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Abstract

The parameters of a stamping process include the geometry of the tools, the shape of the initial sheet blank, the material
constitutive law and the process parameters. When designing the overall process, one has to also take into account the springback
effect that appears when the tools are removed and additional surfaces are cut-off. The goal then is to obtain a final shape as
close as possible to the desired shape, while satisfying the admissibility constraints on the variable parameters as well as the
feasibility constraints frequently expressed in the form of forming limit diagrams. In the present paper we represent the post-
springback shape by a level set function. Then, rather than rely on arbitrarily selected case-dependent measurement locations as
in the NUMISHEET benchmark problems, we build a reduced order “shape space” where this level set evolves, by extending
our recent shape manifold approach to the problem of springback assessment for 3D shapes. Next, we propose an optimization
algorithm designed to minimize the gap between the post-springback and the desired final shapes. The required level set functions
are generated from a corresponding set of springback shapes predicted by Finite Element simulations. Using our approach,
we determine the minimal number of parameters needed in order to uniquely characterize the final formed shape regardless
of complexity. Finally, we demonstrate the approach using an industrial test-case: springback assessment of the deep drawing
operation of an automotive strut tower.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

From the view of manufacturing of structural parts, high strength steels and aluminum are very attractive materials
due to their good formability, high strength characteristics, price, or quality [1]. They are commonly used for complex
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sheet metal parts. One of the most important problems however with these and similar materials (i.e. high ratio σy/E)
is that of springback, which is severe during the unloading phase of a sheet metal forming operation and greatly affects
the dimensional accuracy of the parts. High strain steels are vulnerable due to the high yield stress while aluminum
alloys due to their low Young’s modulus [2]. Springback is related to forming conditions, tool and blank geometry,
other material properties such as yield stress, work hardening, strain rate sensitivity, Young’s modulus etc. [3,4].

Corrections for springback are essential during die design in order to obtain specified final shapes. When dealing
with the springback effect in an optimization context, we face a high dimensional problem. Post-springback shapes
are typically represented by deformed FE meshes, although meshless representations with a set of nodes may be
used as well [5]. The initial shapes are defined by up to a few hundred CAD parameters (that are not necessarily
independent), but this is not the case with deformed meshes. The dimensionality in this case depends on the number
of elements and/or nodes in the mesh and may thus be prohibitively high (e.g. the parameterization in [6]) and not
directly concordant when remeshing is used. An obvious, but inefficient, way is to define a posteriori a set of geometric
parameters to describe the complex 3D post-springback shape.

For example, even in the 2D draw bending of a simple U-channel, three parameters are used to measure the amount
of springback [7] as was proposed in the benchmark of the NUMISHEET 93 conference. First of all, these are not
easy to measure (e.g. optical scanning [8]), and moreover they are essentially decided on an ad-hoc basis, and either
redundant or insufficient to fully quantify the final shapes obtained [9,10]. Furthermore, it is significantly more difficult
to apply this simplistic approach to complex 3D test cases.

Secondly, when performing a set of numerical experiments, one obtains a family of post-springback shapes cor-
responding to different values of design parameters. The inverse problem [11] then consists of finding the values of
parameters that yield a final shape as close as possible to the desired one. This requires predicting a new shape from
a set of already computed ones by defining a proper space in which we are able to measure the distances and to
interpolate between shapes.

Working directly with finite element meshes is not realistic due to potentially high numbers nodes/elements in-
volved, as has already been mentioned.

We may define a set of CAD-like parameters (NURBS, etc.) spanning the variety of deformed shapes (including
the desired shape), but this approach is tedious, arbitrary, and most importantly, difficult to automate.

Thus, since the springback shape is not easy to characterize, and given that the form obtained after springback
frequently differs from the desired final shape, it is difficult to predict a unique set of process parameters (tool/punch
geometry, blank holding force, etc.) in order to obtain a final shape as close to the manufacturer-desired shape as
possible.

