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Abstract

In this paper, a single stress integral equation is presented for solving multi-medium elasticity problems, and by using a newly
proposed method for treating arbitrarily high order of singular boundary integrals, a new method is developed for computing the
stresses on the interfaces of multi-media. Comparing to conventional multi-domain boundary element methods, the presented In-
terface Integral BEM (IIBEM) is more efficient in computational time, data preparing, and program coding. However, a big issue
is encountered in IIBEM when computing the stresses on interfaces since the commonly used traction-recovery method in com-
puting outer boundary stresses cannot be applied on the interfaces. Therefore, a direct method for handling a hyper-singular stress
interface integral equation has to be used to obtain the interface stresses. In the direct method used in the paper, singularities are
analytically removed by expressing the non-singular part of the integration kernel as a power series in a local distance defined on
a projection line/plane, and the stresses on the interfaces can be evaluated precisely. Numerical examples are given to verify the
correctness of the derived boundary-interface integral equations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Quite a wide range of engineering problems involves objects composed of different materials. However, there is
not yet a boundary integral equation available to solve the multi-medium elastic problems, since the existing boundary
integral equations were established for single-medium problems. In order to solve the multi-medium problems using
the Boundary Element Method (BEM), the most popular conventional technique is the Multi-Domain Boundary
Element Method (MDBEM) [1–6]. The basic idea behind MDBEM is that the whole domain of concern is broken up
into separate sub-domains according to the material properties, and a boundary integral equation is written for each
sub-domain. The final system of equations is formed by assembling all contributions of discretized boundary integral
equations for each sub-domain based on the compatibility condition of displacement and the equilibrium condition of
traction at common interface nodes.
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Although MDBEM is very flexible in solving multi-medium problems, especially large-scale engineering prob-
lems, when using an advanced system equation solver [1,4], it takes relatively long computational time since the
boundary integrals over interface elements need to be carried out twice. For the same reason, due to the opposing
outward normal directions to interfaces which are shared by two adjacent sub-domains, the element information de-
fined over interface needs to be input twice. In addition, the efficiency of MDBEM heavily relies on the assembling
technique of the system of equations. This gives rise to some difficulties in coding a universal program.

Recently, a new BEM, the interface integral boundary element Method (IIBEM), was developed by Gao et al. [7,8],
which not only can use a single integral equation to solve multi-medium problems, but also can save computational
time. However, no stresses on interface nodes were computed in [7,8], since there will be hyper-singular integrals
appearing in the resulted integral equations. In this paper, a new single boundary integral equation which is capable
of computing interface stresses is developed. Firstly based on a general nonhomogeneous elastic stress–strain
relationship, displacement and stress boundary-domain integral equations are established using the Source Point
Isolation Method [9]. Then the domain integral included in the nonhomogeneous BEM formulation is degenerated
into an interface integral by expressing the variation effect of the shear modulus as the difference of shear moduli
between two adjacent materials. The lately proposed hyper-singular integral method [10] is adopted to evaluate the
hyper-singular integrals appearing in the stress boundary integral equation. The derived integral equations are very
simple in form and only require integration once over the interface elements. Therefore, it is efficient in program
coding, input data preparing, and computational time reduction. Numerical examples are provided to demonstrate the
potential of the presented formulation.

2. Review of boundary-domain integral equations for single elastic medium with varying modulus

Consider an isotropic, continuously non-homogeneous and linear elastic solid material. In the absence of body
forces, the equilibrium equation is given by

σ jk,k = 0 (1)

where σ jk represents the stress tensor, a comma after a quantity represents spatial derivatives and repeated indexes
denote summation. It is assumed that the shear modulus µ of the material depends on Cartesian coordinates while
Poisson’s ratio ν is constant. Under this assumption, the stress tensor σ jk and the displacement gradient uk,l =

∂uk/∂xl are related by the following generalized Hooke’s law:

σi j = Di jkluk,l = µD0
i jkluk,l (2)

where D0
i jkl is a constant tensor [11]. The weak-form of the equilibrium equation (1) can be written as follows:

