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Highlights

• A novel partition of unity based model is developed to simulate crack growth in porous materials.
• Fluid pressure in the crack is taken as an additional variable.
• High pressure gradients near cracks are resolved accurately.
• Hydraulic fracturing can be simulated by directly prescribing fluid flow in the crack.

Abstract

In this paper, we present an enhanced local pressure model for modelling fluid pressure driven fractures in porous saturated
materials. Using the partition-of-unity property of finite element shape functions, we describe the displacement and pressure fields
across the fracture as a strong discontinuity. We enhance the pressure in the fracture by including an additional degree of freedom.
The pressure gradient due to fluid leakage near the fracture surface is reconstructed based on Terzaghi’s consolidation solution.
With this numerical formulation we ensure that all fluid flow goes exclusively in the fracture and it is not necessary to use a dense
mesh near the fracture to capture the pressure gradient. Fluid flow in the rock formation is described by Darcy’s law. The fracture
process is governed by a cohesive traction–separation law. The performance of the numerical model for fluid driven fractures is
shown in three numerical examples.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Hydraulic fracturing is defined as the process by which a fracture propagates due to hydraulic loading, i.e., by
applying a fluid pressure inside the fracture. In geo-mechanics, this process is applied to stimulate oil and gas
reservoirs by injecting a highly viscous fluid into the underground formation. Once the induced fractures have
sufficient width, a proppant is added to the fluid. After the release of the pumping pressure, the induced fractures
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remain open under the highly confining stress due to the proppant and therefore greatly enhance the permeability of
the reservoir [1]. Other applications of hydraulic fracturing include heat production from geothermal reservoirs [2]
and measurements of in situ stresses [3]. A model to predict the hydraulic fracturing process can be used to optimize
these processes. However, the correct modelling of the hydraulic fracturing process is complex since three different
phenomena have to be taken into account: (i) the fluid exchange between the fracture and the rock formation (ii) the
fluid flow in the fracture and (iii) the changing spatial configuration due to fracture propagation [1].

The first theoretical hydraulic fracture models were developed in the 1950s [4]. Perkins and Kern [5] developed
a theoretical model based on the classic Sneddon plane strain crack propagation. Fluid loss was included in this
model by Nordgren [6] and is now referred to as the PKN model. Similar models with slightly different geometrical
assumptions were independently developed by Geertsma and de Klerk [7] and Khristianovic and Zheltov [8]. These
models have been used for analysing several parameters that control hydraulic fracturing. This research has shown
that hydraulic fracturing can be categorized in a parametric space based on hydraulic fractures that are dominated by
fluid leak-off, toughness, or viscosity. Several asymptotic solutions are derived in this parametric space. An overview
of these solutions is given by Adachi et al. [4].

Various numerical models have been developed for complex geometries where the analytical solutions fail. Boone
and Ingraffea [9] developed a numerical model based on the finite element method (FEM) for the poroelastic material
where a cohesive zone description was used for the fracture. The fluid flow in the crack was solved using a finite
difference method. Schrefler and co-workers [10–12] modelled a cohesive fracture using the FEM but included a mesh
adaptation scheme so that propagating fractures in arbitrary directions can be modelled in two- and three-dimensional
situations. Hydraulic fracturing was investigated in a permeable material by Sarris and Papanastasiou [13] with a finite
element analysis including cohesive zone elements. Segura and Carol [14,15] introduced a hydro-mechanical coupling
formulation using zero-thickness interface elements with double nodes based on the FEM. Carrier and Granet [16]
also used interface elements but included an additional degree of freedom for the pressure in the fracture. Recently,
also advancements were made in continuum based hydraulic fracturing simulations using a phase-field approach [17].

The eXtended Finite Element Method (X-FEM) is a proven technology in solid mechanics and has as an important
advantage compared to the previously mentioned fracture models; a fracture can grow in arbitrary directions without
the need to remesh [18]. In X-FEM a fracture is modelled as a discontinuity in the displacement field by exploiting
the partition-of-unity property of finite element shape functions [19]. Black and Belytschko [20] and Moës et al. [21]
were the first to implement this in the FEM by adding additional degrees of freedom to the existing nodes in the
finite element mesh. A cohesive zone description for the fracture process was included by Wells and Sluys [22]. The
X-FEM was successfully applied to fracturing in porous materials, see e.g. [23–25]. Recently, Mohammadnejad and
Khoei [26] developed a X-FEM model for cohesive crack growth in multiphase porous materials. They successfully
applied their model for hydraulic fracturing simulations [27]. In these works the pressure field across the fracture is
enriched with a linear distance function. This leads to a continuous pressure description across the fracture while the
fluid flow is discontinuous. In this paper, we use this model for benchmarking purposes and refer to it as the continuous
pressure X-FEM model.

A drawback of a continuous pressure description is that an inflow, as present in hydraulic fracturing, must be
prescribed as a boundary condition of the continuous external fluid flow. Therefore, a mesh dependent part of the fluid
flow goes directly in the formation instead of into the fracture. This effect decreases in an opened fracture due to the
high permeability in the fracture compared with the rock formation. However, the effect may be significant in an initial
closed fracture, particularly when the mesh is coarse. A second drawback of a continuous pressure over the fracture
is that a sufficiently fine mesh near the fracture is necessary to capture the pressure gradient. The length-scale of the
gradient decreases with a decreasing intrinsic permeability. Therefore, this effect may be severe in low permeable
rocks such as shales.