In order to numerically evaluate the springback and to be able to characterize complex shapes, we need a universal
and case-independent technique to find the smallest number of parameters needed to fully describe the final shape
obtained regardless of complexity, and easily compare it with the desired geometry. The first effort was made by the
authors in [12] using their previously introduced “shape manifold” concept [13,14] for the simple NUMISHEET 93
benchmark problem of 2-D draw bending. Here, the concept of an “admissible shape” for a forming process was
introduced for the first time to distinguish between realizable/attainable post-springback shapes and idealized shapes
for a given drawing process, and the notion of interpolation between admissible shapes was introduced. The concept
of interpolating level set functions has also been studied by [15] and [16] both of whom used radial basis functions
(RBFs) and in conjunction with the level set equation.

The goal now is to parameterize a general complex 3D post-springback shape (in level set form, i.e. a signed
distance function ϕ from the shape’s surface), and interpolate between level set functions in a way that implicitly
satisfies all the admissibility constraints, i.e. by developing the “shape space” locally. Using this we determine the
intrinsic dimensionality of the drawing problem and thus the minimum number of parameters that control the final
shape obtained at the end of the drawing process, and to express the final shape as a function of the geometric
parameters G1,G2, . . . , material parameters M1,M2, . . . , and process parameters Pr1, Pr2, . . . (e.g. blank holding
force, speed, friction, etc.) i.e. ϕ = ϕ(G1,G2, . . . ,M1,M2, . . . , Pr1, Pr2, . . .). By calculating the distance between
two admissible shapes i.e. dist (ϕ1, ϕ2) or the distance of an inadmissible shape from the surface of the manifold of
admissible shapes (i.e. realistic post-springback shapes), we can characterize the amount of springback and express
it in terms of the set of design variables. A vital component here is the meta-model used to “reduce” the level set
functions representing the shapes. Meta-modeling has been widely used to approximate the physical fields associated
with the design problem using a lower order meta-model i.e. output space [17–19], using the methods of Proper
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Fig. 1. Example of a level set function ϕ representing the boundary Γ of the 2D domain Ω .

Orthogonal Decomposition [20–23] or Proper Generalized Decomposition [24–27] or hyper-reduction [28]. In the
field of metal forming, [29] presented an approach for displacement field approximation using the Proper Orthogonal
Decomposition (POD) combined with kriging interpolation of projection coefficients. The authors have presented
shape space meta-models for a variety of industrial problems [30,31,13] ending finally in the α-manifold [14]. Around
the same time, [32,33] developed similar ideas of “slow manifolds” for the reduction of the output space of a problem
in elastodynamics.

In this paper, we capitalize on our previous works and we propose an integrated approach designed to avoid above
drawbacks and consisting of the following key concepts:

1. We use the level set as a mesh independent surface representation tool which allows for a variety of input data:
CAD surface, finite mesh or even a pixel map from an actual physical experiment.

2. The POD-based manifold concept allows us to define a minimal unique set of design variables spanning the variety
of final shapes.

3. The predictor–corrector manifold walk algorithm based on local Diffuse Approximation of the global manifold to
progressively approach the desired shape.

This approach will allow for limiting the overall dimensionality to the intrinsic dimensionality of the post-
springback shapes, directly linked with the varying parameters.

Since the work involves interpolation of level sets rather than a direct solution of the level set equation, this
approach does not suffer from the computational effort one would expect with the upwinding methods and high
order finite difference schemes normally used to solve the front propagation equation.

The methodology is presented in Section 2. We then apply this to an industrial drawing operation to characterize the
geometries obtained post-springback and to identify the process parameters (force, friction coefficient) for a desired
shape in Section 3. The paper ends with concluding comments and suggestions for future work.