Ω̄
Ui j (x, y)σ jk,k(x)dΩ = 0 (3)

where Ui j (x, y) is a weight function, which is taken as the Kelvin displacement fundamental solution in this paper.
Substitution of Eq. (2) into Eq. (3) and application of Gauss’s divergence theorem yield [12]

cũi (y) =


Γ

Ui j (x, y)t j (x)dΓ (x) −


Γ

Ti j (x, y)ũ j (x)dΓ (x) +


Ω̄

Vi j (x, y)ũ j (x)dΩ(x) (4)

where c = 1 for internal points and c = 0.5 for smooth boundary nodes. The fundamental solutions Ui j and Ti j
appearing in Eq. (4) can be found in any elasticity BEM book, e.g. [11] and the kernel function Vi j can be expressed
as follows:

Vi j =
−1

4πα(1 − ν)rα


r,kµ̃,k[(1 − 2ν)δi j + βr,ir, j ] + (1 − 2ν)(µ̃,ir, j − µ̃, jr,i )


(5)

in which, β = 2 (2D) or β = 3 (3D), α = β − 1, δi j is the delta symbol and r the distance between the source point
y and the field point x .

ũi (x) and µ̃ (x) are the normalized displacements and shear modulus defined as follows:

ũi (x) = µ(x)ui (x) (6)
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µ̃ (x) = ln µ(x). (7)

From the expression of Eq. (6), it follows that

∂ui

∂y j
=

1
µ


∂ ũi

∂y j
− ũi

∂µ̃

∂y j


. (8)

Taking the partial derivative of Eq. (4) with respect to the source point y, and then substituting the result into
Eq. (8) and making use of Eq. (2), we can obtain the following stress integral equation:

σi j (y) =


Γ

Ui jk(x, y)tk(x)dΓ (x) −


Γ

Ti jk(x, y)ũk(x)dΓ (x) +


Ω

Vi jk(x, y)ũk(x)dΩ(x) + Fi jk(y)ũk(y) (9)

in which the kernel functions Ui jk and Ti jk are the same as given in usual BEM books (e.g., [11]), and other quantities
are as follows:

Vi jk =
1

2πα(1 − ν)

1
rβ


βµ̃,mr,m[(1 − 2ν)δi jr,k + ν(δikr, j + δ jkr,i ) − γ r,ir, jr,k]

+ βν(µ̃,ir, j + µ̃, jr,i )r,k + (1 − 2ν)(βµ̃,kr,ir, j + µ̃, jδik + µ̃,iδ jk) − (1 − 4ν)µ̃,kδi j


(10)

Fi jk =


−1

4(1 − ν)


(δi j µ̃,k + δikµ̃, j + δ jkµ̃,i )


for 2D

−1
15(1 − ν)


(2 + 10v)δi j µ̃,k + (7 − 5v)(δikµ̃, j + δ jkµ̃,i )


for 3D.

(11)

Eqs. (4) and (9) are the basic boundary-domain integral equations for solving a single medium elasticity problem
with varying shear modulus. Since the kernel function Vi j and Vi jk include the spatial derivatives of the shear modulus
µ, it is required that the shear modulus should vary continuously within the domain Ω̄ . For a problem consisting of
multiple materials, the shear modulus jumps across interfaces of different materials. Therefore, Eqs. (4) and (9) cannot
be directly used. In the next section, we extend Eqs. (4) and (9) to solve multi-material problems by turning the jump
effect of the shear modulus into an interface integral through a degenerate technique.

3. General boundary-domain integral equations for multi-medium elastic problems with varying shear moduli

For the sake of convenience and not losing generality, a problem consisting of two media characterized by shear
and strain tensor µ1 and µ2 is considered as shown in Fig. 1. Γ is the outer boundary of the problem, ΓI represents
the interface between media Ω1 and Ω2, and n′ is the outer unit normal to Ω1. Since the shear and strain tensor jumps
across the interface ΓI , we separate a narrow domain Ω3 around ΓI , which has a constant infinitesimal thickness 1h
along the interface.