To quantify these effects, we develop a model with an additional, separate, degree of freedom for the fluid pressure
in the fracture. By doing this, we ensure that the inflow goes exclusively into the fracture. The fluid leaks off into the
formation only from the fracture itself. We enrich the pressure, as we do for the displacement field, with a Heaviside
function, making the pressure discontinuous over the fracture. Hence, the pressure exhibits a jump for the fracture to
the formation on the left and another jump for the fracture to the formation on the right as in Fig. 1. The steep pressure
gradients along the boundaries of the fracture are therefore not resolved. The steep gradients along the boundaries of
the fracture are reconstructed assuming a scale separation between on the one hand the consolidation phenomenon
around the fracture, and on the other hand the macroscopic fluid flow in the formation. The consolidation phenomenon
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Fig. 1. Schematic representation of the pressure magnitude over an open discontinuity in grey. The discontinuity separates the formation into two
bodies, Ω+ and Ω−, with a pressure p+

f and p−

f , respectively. The pressure in the discontinuity is given by pd. The striped line indicates the
physical pressure gradient over the discontinuity. The solid line represents the discontinuous pressure profile.

itself is reconstructed from an one-dimensional analytical solution based on Terzaghi’s consolidation equation [28].
The numerical model is only valid when the characteristic distance of consolidation around the fracture is small
relative to the mesh-size of the formation. We will refer to this model as the Enhanced Local Pressure (ELP) model.
The pressure near the fracture can be compared to an one-dimensional analytical solution. By comparing the ELP
model and the continuous X-FEM formulation with the analytical solution we investigate if indeed the ELP model
better approximates the pressure in the fracture at small distance-scales.

In the remainder of this paper we first describe the kinematic relations. In Section 3 we present the balance
equations and in Section 4 the governing equations are introduced. The weak form is given in Section 5 and the
discretization and numerical implementation are given in Section 6. In Section 7 we illustrate the performance of the
model with three examples. Finally, we draw our conclusions in Section 8.

2. Kinematic relations

Consider a body Ω crossed by a discontinuity Γd, as shown in Fig. 2(a). The discontinuity divides the body in two
domains, Ω+ and Ω−. The vector nd is defined as the normal of the discontinuity surface Γd pointing into domain
Ω+. The total displacement field of the solid skeleton can, at any time t , be described by a regular displacement field
û(x, t) and an additional displacement field ũ(x, t) [20,21,29]

u(x, t) = û(x, t)+ HΓd(x)ũ(x, t), (1)

where x is the position of a material point and HΓd is the Heaviside step function. Across the discontinuity, this is
defined as

HΓd =


1 if x ∈ Ω+

0 if x ∈ Ω−.
(2)

The strain field results from differentiating the displacement field (1) with respect to material point x with the
assumption of small strain theory

ϵ(x, t) = ∇
sû(x, t)+ HΓd∇

sũ(x, t), x ∉ Γd. (3)

Here ∇
s is the symmetric part of the differential operator

∇
su =

1
2
(∇u + (∇u)T ). (4)
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(a) The body Ω crossed by discontinuity Γd. The body
is completed with the boundary conditions.

(b) Schematic representation of a
discontinuity.

Fig. 2. Schematic representation of body Ω and of a discontinuity.

At the discontinuity Γd, the strain field is undefined and the kinematic quantity is defined by a jump in the displacement
field

vd(x, t) = ũ(x, t), x ∈ Γd. (5)

The pressure inside an opening fracture is different from the pressure inside the surrounding formation. The gradient
of this pressure difference quantifies the interaction of fluid flow between the fracture and the formation. We assume
the pressure to be discontinuous across the fracture:

p(x, t) = p̂(x, t)+ HΓd(x) p̃(x, t). (6)

In the discontinuity, the pressure is equal to an independent variable pd (Fig. 2(b)).

pd = p x ∈ Γd. (7)

3. Balance equations

The balance equations consist of two parts, namely balance equations in the bulk material and on a more local scale
inside the fracture. These two types are identified separately in this section.

3.1. Bulk behaviour

The porous solid skeleton is considered to be fully saturated with a fluid. The process is isothermal and gravity,
inertia, body forces, and convection are neglected. With these assumptions the momentum balance reads

∇ · σ = 0, (8)

where σ is the total stress which is decomposed in Terzaghi’s effective stress σ e and the hydrostatic pressure p [28]

σ = σ e − αpI, (9)

with I the unit matrix and α the Biot coefficient

α = 1 −
K

Ks
. (10)

Here, K and Ks are the bulk moduli of the porous material and the solid constituent, respectively. The momentum
balance is completed with the following boundary conditions (Fig. 2(a))

σ · nΓ = tp(x, t) x ∈ Γt ,

u(x, t) = up(x, t) x ∈ Γu,
(11)

with Γt ∪ Γu = Γ ,Γt ∩ Γu = ∅.
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We neglect mass transfer between the two constituents. The mass balance is written as [24]

α∇ · vs + ∇ · q +
1
M

ṗ = 0, (12)

where vs is the deformation velocity of the solid skeleton, q is the seepage flux, and M is the compressibility modulus
defined as

1
M

=
φ

Kf
+

1 − φ

Ks
. (13)

Here φ is the porosity of the porous material and Kf is the bulk modulus of the fluid. The mass balance is completed
with the following boundary conditions (Fig. 2(a))

q(x, t) · nΓ = qp x ∈ Γq ,

p(x, t) = pp x ∈ Γp,
(14)

with Γq ∪ Γp = Γ ,Γq ∩ Γp = ∅.