2. Basic methodology and numerical tools

2.1. Level set representation of structural shapes

The level set functions allow to represent, to track and to analyze (hyper)surfaces. Most of the time they represent
the boundaries Γ of a region Ω (Fig. 1). The evolution of Γ depends on the p variable parameters P of the underlying
problem (e.g. time, position, dimensions, physics). The level set function ϕ of Γ simply corresponds to a signed
distance function. In other words, the value of ϕ at an arbitrary point x of the space corresponds to the minimum
distance between x and Γ . Thus, ϕ = 0 on Γ and, by convention, the sign of ϕ is positive outside Ω and negative
inside. Therefore, the surface Γ for any given time or for any given set of values of the variable parameters P is
represented as the zero level set by:

ϕ

P


= 0. (1)
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The normal direction n on Γ can be obtained from ϕ:

n =
grad (ϕ)grad (ϕ)

 . (2)

The curvature κ of Γ is deduced from n:

κ = div

n

. (3)

The front propagation of ϕ over time can be captured by the Hamilton–Jacobi equation:

∂ϕ

∂t
− v

grad (ϕ)
 = 0. (4)

where v is the speed of propagation in the normal direction.
When Γ has a simple geometry, an analytical form of its corresponding level set function ϕ may be found.

Regarding the more general level set method, ϕ is only defined on a fixed cloud of points, occupying a domain
Π , often distributed on a cartesian grid surrounding Γ . Level set functions are then saved in a vector ϕ. Eqs. (2) and
(3) can then be solved by using finite differences.

Here however, we are not interested in solving the level set equation but rather generating intermediate level set
functions – corresponding exclusively to admissible shapes for the given problem – from a set of existing level set
functions corresponding to neighboring admissible shapes, while detecting the intrinsic local dimensionality of the
given problem.

In other words, instead of trying to integrate (4) to get the evolution in time (or versus the variable parameters), we
are interested here in performing local interpolation on a set of neighboring level set functions.

In the next section, we describe in detail the approach for interpolating between a set of input level set functions
corresponding to calculated post-springback shapes.

2.2. Using shape manifolds to efficiently interpolate between level set functions

The domain of admissibility F is directly induced by the underlying problem with its constraints (which may be
nonlinear as in [34]) and its degrees of freedom. In the case of a material forming problem, the level set function of a
formed sheet after springback will be considered as admissible if it corresponds to any shape realistically achievable
using a combination of the problem parameters (geometric parameters, material parameters and process parameters).

The approach assumes that F is a smooth shape space or manifold (Fig. 2), so that the set of all admissible level
set functions are connected together. This fundamental hypothesis was previously made by Raghavan et al. [13,14].
The desired final shape (by the manufacturer, etc.) may in fact not correspond to a realizable shape in the given design
problem, and in that case, will be considered as a non-admissible shape.

Following [14], we first generate a sample of s admissible shapes Γi in the vicinity of an initial design P0, as
described in Fig. 3. In the second step, the corresponding level set (LS) functions ϕ

i
∈ F of these shapes are com-

puted, leading to high dimensionality vector representations of Γi . POD is performed in the third step to reduce the
dimensionality as described in the Section 2.3. The relationship between the POD coefficients αi are next analyzed to
deduce the local intrinsic dimensionality as described in Section 2.4. Their interpolation (described in the Section 2.5)
produces an α-manifold approaching the true admissible shape space. By its very definition, the shape manifold has
two important properties [13,14]:

1. All points in/on the manifold correspond to admissible shapes (i.e. level set functions)
2. Any point that lies outside the manifold corresponds to a non admissible shape for the given process.

We must comment on admissibility when shapes are represented by level sets. When we work with level sets
instead of binary indicator functions, even an inadmissible point αIN outside the manifold will yield a signed distance
function ϕ(αIN) and hence a zero contour. This means that an inadmissible shape will not necessarily be visually
obvious. The important point though is that the zero contour of ϕ(αIN) will be physically infeasible (at least in the
considered range of variation of the parameters) even if we are able to recover a zero contour that for all practical
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Fig. 2. Concept of shape manifold connecting all admissible shapes for a design problem.

Fig. 3. Approach proposed for the local shape manifold construction.

purposes resembles an actual post springback shape. This however is the strength of the approach when applied to
level sets, since we can now identify shapes that are physically infeasible using the manifold.