Referring to Fig. 1 and Ref. [8], the domain integral in Eq. (4) can be written as
Ω̄

Vi j ũ j dΩ =


Ω

Vi j ũ j dΩ + lim
1h→0


1h


ΓI

Vi j ũ j dΓ


(12)

where Ω represents the whole domain consisting of all media and Vi j is determined by Eq. (5). To evaluate gradients
of the normalized shear modulus µ̃ involved in the kernel Vi j , substituting Eq. (5) into Eq. (12) and noticed that after
taking the limit process, i.e. letting 1h → 0, the first term on the right-hand side of Eq. (12) is zero, thus, referring to
Ref. [8], it follows that

Ω̄
Vi j ũ j dΩ =


Ω

Vi j ũ j dΩ +


ΓI

T ′

i j 1µu j dΓ (13)

where

T ′

i j = Σi jln
′

l =
−1

4πα(1 − v)rα


r,kn′

k[(1 − 2v)δi j + βr,ir, j ] + (1 − 2v)(n′

ir, j − n′

jr,i )


. (14)
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Fig. 1. A narrow domain separated around interface of two media.

Finally, substituting Eq. (13) into Eq. (4), it follows that

cũi (y) =


Γ

Ui j (x, y)t j (x)dΓ −


Γ

Ti j (x, y)ũ j (x)dΓ

+


ΓI

1µT ′

i j u j (x)dΓ (x) +


Ω

Vi j (x, y)ũ j (x)dΩ(x). (15)

In the numerical implementation of Eq. (15), three types of points are defined in discretization: outer boundary
points on Γ , interface points on ΓI , and internal points in Ω . Eq. (15) is only suitable for the outer boundary and
internal points by setting c = 0.5 and c = 1 for smooth boundary and internal points, respectively. When the source
point y is located on interface points, referring to Ref. [8] it follows that:

c =
1
2

(µ1 + µ2) . (16)

Similarly, taking the partial derivative of Eq. (15) with respect to the source point y, and then substituting the result
into Eq. (8) and making use of Eq. (2), we can obtain the following stress integral equation.

σi j (y) =


Γ

Ui jk(x, y)tk(x)dΓ (x) −


Γ

Ti jk(x, y)ũk(x)dΓ (x)

+


ΓI

1T ′

i jku j (x)dΓ (x) +


Ω

Vi jk(x, y)ũk(x)dΩ(x) + Fi jk(y)ũk(y) (17)

in which the kernel functions Ui jk and Ti jk are the same as given in Eq. (9), and 1T ′

i jk is evaluated below:

1T ′

i jk = −1Di jmnΣmkl,nn′

l . (18)

Eq. (17) can also be applied to interface points.
Comparing Eqs. (15) and (17) for multi-medium varying coefficient elastic problems to those for single-medium

ones, Eqs. (4) and (9), it can be seen that the interface integrals are additional terms in the multi-medium problems.
These additional terms reflect the effect of shear modulus jump across the interface.

4. Boundary-interface integral equations for piecewise homogeneous problems

Eqs. (15) and (17) are the boundary-interface-domain integral equations for general multi-media varying shear
modulus problems. For usual piecewise homogeneous problems, they can be reduced to a simple unified boundary-
interface integral equation.

4.1. Boundary-interface integral equation for piecewise homogeneous problems

In piecewise homogeneous problems, the shear modulus µ may be different for different media, but it is constant
within each medium. In this case, the domain integrals included in Eqs. (15) and (17) have zero values due to the fact
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that the spatial derivatives of the shear modulus µ involved in the kernel Vi j , Vi jk and Fi jk are zero (see Eqs. (5), (10)
and (11)). Thus, taking into account relationship (8), Eq. (15) can be reduced to the following unified form:

µ̂ui (y) =


Γ

Ui j (x, y)t j (x)dΓ (x) −


Γ

µTi j (x, y)u j (x)dΓ (x) +


ΓI

1µT ′

i j (x, y)u j (x)dΓ (x) (19)

where T ′

i j is evaluated by Eq. (14), and µ̂ can be written as follows:

µ̂ =


1
2
µ for smooth outer boundary points on Γ

1
2

(µ1 + µ2) for smooth interface points on ΓI

µ for internal points.