3.2. Microscopic model

Following a cohesive zone approach, the softening of the material is governed by a traction acting on the discon-
tinuity surface. This traction is coupled to the hydrostatic pressure in the discontinuity. Assuming continuity of stress
from the continuum into the discontinuity, we can write the local momentum balance as

σ · nd = td − pdnd. (15)

The local mass balance in the discontinuity can be found by integrating the continuous mass balance across the
discontinuity.

q+

Γd
− q−

Γd


· nd + u̇n + un


∂ u̇s

∂s


− un

∂

∂s


kd
∂pd

∂s


+

un

K f
ṗd = 0, (16)

with q+

Γd
and q−

Γd
being the fluid flow from the discontinuity into formation for the discontinuity lip of the Ω+ and

the Ω− domain, respectively, u̇n denoting the time derivative of the normal opening of the discontinuity, us being
the shear opening of the discontinuity, ⟨·⟩ =

·
+

+ ·
−

2 describing the average across the discontinuity, and kd being the
permeability in the discontinuity. The latter is given by [30]:

kd =
u2

n

12µ
, (17)

where µ is the viscosity of the fluid. For the derivation of this equilibrium equation, we refer to Irzal et al. [23].

4. Constitutive equations

The mathematical formulation of the balance equations are completed by constitutive behaviour for the bulk
material and the discontinuity.

4.1. Mechanical behaviour of the bulk

The effective stress in the bulk material is related to the strain with a linear reversible stress–strain relation:

σ e = 2µϵ + λtr(ϵ)I, (18)

where µ and λ are respectively the first and second Lamé constants given in an isotropic material by

µ =
E

2(1 + ν)
λ =

νE

(1 + ν)(1 − 2ν)
, (19)

with E and ν being the Young’s modulus and the Poisson’s ratio, respectively.
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Fig. 3. Exponential traction–separation law.

The fluid flow in the bulk material can be described by Darcy’s relation [31]

q = −k · ∇ p, (20)

where k is the permeability tensor, k = kI, of the porous material. The permeability k is assumed to be isotropic and
constant in time and space [32].

4.2. Mechanical behaviour in the discontinuity

The constitutive mechanical behaviour at the discontinuity is given by a relationship between the traction at the
interface and the displacement jump ud across the discontinuity [23]:

td = td(ud, κ). (21)

Here κ is a history parameter that is equal to the largest displacement jump reached. It is necessary to perform a
linearization on Eq. (21) in order to use the tangential stiffness matrix in an incremental iterative solution:

1td = T1ud. (22)

The relation between the traction td and the displacement jump ud can be any traction–separation relation and is
referred to as the cohesive law. We assume that the fluid pressure inside the hydraulic fractures only causes fracture
opening in normal direction. Therefore, shear tractions are neglected and we use an exponential cohesive law that is
only a function of normal opening un (Fig. 3)

tn = τult exp


−
unτult

Gc


. (23)

Here is τult the ultimate strength of the material and Gc the fracture toughness.

4.3. Small scale pressure coupling

Due to the discontinuous pressure formulation, the pressure gradient between the discontinuity and the formation
is undetermined. If the consolidation distance is small compared to the dimensions of the finite elements near the
discontinuity, we approximate the pressure gradient using the 1D analytical solution for a semi-infinite formation,
given by Eq. (62) in Appendix A. In this analytical solution, the value p represents the pressure difference between
the boundary surface and the initial pressure due to the loading of the formation. In the case of a discontinuity, there
is a pressure gradient between the discontinuity and the formation, see Fig. 2(b). We therefore substitute p with this
pressure difference. The fluid leakage is then taken from the analytical solution and thus given by

q · n = Qin =
k

2
pd − pf

cv t
π

exp −η2

4cv t −
η
2 erfc


η

2
√

cv t

 . (24)
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At the boundary of discontinuity, defined by η = 0, the fluid flow simplifies into

q · n =
k

2
pd − pf

cv t
π

. (25)

Here pf is the pressure in the formation at the edge of the fracture (Fig. 2(b)) and t is the time that expired after the
discontinuity was inserted. The diffusion coefficient cv is given by

cv = k M
K +

4
3µ

Ku +
4
3µ
, (26)

with Ku being the undrained bulk modulus

Ku = K + α2 M. (27)

Taking the side of the discontinuity into consideration, we can write this equation as
q+

Γd
− q−

Γd


· nd = Ca


2pd − p+

f − p−

f


, (28)

where the Ca is an analytical constant define by

Ca =
k

2


cv t
π

. (29)

5. Weak form

The weak form of the previously derived equilibrium equations can be expressed by multiplying them with
admissible test functions for each field variable. The test functions for the momentum balance and the mass balance
have the same form as the displacement field u and the pressure field p, respectively:

η = η̂ + HΓd η̃ ζ = ζ̂ + HΓd ζ̃ . (30)

The pressure in the fracture pd is continuous along the discontinuity and therefore multiplied by the test function ψ .
Multiplying the momentum balance (8) with the test function η, using Gauss’s theorem and incorporating the

boundary conditions, the weak momentum balance can be written as
Ω

∇(η̂ + HΓd η̃) : σdΩ =


Γt

∇(η̂ + HΓd η̃)tpdΓt

−


Γ+

d

∇(η̂ + HΓd η̃) · (σ · nd)dΓ+

d +


Γ−

d

∇(η̂ + HΓd η̃) · (σ · nd)dΓ−

d . (31)

Multiplying the mass balance (12) with the test function ζ results in:

− α


Ω
(ζ̂ + HΓd ζ̃ )∇ · vsdΩ +


Ω

∇(ζ̂ + HΓd ζ̃ ) · qdΩ

−


Ω
(ζ̂ + HΓd ζ̃ )