2.3. Dimensionality reduction by Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition method allows us to generate the lower dimensional orthogonal basis ψ ,

whose directions are referred to as POD modes, that is able to represent a given set of higher dimensionality solutions,
called as snapshots, corresponding here to the level set functions ϕ

i
. Their corresponding coordinates αi in this basis

ψ are called the POD coefficients (shown in the fifth stage in Fig. 3). Here, we follow the POD method of snapshots
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without truncation.1 The first step consists of calculating the mean snapshot ϕ
0
:

ϕ
0

=
1
s

s
i=1

ϕ
i
. (5)

Then the centered snapshot matrix S is generated:

S =


ϕ

1
− ϕ

0
· · · ϕ

i
− ϕ

0
· · · ϕ

s
− ϕ

0


. (6)

The way the snapshots are linked together is given by the covariance matrix C :

C = STS. (7)

The eigenvectors φ and eigenvalues λ of C are calculated and then sorted in the order of decreasing eigenvalue.

These POD modes correspond to:

ψ = S φ A−1. (8)

where A is the square diagonal matrix of the singular values of S, that is
√
λi .

The POD coefficients of the input snapshots are now given by:


α1 · · ·αi · · ·αs


= A φT. (9)

The POD of the input snapshots thus corresponds to:

ϕ
i
= ϕ

0
+ ψ αi . (10)

Finally, the more the chosen set of ϕ
i

is sufficiently representative of the influence of the variable input parameters
in their range of variation, the more any intermediate ϕ would be accurately generated from its corresponding POD
coefficients α when obtained by interpolation in the α-space from the s snapshots αi :

ϕ ≈ ϕ
0
+ ψ α. (11)

It is important to mention that a linear combination of a level set functions will in general not necessarily give us a
valid signed distance function, as can be easily verified by the straightforward case of a level set function minus itself.

2.4. Detection of the local intrinsic dimensionality

At this point we have a set of s snapshots represented by their coordinates in α-space, i.e. α1, . . . , αs .
Before we can move from a set of discrete points to a smooth manifold using interpolation, we need to first detect

the dimensionality of this data set. This local intrinsic dimensionality d 6 p may be evaluated around a given design
point αev, for a local neighborhood of b 6 s points established by a standard nearest neighbor calculation, using the
Fukunaga–Olsen algorithm [35].

The basic premise of this algorithm is simply dividing the data set into clustered regions/neighborhoods where the
surface is approximately linear, and then compute the eigenvalues of the local moment matrix (by using a polynomial
basis P and a matrix weighting function W to “weight” the contributions of points based on their distance from αev).
The intrinsic dimensionality is then simply the number of eigenvalues that are greater than a certain threshold.

The polynomial matrix B is assembled according to:

B =

1
...

1

αT
1 − αT

ev
...

αT
b − αT

ev

 . (12)

1 The POD method of snapshots is faster when the number of snapshots is lower than their dimension, whereas truncation is useful when the
number of snapshots is large.
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The moment matrix M is then computed from B and a diagonal matrix W whose components are the weighted
contributions of the points α1, . . . , αb:

M = BTW B. (13)

Finally, the number of non-zero singular values of M corresponds to the local intrinsic dimensionality d of the
design problem around αev.

2.5. Interpolation by diffuse approximation

At this point, we have determined the intrinsic dimensionality d for the neighborhood around αev . We now present
the actual approach for making the transition from a set of b discrete snapshots αi to a smooth α-manifold

µ(α) = 0 (14)

using interpolation in α-space, either by passing through all the discrete αi points of the neighborhood or sufficiently
close in a minimized weighted-error sense, e.g. moving least squares.

