 1

0

 1

0
Ni j d X dY

i, j = (1, . . . , 6). (A.1)
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Components of matrix M are expressed as

Mi i = I (i = 1, 3, 5) Mi j = 0 (i = 1, 3, 5 and i ≠ j)

M22 = H2


I0 Em

ρm A1


8u8T

u M26 = −H2


I1 Em

ρm A1a


8u

∂8T
w

∂ X
M2 j = 0 ( j ≠ 2, 6)

M44 =
H2

r2


I0 Em

ρm B1


8v8

T
v M46 = −

H2

r


I1 Em

ρm B1a


8v

∂8T
w

∂Y
M4 j = 0 ( j ≠ 4, 6)

M62 = −H2


I1 Ema

ρm A3


8w

∂8T
u

∂ X

M64 = −H2r


I1 Ema

ρm A3


8w

∂8T
v

∂Y
M6 j = 0 ( j ≠ 2, 4, 6)

M66 = −H2


I0 Ema2

ρm A3


8w8T

w + H2


I2 Em

ρm A3

 
8w

∂28T
w

∂ X2 + r28w

∂28T
w

∂Y 2


.

(A.2)

Moreover, matrix N can be obtained as

N =


0 I 0 0 0 0
u1 u2 u3 u4 u5 u6
0 0 0 I 0 0
v1 v2 v3 v4 v5 v6
0 0 0 0 0 I

w1 w2 w3 w4 w5 w6

 (A.3)

where ui , vi and wi are matrices which represent static coupling of generalized coordinates and are derived as

u1 = 8u
∂28T

u

∂ X2 + r2


C1

A1


8u

∂28T
u

∂Y 2 u3 = r


ν12 B1 + C1

A1


8u

∂28T
v

∂ X∂Y

u5 = −


A2

A1a


8u

∂38T
w

∂ X3 − r2


ν12 B2 + 2C2

A1a


8u

∂38T
w

∂ X∂Y 2 u2 = u4 = u6 = 0

v1 =


ν12 B1 + C1

B1r


8v

∂28T
u

∂ X∂Y
v3 =

1

r2


C1

B1


8v

∂28T
v

∂ X2 + 8v

∂28T
v

∂Y 2

v5 = −r


B2

B1a


8v

∂38T
w

∂Y 3 −
1
r


ν12 B2 + 2C2

B1a


8v

∂38T
w

∂ X2∂Y
v2 = v4 = v6 = 0

w1 = −


A2a

A3


8w

∂38T
u

∂ X3 − r2a


ν12 B2 + 2C2

A3


8w

∂38T
u

∂ X∂Y 2 w2 = w4 = 0

w3 = −


B2a

A3


r38w

∂38T
v

∂Y 3 −


ν12 B2 + 2C2

A3


ar 8w

∂38T
v

∂ X2∂Y
w6 = π4gT 8w8T

w

w5 = 8w

∂48T
w

∂ X4 + 2


ν12 B3 + 2C3

A3


r28w

∂48T
w

∂ X2∂Y 2 + r4


B3

A3


8w

∂48T
w

∂Y 4

+ λ8w

∂8T
w

∂ X
+ rxx8w

∂28T
w

∂ X2 + r2ryy8w

∂28T
w

∂Y 2 + 2rrxy8w

∂28T
w

∂ X∂Y
.

(A.4)
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