1
M

∂p

∂t
dΩ =


Γ f

(ζ̂ + HΓd ζ̃ ) ffdΓ . (32)

Here we do not consider the fluid leakage. This term is included in the microscopic pressure coupling. The mass
balance for the fluid flow in the fracture (16) is multiplied by test function ψ :

Γ+

d

ψq+

Γd
· nddΓ −


Γ−

d

ψq−

Γd
· nddΓ +


Γd

ψαu̇ndΓ +


Γd

ψun


∂ u̇s

∂s


dΓ

+


Γd

ψ
un

Kf
ṗddΓ −


Γd

ψ
1

12µ
u3

n
∂

∂s

∂pd

∂s
dΓ = 0. (33)
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These two weak equations must hold for all variations of test functions and can therefore be solved separately for
(η̃ = 0, ζ̃ = 0) and for (η̂ = 0, ζ̂ = 0). This results in the following four equations

Ω
(∇η̂) : σdΩ =


Γt

η̂ · tpdΓ , (34)


Ω

HΓd∇η̃ : σdΩ +


Γd

η̃ · (td − pdnd)dΓ =


Γt

(HΓd η̃) · tpdΓ , (35)

−α


Ω
ζ̂∇ · vsdΩ +


Ω

∇ ζ̂ · qdΩ −


Ω
ζ̂

1
M

∂p

∂t
dΩ =


Γ f

ζ̂ ffdΓ , (36)

−α


Ω

HΓd ζ̃∇ · vsdΩ +


Ω

HΓd∇ ζ̃ · qdΩ −


Ω

HΓd ζ̃
1
M

∂p

∂t
dΩ =


Γ f

HΓd ζ̃ ffdΓ . (37)

Here we assumed stress continuity over the discontinuity (σ ·nd = td − pdnd) and used the definition of the Heaviside
function Eq. (2).

The fifth equilibrium equation, the mass balance for the fluid flow in the fracture (33), can be rewritten by using
the divergence theorem in:

Γd

ψu
1

12µ
u3

n
∂

∂s

∂pd

∂s
dΓ = ψ

1
12µ

u3
n
∂pd

∂s


Sd

−


Γd

1
12µ

u3
n
∂ψ

∂s
·
∂pd

∂s
dΓ . (38)

The term 1
12µu3

n
∂pd
∂s |Sd represents the fluid inflow at the end of the fracture and is rewritten as

1
12µ

u3
n
∂pd

∂s


Sd

= Qin|Sd . (39)

This gives the following relation for the mass balance in the discontinuity
Γd

ψq+

Γd
· nddΓ −


Γd

ψq+

Γd
· nddΓ +


Γd

ψ u̇ndΓ +


Γd

ψun


∂ u̇s

∂s


dΓ

+


Γd

ψ
un

Kf
ṗddΓ +


Γd

1
12µ

u3
n
∂ψ

∂s
·
∂pd

∂s
dΓ = ψQin|Sd . (40)

6. Discretization

The spatial discretization of the balance equations is based on the partition-of-unity property of finite element
shape functions as described in the work of Babuška and Melenk [19]. The variational forms, the displacement field,
the pressure field, and the pressure in the fracture are discretized similarly following the Bubnov–Galerkin approach
for a single element by:

η = Nη̂ + HΓdNη̃, u = Nû + HΓdNũ,

ζ = Hζ̂ + HΓdHζ̃ , p = Hp̂ + HΓdHp̃, (41)

ψ = Vψ, pd = Vpd,

where N, H, and V are matrices containing the standard shape functions for respectively, the nodal displacement, the
pressure, and the pressure in the fracture for all nodes that support the element. Note that the shape functions for
the nodal displacement and the pressure are two-dimensional functions while the pressure in fracture is described in
an one-dimensional domain (Fig. 4). The columns û and p̂ contain the continuous nodal values of respectively, the
displacement and the pressure while ũ and p̃ contain the values of the enhanced nodes. The column pd contains the
nodal values of the pressure in the fracture. The discretized strain in the bulk can be derived by differentiation as

ϵ = Bû + HΓdBũ, (42)
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Fig. 4. Four nodal element with crossed by a discontinuity (dashed line).

where B = LNT contains the spatial derivative of the standard shape functions. The differential matrix operator L is
in the two-dimensional case defined as

L =


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

 . (43)

The discretized gradient of the pressure is defined as follows:

∇ p = ∇Hp̂ + HΓd∇Hp̃. (44)

Inserting Eq. (41) into the weak form of the momentum balance and the mass balance yields in the following
relations

Ωe

BT σdΩe =


Γt

NT tpdΓ , (45)
Ωe

HΓdBT σdΩe +


Γd

NT (td − αpdnd)dΓ =


Γt

HΓdNT tpdΓ , (46)

−


Ω
αHT mT

∇u̇dΩ +


Ω

∇HT qdΩ −


Ω

HT 1
M

ṗdΩ =


Γ f

HT ffdΓ , (47)

−


Ω
αHΓdHT mT

∇u̇dΩ +


Ω

∇HΓdHT
· qdΩ −


Ω

1
M

HΓdHT ∂p

∂t
dΩ

=


Γ f

HΓdHT ffdΓ , (48)

and for the mass balance in the fracture (40):
Γ+

d

VT


q+

Γd
− q−

Γd


· nddΓ +


Γd

VT u̇ndΓ +


Γd

VT un


∂ u̇s

∂s


dΓ

+


Γd

VT un

M f
ṗddΓ +


Γd

1
12µ

u3
n
∂VT

∂s
·
∂pd

∂s
dΓ = VT Qin|Sd , (49)

with the vector m in the two-dimensional situations being defined as m = ( 1, 1, 0 )T .
To solve these equations the time depended terms are approximated linearly as the difference between the current

time step and the previous time step

∂(·)