(20)

Similarly, in piecewise homogeneous problems, Eq. (17) can be written as follows:

σi j (y) =


Γ

Ui jk(x, y)tk(x)dΓx −


Γ

Ti jk(x, y)ũk(x)dΓx +


ΓI

1T ′

i jk(x, y)uk(x)dΓx (21)

where, in which the kernel functions Ui jk and Ti jk are the same as given in Eq. (9), for piecewise homogeneous
materials 1T ′

i jk is evaluated below:

1T ′

i jk(x, y) =
T̄i jk(x, y)

rβ
. (22)

For 2D problems:

T̄i jk =
1µ

2π(1 − υ)
{2r,mnm[(1 − 2υ)δi jr,k + υ(δikr, j + δ jkr,i ) − 4r,ir, jr,k]

+ 2υ(nir, jr,k + n jr,ir,k) + (1 − 2υ)(2nkr,ir, j + n jδik + niδ jk) − (1 − 4υ)nkδi j }. (23)

For 3D problems:

T̄i jk =
1µ

4π(1 − υ)
{3r,mnm[(1 − 2υ)δi jr,k + υ(δikr, j + δ jkr,i ) − 5r,ir, jr,k]

+ 3υ(nir, jr,k + n jr,ir,k) + (1 − 2υ)(3nkr,ir, j + n jδik + niδ jk) − (1 − 4υ)nkδi j }. (24)

From Eq. (14) we can see that the kernel functions Ti j and T ′

i j are strongly singular [13–17] when the source point
is located on the outer boundary or the interface element under integration. To avoid direct evaluation of integrals
related to these two kernel functions, the “rigid body motion” technique [8,11] is used to determine the coefficient
matrices formed by the strongly singular integrals.

When we try to evaluate stresses, there are three cases for different source point locations. When the source point
is located in the internal field, Eq. (17) can be directly used to evaluate stresses, since none singularities arise for this
case; when the source point is located on the outer boundary, the traction-recovery method [11] can be employed to
compute stresses on the outer boundary. However, when the source point is located on the interface, handicap arises,
because no tractions exist on the interface and therefore the traction-recovery method cannot be employed. To solve
this problem, the stress integral equation has to be used. But when source point is on the interface, the interface integral
is hyper-singular with the singular order of β. This indicates that the evaluation of a hyper-singular integral is the key
technique to compute interface stresses in IIBEM.

4.2. Evaluation of hyper-singular interface integrals using the newly proposed projection plane method

In order to numerically evaluate the boundary integrals or interfacial integrals shown in Eqs. (19) and (21), coor-
dinates in an element can be expressed in terms of their nodal values as follows:

xi (ξ) =

Nnode
α=1

Nα(ξ)xα
i (25)
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Fig. 2. Boundary element projected onto the projection plane.

where Nnode is the number of element nodes; ξ represents the intrinsic coordinate (for a surface element it being under-
stood that (ξ) = (ξ1, ξ2)); Nα is the shape function of the αth node [11], and xα

i is the i th component of coordinates
at the αth node.

From Eq. (22) we can see that the kernel functions 1T ′

i jk is hyper strongly singular when the source point is lo-
cated on the interface element under integration. Therefore, a particular hyper-singular integral technique is needed to
evaluate the following integral:

Γs

1T ′

i jk(x, y)Nα(x)dΓx (26)

where, Nα(x) is the shape function [11], and Γs is the singular interface element containing the source point. If the
source point is placed inside an element, then Γs consists of just one element; if the source point is on the boundary
of an element, Γs consists of all adjacent elements shared the source point.

In 3D problems, the boundary element is a curved surface as marked with ABCD in Fig. 2, so direct evaluating
integrals over them is difficult. To solve this problem, we introduce a projection plane, which is the tangential plane
of the element to the origin of the intrinsic coordinate system. A local orthogonal coordinate system (x ′, y′, z′), or
written as (x ′

1, x ′

2, x ′

3), is established on the projection plane with its origin being at the point (ξ1 = 0, ξ2 = 0), in
which axes x ′

1 and x ′

2 are located within the plane. The axis x ′

1 is along ξ1 direction and axis x ′

3 is along the outward
normal direction to the element. Assuming that the direction cosine of the local coordinate axes with respective to the
global one is L i j , (its determination method can be found in references, i.e., in [10]), the coordinates transformation
between the local and global systems can be performed using the following relationships:

x ′

i = L i j (x j − xo
j ) (27)

xi = xo
i + L j i x ′

j (28)

where the repeated subscripts represent summation, xo
i is the global coordinates of the origin of the local coordinate

system, which is determined using Eq. (25) by setting ξ = 0.
Making use of Eq. (27), one can project the original curved element onto the projection plane to form a flat projec-

tion element, and then all geometry quantities can be expressed in terms of variables defined on the projection plane.
In a plane, there are only two independent variables. We choose x ′