In order to perform the interpolation, we need to replace the implicit representation in the previous equation by an
explicit representation as follows:

α = α(t1, . . . , td). (15)

2.5.1. Finding local coordinates for the local neighborhood
The first question that we must answer is what are the parameters t1, . . . , td that we can use to perform this

interpolation in order to move from the b snapshots αi to a smooth representation.
The first obvious and straightforward choice for t is simply the vector of dimensionless design parameters (P =

P1 · · · Pp) representing the complete set of geometric variables (G1,G2, . . .), material variables (M1,M2, . . .) and
process variables (Pr1, Pr2, . . .) for the drawing operation, as mentioned in the introductory section. This is actually
a viable option if d = p, in which case P of the original structural problem may themselves be considered as the
interpolation variables (coordinates), considerably simplifying the entire procedure, since by simply varying P and
calculating the local neighborhood, we seamlessly move from one local neighborhood to another.

On the other hand, when d < p (i.e. the number of design parameters exceeds the intrinsic dimensionality) or if
the structural parameters are unknown (as in the case of non-intrusive optimization) then it would be better to use an
implicit parameterization of the α-manifold, i.e. perform the interpolation in an implicit manner by finding the local
coordinates of αi i.e. h, t1, . . . , td that describe the local shape of the manifold for that neighborhood, using tangent
space construction. This local expression for the neighborhood will then be given by

h = h̃(t1, . . . , td) (16)

where the smooth function h̃(t) will be determined by interpolation using the natural coordinates hi , t i where t i
∈ Rd

of the b neighboring snapshots.
The coordinates t i correspond to the coordinates of the i th snapshot in the local tangent space of the α-manifold at

the evaluation point αev, while the complementary coordinate hi is simply the normal distance of the snapshot from
i th to this tangent space.

Thus, in order to find the local coordinates for the b neighboring points in α-space, we first calculate the covariance
matrix C

α
centered over the evaluation point αev for the local neighborhood:

C
α

=
1
b

b
i=1


αi − αev

 
αi − αev

T
. (17)

The eigenvectors vi of C
α

correspond to the local principal directions in the local tangent space. The local coordi-
nates for the neighborhood are then deduced by projection [36]:

hi
= [αi − αcen]

Tv1 (18)
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t i
j = [αi ]

T v j+1. (19)

where αcen is the centroid of the neighborhood in α-space.
In this manner, we have determined the local coordinates


hi , t i


for all the i = 1, . . . , b snapshots in the local

neighborhood.

2.5.2. Diffuse approximation on the local coordinates hi , t i

The next step is to perform interpolation on the local co-ordinates found in the previous step to find a smooth
function h̃(t). Generally speaking, there are several methods that may be used to perform this interpolation
(e.g. kriging, cokriging, radial basis functions, moving least squares, etc.) As we have explained in the introduction,
the diffuse approximation [37] is used here mainly due to the ease and flexibility that it allows in performing a moving
least-squares fit with an appropriate weighting function to interpolate between a given number of points in a local
neighborhood.

Diffuse approximation is then performed for a given point αA belonging to the local α-manifold (not one of the
snapshots) using the b neighboring points to get the local surface h = h̃(t) = h̃ (t1, . . . , td) using a polynomial basis
B centered around with the diagonal weighting matrix W :

B
t
=

1
...

1

(t1
− tA)T

...

(tb
− tA)T

· · ·

 . (20)

The basic idea here is to represent h (t1, . . . , td) by a moving polynomial h̃

t


= b(t)Ta(t) where b(t) =

[1, (t − tA)T , . . .] and minimizing the functional given by:

E

a


=
1
2

b
i=1

wi


t, t i

 
b


t i

T
a − h̃


t i

2

. (21)

where wi is the weighting function (elements of W ) for the i th neighbor snapshot, giving us [38]:
h̃


tA


,
∂ h̃


tA


∂t1

, . . .
∂ h̃


tA


∂td

T

=


BT

t
W B

t

−1
BT

t
W [h1, . . . , hb]T . (22)

For a Gaussian weighting function this could be of the form:

wi


t, t i


= e−c

t i
−tA

2

(23)

where c is a constant to control the weighting factor. This equation gives us h, t1, . . . , td where h is height over the
centroidal plane for the neighborhood. The local parametric expression for the α-manifold in this local neighborhood
of using d local parameters t1, . . . , td is then given as:

α1 = α1 (t1, . . . , td) , . . . , αs = αs (t1, . . . , td) . (24)

This means that the projection coefficients are controlled locally by d parameters that allow us to move along the
manifold. A typical α-manifold obtained by diffuse approximation is shown in Fig. 4.