∂t
=
(·)t+1t

− (·)t

1t
, (50)
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where (·)t+1t is the unknown solution at the next time step, (·)t is the known solution from the previous time step, and
1t is the length of the time step. The time independent terms are approximated by the weighted result of the current
time step and the new time step:

(·) = θ̄ (·)t+1t
+ (1 − θ̄ )(·)t , θ̄ ∈ [0, 1]. (51)

Stabilization is reached if θ̄ ≥
1
2 . The Euler implicit time scheme is retrieved when θ̄ = 1, while for θ̄ = 0 the explicit

Euler scheme is retrieved. Taking a short time step leads to initial oscillations. To have a stable time integration, the
following criterion needs to be satisfied [33]

1t >
1x2

ck
. (52)

Here 1x is the element length and c is defined as c = 2 u + λ.
The resulting system of equations is solved using a Newton–Raphson iterative method. Linearizing the

aforementioned balance equations (Eqs. (45)–(49)), filling in the constitutive laws of Terzaghi effective stress (18),
Darcy’s law (20), and the leakage law (28), and including the spatial discretization (Eq. (41)) and time discretization
(Eqs. (50) and (51)) we can write the final system

Kûû Kûũ Cû p̂ Cû p̃ 0
Kûũ Kũũ Cũ p̂ Cũ p̃ Qũ pd

C p̂û C p̂ũ D p̂ p̂ D p̂ p̃ 0
C p̃û C p̃ũ D p̃ p̂ D p̃ p̃ 0
Qpdû Fpdũ θ̄1tQpd p̂ θ̄1tQpd p̃ Fpd pd



∂û
∂ũ
∂p̂
∂p̃
∂pd

 =


fext
û

fext
ũ

1tfext
p̂

1tfext
p̃

1tfext
pd

−


fint
û

fint
ũ

fint
p̂

fint
p̃

fint
pd

 . (53)

The separate terms of the stiffness matrix are given in Appendix B. The external and internal force are defined as

fext
û =


Γt

NT tt+1t
p dΓ

fint
û =


Ωe

BT σ j−1dΩe

fext
ũ =


Γt

HΓdNT tt+1t
p dΓ

fint
ũ =


Ωe

HΓdBT σ j−1dΩe +


Γ+

d

hNT
{htd j−1 − pd j−1nd}dΓ

fext
p̂ =


Γq

1tHT (θ̄q t+1t
p + (1 − θ̄ )q t

p)dΓ +1tHT (θ̄q t+1t
Γ + (1 − θ̄ )q t

Γ )|Sd

fint
p̂ = C p̂û · (ût+1t

j−1 − ût )+ C p̂ũ · (ũt+1t
j−1 − ũt )+1tK p̂ p̂ · (θ̄ p̂t+1t

j−1 + (1 − θ̄ )p̂t )

+1tK p̂ p̃ · (θ̄ p̃t+1t
j−1 + (1 − θ̄ )p̃t )+ M p̂ p̂ · (p̂t+1t

j−1 − p̂t )+ M p̂ p̃ · (p̃t+1t
j−1 − p̃t )

fext
p̃ =


Γq

1t DΓdHT (θ̄q t+1t
p + (1 − θ̄ )q t

p)dΓ

fint
p̃ = C p̃û · (ût+1t

j−1 − ût )+ C p̃ũ · (ũt+1t
j−1 − ũt )+1tK p̃ p̂ · (θ̄ p̂t+1t

j−1 + (1 − θ̄ )p̂t )

+1t (K p̃ p̃ + Q p̃ p̃) · (θ̄ p̃t+1t
j−1 + (1 − θ̄ )p̃t )+ M p̃ p̂ · (p̂t+1t

j−1 − p̂t )+ M p̃ p̃ · (p̃t+1t
j−1 − p̃t )

fext
pd

= HQin|Sd

fint
pd

= Qpdû · (ût+1t
j−1 − ût )+ (Q(1)

pdũ + Q(3)
pdũ) · (ũt+1t

j−1 − ũt )+1tQpd p̂ · (θ̄ p̂t+1t
j−1 + (1 − θ̄ )p̂t )

+ Q(2)
pd pd

· (pt+1t
c j−1

− pd
t )+1tQ(3)

pd pd
· (θ̄pt+1t

c j−1
+ (1 − θ̄ )pd

t )+1t θ̄
δH
δs

q t+1t
t j−1

+1t (1 − θ̄ )
δH
δs

q t
t
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with qt being the component of the tangential fluid flow:

qt =
1

12µ
u3

n
∂HT

∂s
pd. (54)

The numerical implementation and description is similar to the work of Remmers et al. [29,34,35]. The most
important aspects are summarized in this section and the ELP implementation is described in more detail.

The nucleation and propagation of cohesive zones are based on the Camacho–Ortiz average stress criterion [36].
The averages stress is calculated by a Gaussian weighting function that is depended on a length scale parameter
la. The nodes surrounding a discontinuity are enhanced the additional degrees of freedom. It is assumed that the
discontinuity through an element is a straight line and always ends at the edge of the element. The fracture can
grow through multiple elements in one time step. Numerical integration is performed with the standard Gaussian
integration. Due to the arbitrary locations of the discontinuity the original integration points are not sufficient anymore.
Therefore, the adopted integration scheme introduced by Wells and Sluys [22] is used for elements that are crossed by
a discontinuity. The balance equation over the discontinuity are integrated by two integration points per element. The
additional degree of freedom for the ELP model is carried by new nodes placed on the cross-points of the discontinuity
and the element edge. These nodes only contribute to the one-dimensional pressure field in the discontinuity, see
Fig. 4.