1 and x ′

2 as the independent variables, and z′ (i.e.,
x ′

3) over the curved surface can be expressed in terms of x ′

1 and x ′

2. To do so, expanding z′ as Taylor series about the
origin of the local coordinate system as follows (truncated to quadratic terms):

z′
= aI (z

′)x ′

I + aI J (z′)x ′

I x ′

J (29)

in which, capital subscripts I and J take values from 1 to 2, and

aI (z
′) =

∂z′

∂x ′

I
=

∂z′

∂ξK

∂ξK

∂x ′

I
(30)

aI J (z′) =
1
2


∂2z′

∂ξK ∂ξL

∂ξK

∂x ′

I

∂ξL

∂x ′

J
+

∂z′

∂ξK

∂2ξK

∂x ′

I ∂x ′

J


(31)
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Fig. 3. Quantities defined on the projection plane.

where ∂z′/∂ξK can be calculated by nodal local coordinates using Eq. (25), expressions for ∂ξK /∂x ′

I have been given

by Lachat in [18], and expressions for ∂2ξk
∂x ′

I ∂x ′
J

can be found in [10].

The local distance ρ projected from the global distance r onto the projection plane and its derivatives ρ,I are
introduced (see Fig. 3) as follows:

ρ =


x ′

1 − y′

1

2
+


x ′

2 − y′

2

2 (32)

ρ,I =
x ′

I − y′

I

ρ
. (33)

The local coordinates at the field point can be expressed in terms of a linear relationship on ρ as follows

x ′

I = y′

I + ρ,I ρ. (34)

From Eq. (34) and Fig. 3, it can be seen that ρ,I is a quantity depending on the angle between ρ and axis x ′

1, being
independent of ρ itself.

Substituting Eq. (34) into Eq. (29) yields:

z′
= p(z′) + q(z′, ρ)ρ (35)

where,

p(z′) = aI (z
′)y′

I + aI J (z′)y′

I y′

J = z′p (36)

q(z′, ρ) = q1(z
′) + q2(z

′)ρ (37)

and,

q1(z
′) = [aI (z

′) + 2aI J (z′)y′

J ]ρ,I (38a)

q2(z
′) = aI J (z′)ρ,I ρ,J . (38b)

In a similar manner to 2D case, intrinsic coordinates can be expressed as:

ξK = p(ξK ) + q(ξK , ρ)ρ (39)

where p(ξK ) and q(ξK , ρ) can be determined by replacing z′ with ξK in Eqs. (36) and (37).
Substituting Eqs. (34) and (35) into Eq. (28) yields

xi = x p
i + L J iρ,J ρ + L3i q(z′, ρ)ρ (40)

and then substituting Eq. (37) into above equation results in

xi = yi + (bi + ciρ)ρ (41)
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where

bi = L J iρ,J + L3i q1(z
′) (42a)

ci = L3i q2(z
′). (42b)

Making use of the normalized orthogonal property of the coordinate transformation tensor L i j , the expansion of r
can be derived using Eq. (41) as follows:

r =


(xi − yi )(xi − yi ) = g(ρ)ρ (43)

where,

g(ρ) =


1 + q2(z′, ρ) =


G0 + G1ρ + G2ρ2 (44)

here, G0 = bi bi , G1 = 2bi ci and G2 = ci ci .
It is easy to derive that

r,i =
∂r

∂xi
=

bi + ciρ

g(ρ)
. (45)

After expanding all geometry quantities over an element in terms of the local distance, we can handle the singular
boundary integrals shown in Eq. (26).