It is vital to note that truncation of the POD basis is not required and not really recommended as it could reduce
the accuracy of the method, especially considering the POD truncation error does not drop off quickly enough [30].

That being said, one could truncate the basis to m 6 s most energetic modes using the energy criterion [20] in the
traditional manner

ϵ (m) =

m
i=1

λi

s
i=1

λi

(25)
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Fig. 4. Example of diffuse approximation on a set of shapes in the α-space (top) leading to a smooth α-manifold (bottom).

(where λi are the eigenvalues calculated in (7) and (8)) before developing the manifold in Rm space to further reduce
computational effort.

It is also important to mention that the estimation of d needs a sufficiently close neighborhood [13,14], and the
number of neighbors b needed depends on the expected intrinsic dimensionality and the order of polynomial chosen
for the matrix B. For material forming problems, we can use the geometric dimensionality of the stamping/drawing
tool and number of process parameters so these can give us an upper bound on d and therefore allow us to pick b.

2.6. Manifold walking algorithm

Simply projecting the target shape on the global α-manifold could directly lead to the desired solution, if the global
manifold were available, and this would certainly be a way to solve the problem under certain circumstances.

However, the construction of this global α-manifold in the entire range of variation of the parameters P can become
time consuming in complex cases, especially when the number of parameters p is large, due to the massive number of
snapshots that would be needed. In order to reduce the total number of calls to the exact function and thus the global
time cost, the α-manifold will be constructed “piece by piece”, i.e. only locally, until the optimal solution is found.

As described in Fig. 5, the general approach starts off by choosing an initial point P0. The local shape manifold is
constructed around this point (as previously described in Fig. 3). A local design of experiments D is performed and
the corresponding springback shapes Γi are computed. This is the only time we need exact function values. Next, the
corresponding level set functions ϕ

i
are generated for the shapes and POD is performed. After determining the local

dimensionality d according to the previous sub-section, the local α-manifold is built up by the Diffuse Approximation.
The coordinates αT of the target shapes ϕ

T
are now expressed in this α-space. The projection of αT onto this local

α-manifold gives us the next set of parameters. This algorithm is repeated until convergence.
As one would expect, during this manifold walking process (Figs. 6–9), the overlapping of neighbors that increases

with subsequent iterations leads to a reduction in the number of evaluations needed as we approach the target shape.

3. 3D Test-case: Post-springback shape characterization for deep drawing operation on an automotive strut
tower

3.1. Description of test-case and numerical analysis

In this 3D test-case, we consider the deep-drawing of a metal sheet to form an automotive strut tower with a set of
material parameters corresponding to a basic steel grade.
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Fig. 5. General approach proposed for the shape optimization in metal forming after springback.

Fig. 6. First stage of the manifold walking algorithm: neighborhood around initial point.

The geometries of the tools and the blank, shown in Fig. 10, were designed using the legacy CAD software
TopSolid/Design [39]. The geometries are fully parameterized but only 1 (H ) or 2 (H and R) parameters were allowed
to vary according to the values of their associated dimensionless parameters θ1 ∈ [0; 1] and θ2 ∈ [0; 1]:

H = 3 · θ1 + 5 (26)

R = 6 · θ2 + 41. (27)

The CAD geometries were translated into meshes with the finite element mesh generator GMSH [40]. The
forming phase of the simulations was performed in dynamic explicit mode using the legacy finite element software
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Fig. 7. Second stage of manifold walking.

Fig. 8. Intermediate stage of manifold walking: local manifold continues to move closer to target point in α-space.