7. Examples

In this section we consider three examples. In the first two examples we use the ELP model but also a X-FEM
model with a continuous pressure profile across the fracture. In the third example we only use the ELP model. For
the details about the X-FEM model we refer to the work of Kraaijeveld et al. [25]. In the first example, we inject a
constant volume in an opened fracture. With this example we illustrate the differences between the ELP and X-FEM
model for the pressure in the fracture and the pressure profile at either sides of the fracture. In the second example,
both models are compared with an analytical solution for hydraulic fracture propagation. In the third example we
consider fracture nucleation and propagation from a circular hole. An implicit time scheme (θ = 1) is used in both
examples under two dimensional plane strain settings.

7.1. Fluid leakage from an opened fracture

In this example we benchmark the analytical leakage approximation (Eq. (28)) with the numerical models. Consider
a column of rock formation with a horizontal traction free initial fracture in the middle of the column (Fig. 5(a)). The
top and bottom surfaces of the column are both moved 0.01 mm away from the fracture creating a highly permeable
fracture. The top and bottom fracture surfaces are then fixed in displacement and fluid is being injected with a constant
rate Qin = 2.0e−5 m2

s at the left fracture entrance. We assume that the opened fracture is filled with fluid so that all
injected fluid must leak into the rock formation. The rock formation has an intrinsic permeability ki = 1.0e−20 m2

and a fluid viscosity µ = 1.0e−4 Pa s. The Young’s modulus equals E = 17.0 GPa with a Poisson’s ratio of v = 0.2.
Both solid and fluid constituents are considered to be compressible with Ks = 36.0 GPa and Kf = 3.0 GPa. A time
increment δt = 0.01 s is used in these simulations.

The consolidation distance of one time step can be approximated by 1xcrit =
√
(1t Ek) = 0.13 mm, where

k = ki/µ [37]. To resolve the pressure gradient it is necessary to use elements with an height lower than this
consolidation distance. We violate this criterion deliberately by using elements with a height of 3.5 mm. In Fig. 5(b) we
show that we can still predict the pressure in the fracture with the ELP model while the X-FEM model underestimates
that fluid pressure. The pressure profile across the fracture for the X-FEM model at various times is shown in Fig. 6.
It is clear that the pressure profile is not resolved in the X-FEM model, at early times (Fig. 6(a)), due to the large
mesh size. This may lead to inaccurate results or numerical instabilities. At t = 2.0 s the consolidation distance is
1xcrit = 1.8 mm. Since the element at the fracture surface is divided in half, the consolidation distance is larger than
the length over which the numerical integration takes place. In Fig. 6(b) it can be seen that indeed the X-FEM model
can now resolve the pressure gradient on both sides of the fracture.
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(a) Flow through a discontinuity. (b) Pressure in the discontinuity for the ELP model and
the X-FEM model.

Fig. 5. Schematic representation of the consolidation of a soil column due to flow through a discontinuity (a) and the result for the pressure in the
discontinuity over the time (b).

(a) t = 0.01 s. (b) t = 2.0 s.

Fig. 6. Pressure for various times for the X-FEM model due to a constant fluid flow in the discontinuity.

7.2. KGD fracture problem

In this example, we analyse the KGD fracture problem as shown in Fig. 7 [7]. We consider a material with intrinsic
permeability ki = 1.0e−18 m2 and a fluid viscosity of µ = 1.0e−5 Pa s. The fracture toughness of the solid skeleton
is taken as Gc = 120.0 N

m with an ultimate strength of τult = 3.75 MPa. The fluid injection rate Qin = 0.0005 m2

s
is assumed to be constant. The remainder of material properties and time discretization properties are equal to the
previous example. The mesh near the fracture path is made of squared, 50.0 × 50.0 mm, elements. Again, a time step
δt = 0.01 s is used.

Fig. 8 shows the pressure across the fracture with a single point indicating the pressure in fracture for the ELP
model. It is not needed to resolve the pressure gradient caused by fluid leakage in the ELP model due to the analytical
approximation of the pressure gradient. There are pressure oscillations near the fracture surface for the X-FEM model.
Also, the pressure in the fracture simulated by X-FEM, is lower than in the rock formation. This leads to fluid being
attracted into the fracture instead of fluid leakage to rock formation.
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Fig. 7. Scheme of the KGD fracture problem.

Bunger et al. [38] derived an analytical solution for this type of fracture problem including fluid leak-off but
neglecting any poroelastic effects in the bulk material. With the material properties the hydraulic fracture propagates
in the storage dominated regime. The analytical solution approximates the fluid leak-off based with Carter’s law [39]:

Qleakage =
2CL

√
t − t0(x)

, (55)

where CL is the leak-off coefficient, t is the current time, and t0 is the time when the fracture arrived at position
x . The leakage coefficient is an input parameter for the analytical solution and is therefore calculated by fitting
equation (55) to the numerical leakage using the least squares method. The analytical solution is based a leakage
coefficient of Cl = 5.6e−6 m

√
s

calculated with the ELP solution. The comparison between the analytical solution and
the numerical models is shown in Fig. 10. The leakage in the X-FEM model could not be fitted Carter’s law. There
is some discrepancy between the numerical models and the analytical solution. We attribute this to the differences
between the numerical formation and the analytical solution. Namely, we describe the fracture process with a cohesive
zone while the analytical solution is based on linear elastic fracture mechanics. Another significant difference is that
the rock is linear elastic in the analytical solution but we include poro-elastic effects in the rock formation.

To illustrate the difference between the ELP and the X-FEM model we repeat the KGD fracture example with
4 different meshes. These meshes have a constant element size of ℓx = 20.0 mm in the fracture direction. The
mesh is refined in the y-direction, with a smallest element size of ℓy = 78.94 mm. We validated that the numerical
solution did not converge further using smaller elements. Therefore, we use this mesh as a reference solution. The
reference solution is compared with 3 different meshes, having element sizes of ℓy = 100.0 mm, ℓy = 166.6 mm and
ℓy = 300.0 mm referred to as respectively, mesh 1, mesh 2 and mesh 3. The absolute error in the fracture length with
respect to the reference solution for these 3 meshes is shown for the ELP model and the X-FEM model in respectively,
Fig. 9(a) and (b). It is clear from these graphs that the error in the X-FEM models is larger and does not converge as
fast to the reference solution as the ELP model.

7.3. Fracture from a circular hole

In the final example the ELP model is used to model a propagating fracture growing from a two-dimensional
circular hole (Fig. 11). It assume that the confining stress σ0 = 1.25 MPa in the y-direction is the half of the stress
in the x-direction. We create two initial fractures, one perpendicular and one parallel to the highest confining stress.
The fluid inflow Qin = 10.0 mm2

s is constant and is distributed between the two fractures. Therefore, we assume that
the fluid pressure is constant and equal in both fractures. The pressure at the fracture inlet is applied as a load on the
circular wall to allow for deformations. The rock formation has an intrinsic permeability of ki = 1.0e−18 m2 and a
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Fig. 8. Pressure distribution across the fracture for the ELP model and the X-FEM model. The black dot indicates pressure in the fracture for the
ELP model.

(a) ELP solution. (b) X-FEM solution.

Fig. 9. Absolute error in the fracture length for the ELP and X-FEM models.

(a) Fracture length. (b) Crack mouth opening.

Fig. 10. The results of the numerical models and the analytical solution plotted against the time.

Fig. 11. Scheme of the borehole fracture problem.
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(a) t = 60 s.

(b) t = 600 s.

Fig. 12. Contour plots effective stress for the circular hole fracture problem. The deformed configuration is magnified 100 times. The results of the
simulation with only one fracture in the y-direction are shown in the left column. The right column contains the results of the simulation with two
fractures.

fluid viscosity of µ = 1.0e−4 Pa s. The fracture toughness is taken as Gc = 120.0 N
m and the ultimate strength as

τult = 1.25 MPa. A time step of 1t = 6.0 s is used. The remainder of material properties are again the same as the
first example.

The initial stress concentration has been validated with Kirsch’s analytical solution [40]. From experimental
measurements it is known that the preferred propagation direction of a hydraulic fracture is perpendicular to the
minimum confining stress [41]. To illustrate this we also perform the simulation with only the initial fracture in the
y-direction. The results of these two simulations can be seen in Fig. 12. In the left column it is shown that the fracture
indeed turns in the direction of minimum confining stress. In the situation of two fractures (right column), only the
fracture that is initially already perpendicular to the minimum confining stress propagates. This is expected as it costs
less energy to grow the fracture in this direction. At the left side of the circular hole stress is being generated due to
the loading of the circular wall.

In the next simulation we do consider the possibility of fracture nucleation. We start the simulation with only the
initial fracture perpendicular to the highest confining stress (Fig. 13(a)). The stress generated at both sides of the
circular hole leads to the nucleation of two new fractures (Fig. 13(b)).
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(a) t = 12 s. (b) t = 282 s.

Fig. 13. Contour plots of the effective stress for the circular hole. The deformed configuration is magnified 100 times. In the left figure, the situation
before fracture nucleation is shown. In the right figure, the two nucleated fractures in preferential fracture direction are shown.

8. Conclusion

We have presented an enhanced local pressure model, within the framework of X-FEM, for fluid pressure driven
fracture in porous saturated materials. By exploiting the partition-of-unity property of finite element shape functions
the method captures the discontinuous fracture. The fracture process is modelled by means of a cohesive zone
description. The local, additional, degree of freedom for the pressure ensures that fluid flow goes exclusively in
the fracture. The steep pressure gradient that may occur locally near the fracture surface is reconstructed based on
Terzaghi’s analytical solution.

We have illustrated this effect with an example where fluid is being injected in an opened fracture. Using a X-FEM
model with a continuous pressure approach the pressure gradient cannot be resolved at low time scales. The pressure
in the fracture calculated with the ELP model is consistent with the analytical solution. We also have showed that at
higher time scales the continuous X-FEM does describe the pressure gradient near the fracture surface. This indicates
that the ELP model is better capable to model hydraulic fracturing at early stages while at later stages a switch to the
continuous X-FEM should be considered.

In the second example we have compared the propagation of a hydraulic fracture under a constant fluid injection
with an analytical solution in the storage dominated regime. The trend of the ELP model is comparable to the analytical
solution. We attribute this due to the fact that the analytical solution is based on different assumptions such as linear
elastic fracture mechanics and that poro-elastic effects in the rock formation are neglected. We also showed with a
mesh refinement study that the ELP model converges the reference solution faster than the X-FEM model.

In the last example we have considered fracture propagation from a circular hole that can deform depending on
the pressure in fracture. Here we have showed that the fracture can grow in arbitrary propagation angles. The fracture
propagated in the direction parallel to the highest confining stress. This behaviour is energetically favourable and is
also in agreement with experimental data. In this example we have also included fracture nucleation. As expected the
fractures nucleated in the plane of lowest confining stress.