Fig. 9. Local neighborhood clusters overlap towards convergence.

LS-DYNA [41], using the Belytschko–Tsay shell element formulation and 5 through thickness integration points. A
Python procedure was written to translate the GMSH mesh files in the LS-DYNA keyword file format.

Only one half of the problem was modeled due to its symmetric nature. Corresponding boundary conditions are
imposed on the blank side. The mesh is initially composed of a total of 16 114 elements with an adaptive remeshing
level limited to 2. The tools (punch, blank holder and die) were modeled as rigid body surfaces. The blank holding
force was held fixed at 500 kN. The blank was modeled considering a basic steel grade with transversely anisotropic



632 G. Le Quilliec et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 621–638

Fig. 10. Fully parameterized CAD geometries with 2 varying parameters H and R.

Fig. 11. Hardening curve of the blank (basic steel grade).

Table 1
Main test-case parameters and material properties of the blank for a
transversely anisotropic elastic–plastic material behavior.

Test case parameters and material properties

Blank holding force Fb 500 kN
Friction coefficient µ 0.1
Thickness t 2.2 mm
Young’s modulus E 200 GPa
Poisson’s ratio ν 0.3
Density ρ 7830 kg/m3

Anisotropic parameter* r 0.817

∗ The anisotropic parameter corresponds to the ratio of the in-plane
plastic strain rate to the out-of-plane plastic strain rate.

elastic–plastic material behavior (type 37 in LS-DYNA). All the related parameters are listed in Table 1. The hardening
curve of the blank is given in Fig. 11.

The springback phase of the simulations was performed in static implicit using the same legacy code. Only the
blank mesh was saved for this phase. One of its nodes was fully constrained (6 degrees of freedom) in order to



G. Le Quilliec et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 621–638 633

Fig. 12. Typical finite element simulation result.

Fig. 13. Typical level set function result (grid resolution 146 × 131 × 63).

avoid any rigid body movement. Artificial stabilization was activated to achieve a progressive unloading, to allow
springback to occur over 10 steps. A typical post-springback shape obtained by finite element simulation using
LS-DYNA is shown in Fig. 12.

3.2. Level set representation

The level set functions ϕ for sample formed shapes and for the target shape are obtained quickly by calculating the
signed distance function associated with the shapes and a fixed grid of points with resolution (146 × 131 × 63). To
compute the level set in a fast way, we developed a dedicated procedure in C++ language able to treat CAD geometries
(with help of Open CASCADE libraries [42]) as well as meshes. A typical level set function of a post-springback shape
is shown in Fig. 13.

As explained earlier, ϕ is the smooth signed distance function from the 3D surface of the particular post springback
shape used for the figure. The figure shows the various level sets corresponding to different values of this signed
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Fig. 14. Shape sampling projection in α-space in the case of 1 (top) and 2 (bottom) variable parameters of the tool geometry.

distance (represented using a continuum of color variation), while the iso-zero surface (ϕ = 0) corresponds to the
actual post springback shape surface. Note that Fig. 13 plots the level sets against a “limitation plane” solely to show
them more clearly, as in the absence of this “section” one would be unable to clearly distinguish between the individual
level sets.

3.3. Using the level-set shape manifolds for springback characterization and to estimate tool geometry required to
obtain a desired final shape after springback

As explained in the preceding section, the shape manifold is constructed locally around the design point. To
obtain the manifolds around a design point in the range of the tool parameters, the analysis of springback for the
strut tower was first performed for a sampling of input shapes in LS-DYNA by varying first a single parameter (H
via θ1), followed by varying 2 tool parameters (H and R via θ1 and θ2) in the neighborhood of the design point
as described in the Section 3.1, to obtain the actual post-springback shapes obtained for the purpose of geometry
characterization. These were then converted to the corresponding level set functions ϕ

1
. . . ϕ

s
using the methods

described in Section 3.2.
This was followed by POD on the shapes ϕ

1
. . . ϕ

s
to give a set of projection coefficients α1 . . . αs ∈ Rs allowing

us to plot the shape manifolds for a set of post-springback shapes in Fig. 14.

3.4. Estimating tool geometry required to obtain a desired final shape after springback using manifold walking

As mentioned in the introduction, the intended final shape differs from the actual final shape obtained post-
springback. The basic idea is to locate the point on the manifold ϕ


α


P


that is closest to the intended final shape

(which may or may not be an admissible shape) ϕ
T

without constructing the entire global manifold since that would
entail additional computational effort.
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Fig. 15. Finding the optimal design point on the local α-manifold in the case of a single variable.

Let α∗ be the projection of the ideal (desired) shape on the manifold, i.e. ϕ∗
= ϕ


α∗


= ϕ


α


P∗


. Then the

problem may be posed in the form:

P∗
= arg minP∈A⊂R p

α 
P


− αT

 . (28)

The algorithm when applied using a given desired shape gives the final solutions shown in Fig. 15 for the 1 parameter
case and Fig. 16 for the 2 parameter case. As expected, these final shapes are both admissible since they lie on the
manifold (the desired shape in this particular case on the other hand is not admissible since it clearly does not belong
to the manifold).

We locate the design points corresponding to the tool geometries needed to achieve these final shapes, which are
optimally close to the desired shapes for both cases, by locating the point on the manifold closest to the projection of
the desired shape on the local neighborhood using the manifold walking algorithm in each case.

Finally, a comparison of the target desired (non admissible) shape and the zero level set corresponding to the closest
admissible shape post-springback (reconstructed from the optimum α-coefficients and the POD modes) is shown in
Fig. 17.

While we have varied 1 and 2 geometric parameters to demonstrate the approach it goes without saying that the
approach is valid for any number of geometric and/or process parameters, and as we have seen it is independent of
the complexity of the structural shape. While we have limited ourselves to the forming phase in the simulation, it is
important to note that the trimming operation (to remove flash) generally has a significant influence on the springback.
This operation has not been considered here but the proposed approach would then be applied to the final shapes
obtained post forming and/or post trimming. This would of course increase the number of potential design parameters
and thus the intrinsic dimensionality of the problem.
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Fig. 16. Finding the optimal design point on the local α-manifold in the case of 2 tool geometry variables.

Fig. 17. Comparison of the target shape to the closest admissible shape in the case of 2 tool geometry variables.

4. Conclusions

In this paper, we have presented an objective approach to characterize the complex non-geometric 3D shapes
obtained after springback in a deep drawing process, using the level set approach and a shape space meta-model based
on the fundamental hypothesis of the continuous shape manifold. The transition from a “point-set manifold” to a
smooth shape manifold is then achieved by interpolating between level set functions in POD coefficient-space using
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the Diffuse Approximation. The approach was then demonstrated in the problem of springback assessment for the
deep drawing process of an automotive strut tower.

This allows us to achieve a variety of goals in a single shot: we can directly determine the tool geometry needed
for a desired final post-springback shape needed by the manufacturer, thus being better able to take springback into
account at the tool design stage.

Level sets, arguably the best tool to represent complex and “non geometric” shapes like those post-springback,
suffer from excessive dimensionality due to the number of grid points needed for adequate precision (1,204,938 in the
test case in this article) This is alleviated by the use of the POD that allows us to represent this massive information
using only a handful of αs for a given shape.

But from a storage point of view, this requires us to store the 15–20 snapshots in level set form, even though this
basis stays FIXED for a neighborhood allowing us to generate an infinite number of “non snapshot” shapes using the
manifold. In any case, the storage issue can conceivably be resolved by using octree meshes to limit the number of
grid points while maintaining precision in the zones susceptible to variation, and this is an area of future work.

Finally, the biggest challenge is still finding a way to integrate our level set interpolation approach into the
Hamilton–Jacobi level set equation to yield an ODE in the projection (α) coefficients in order to actively track the
deformation of the contour using “moving” local snapshots.
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