Based on our results we conclude that the ELP model has significant advantages compared to the continuous
X-FEM model in hydraulic fracturing of low permeable rock formations such as shales. Fluid can be injected
exclusively in the fractures and it is not necessary to have a dense mesh to resolve the pressure gradient near the
fracture.
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Appendix A

In this appendix we will solve Terzaghi’s one dimensional consolidation equation [28] for two different boundary
conditions. First, we look at the consolidation of a soil layer under load. Secondly, we look at a soil column under the
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injection of a constant fluid flow. This is comparable to the early stages of hydraulic fracturing. The one dimensional
consolidation equation is given by

∂p

∂t
= cv

∂2 p

∂x2 (56)

where cv is the diffusion coefficient and is given by

cv = k M
K +

4
3µ

Ku +
4
3µ
. (57)

Here K and µ are the bulk modulus and the shear modulus, respectively. The undrained bulk modulus is defined as

Ku = K + α2 M. (58)

Using separation of variables we can derive the well known 1D consolidation equation:

p(z, t) =
2p0

h

∞
i=1

1
µi

e−λi cv t sin(µi z). (59)

Here is p0 the applied load, h is the height of the soil layer, z is the coordinate system along the height of the
consolidation column, and λi and µi are summation constants defined by

λi = µ2
i =


(2i − 1)π

2h

2

. (60)

Changing the bottom boundary condition to a constant fluid flow Qin results in the following equation for the
pressure

p(z, t) = −
Qin

k
z +

Qin

k
h −

2Qin

hk

∞
i=1

1

µ2
i

e−λi cv t cos(µi z). (61)

Since the latter solution is depended on the height of the soil layer we also give the solution for an semi-infinite
soil layer

2Qin

k


cvt

π
exp

−η2

4cvt
−
η

2
erfc


η

2
√

cvt


. (62)

Here η is the distance form the discontinuity to a point the formation. This equation was derived for the flux of heat
through a semi-infinite solid by Carslaw and Jaeger [42].

Appendix B

The element matrices are divided in four categories:
The stiffness matrices:

Kûû =


Ωe

BT DBdΩe Kûũ =


Ωe

HΓdBT DBdΩe

Kũũ =


Ωe

H2
Γd

BT DBdΩe +


Γ+

d

h2NT TNdΓ

K p̂ p̂ = −


Ωe

k∇HT
∇HdΩe K p̂ p̃ = −


Ωe

kHs
Γd

∇HT
∇HdΩe

K p̃ p̂ = −


Ωe

kHs
Γd

∇HT
∇HdΩe K p̃ p̃ = −


Ωe

k(Hs
Γd
)2∇HT

∇HdΩe
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the mass matrices:

M p̂ p̂ = −


Ωe

1
M

HT HdΩe M p̂ p̃ = −


Ωe

1
M

Hs
Γd

HT HdΩe

M p̃ p̂ = −


Ωe

1
M

Hs
Γd

HT HdΩe M p̃ p̃ = −
1
M
(Hs

Γd
)2HT HdΩe

the coupling matrices

Cû p̂ = −α


Ωe

BT (mH)dΩe Cû p̃ = −α


Ωe

Hs
Γd

BT (mH)dΩe

Cũ p̂ = −α


Ωe

HΓdBT (mH)dΩe Cũ p̃ = −α


Ωe

HΓd Hs
Γd

BT (mH)dΩe

C p̂û = −α


Ωe

HT mT BdΩe C p̂ũ = −α


Ωe

HΓdHT mT BdΩe

C p̃û = −α


Ωe

Hs
Γd

HT mT BdΩe C p̃ũ = −α


Ωe

HΓd Hs
Γd

HT mT BdΩe

and the crack flow terms

Qũ pd = −


Γ+

d

hNT ndVdΓ Q(2)
pdũ =


Γd

3
12µ

∂VT

∂s

∂V
∂s

pdu2
nhnT

d NdΓ

Qpd pd =


Γd

1
12µ

∂VT

∂s
u3

n
∂V
∂s

dΓ Qpd p̂ = −2Ca


Γd

VT HdΓ

Qpdû =


Γd

unVT tT ∂N
∂s

dΓ Q(3)
pdũ =


Γd

1
2

unVT tT ∂N
∂s

dΓ

Q(2)
pd pd

=


Γd

un

Kf
VT VṗddΓ Q(1)

pdũ =


Γd

hVT ndNdΓ

Q(3)
pd pd

= 2Ca


Γd

VVT dΓ Qpd p̃ = −2Ca


Γd

VT VdΓ .

The additional terms in the stiffness matrix are defined by

D p̂ p̂ = θ̄1tK p̂ p̂ + M p̂ p̂ D p̂ p̃ = θ̄1tK p̂ p̃ + M p̂ p̃

D p̃ p̂ = θ̄1tK p̃ p̂ + M p̃ p̂ D p̃ p̃ = θ̄1tK p̃ p̃

Fpdũ = Q(1)
pdũ + θ̄1tQ(2)

pdũ + Q(3)
pdũ Fpd pd = θ̄1t (Qpd pd + Q(3)

pd pd
)+ Q(2)

pd pd
.

The derivative of N in the tangential direction of the fracture is calculated as follows:

tT ∂NT

∂s
= tT

∇NT WM, (63)

with W being the following support matrix in the case of four nodal elements

W =



1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


, (64)
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and M being a support matrix containing the contributions of the tangent vector on its diagonal

M = diag

tx , ty, tx , ty, tx , ty, tx , ty


. (65)
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