In 3D problems, the relationship between the differential areas over the projection plane and the real surface can
be written as:

d A = dΓ cos φ = dΓn0
i ni (46)

in which, A is the area of the projection plane, n0
i and ni are the outward normals to the tangential planes to the origin

of the local coordinate system and the field point, and φ is the angle between them.
Substituting Eqs. (43) and (46) into Eq. (26), the surface integral can be expressed in terms of an integral over the

projection plane as follows:

I (y) =


A

T̄i jk(x, y)

gβ(ρ)ρβn0
i ni

d A(x). (47)

Employing the Radial Integration Method (RIM) [19–25], the above integral over the projection plane can be
transformed into a closed line integral over the contour of the projection element (see Fig. 3):

I (y) =


L

1
ρ

∂ρ

∂nL Fd L (48)

in which, ∂ρ/∂nL
= ρ,I nL

I with nL
I being the outward normal to the contour line L (Fig. 3), and F is a radial integral

on the projection plane and can be written as:

F = lim
ρε→0

 ρL

ρε

F̄(ρ)

ρβ−1 dρ (49)

where ρL is the distance from the source point to the integration point on the contour line L , and F̄(ρ) is the regular
part of the integrand in Eq. (47):

F̄(ρ) =
T̄i jk(x(ρ), y)

gβ(ρ)n0
i ni

. (50)

In order to integrate Eq. (49), the non-singular part F̄ is expanded as a power series in ρ, such that

F̄(ρ) =

N
n=0

B(n)ρn (51)
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in which, N is the order of the power series, usually taking a value between 2 and 7 depending the size of ρE ; and
B(n) are constants which are determined by collocating N +1 points over the integration region (0, ρE ). In this paper,
N + 1 equally spaced points are used, i.e., (0, ρ1, . . . , ρN ). The coefficient for the first point (n = 0) is B(0)

= F̄(0)

and other coefficients can be solved using the following equation set:

[R] {B} = {Y } (52)

where, [R] is a square matrix with the order of N :

[R] =


1, ρ1, · · · ρN−1

1

1, ρ2, · · · ρN−1
2

...
... · · ·

...

1, ρN , · · · ρN−1
N

 . (53)

{B} and {Y } are vectors as follows:

{B} =


B1

B2

...

B N

 {Y } =


[F̄(ρ1) − B(0)

]/ρ1

[F̄(ρ2) − B(0)
]/ρ2

...

[F̄(ρN ) − B(0)
]/ρN

 . (54)

Solving Eq. (52) for coefficient vector {B} and then substituting Eq. (51) into (50) yield:

F =

N
n=0

B(n) lim
ε→0

 ρE

ε

ρn−βdρ =

N
n=0

B(n)En (55)

where,

En =


1

n − β + 1


1

ρE
β−n−1 − lim

ρε→0

1

ρε
β−n−1


(n ≠ β − 1)

ln ρE − lim
ρε→0

ln ρε (n = β − 1).
(56)

For a physical problem, the integral should exist. This means that the infinite terms involved in above equation
should be eliminated after considering the contributions of all adjacent elements around the source point or should be
canceled out by free terms [10,11]. Thus, after a tedious derivation [10], Eq. (56) becomes

En =


1

n − β + 1


1

ρE
β−n−1 − Hβ−n−1


(0 ≤ n ≤ β − 2)

ln ρE − ln H0 (n = β − 1)

1
n − β + 1

ρE
n−β+1 (n > β − 1)

(57)

where

H0 =
1

√
G0

, H1 =
G1

2G0
, H2 =

G2

G0
−

G1
2

2G0
2 (58a)

H3 =
3G3

2G0
−

3G1G2

2G0
2 +

G1
3

2G0
3 (58b)

H4 =
2G4

G0
−

2G1G3 + G2
2

G0
2 +

2G1
2G2

G0
3 −

G1
4

2G0
4 . (58c)
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Fig. 4. A quarter of thick-wall cylinder consisting of three media.

Here,

G0 = bi bi , G1 = 2bi ci , G2 = ci ci (59)

in which, bi and ci are determined by Eq. (42).
Since ρL is the distance from the projected source point P ′ to the contour line L (see Fig. 3), ρL is not zero when

P ′ is located at interior of the element. Otherwise, when P ′ is located on a side of L , the value of ∂ρ/∂nL on the
current element has the same size but opposite sign to that on the adjacent element, and therefore they are canceled
out each other. This means that the sides where P ′ is located on need not to be considered at all. Thus, arbitrary order
of singular surface integrals can be evaluated using Eqs. (48), (55) and (57) without any singularities.

5. Numerical examples

Based on the code in [8], a computer code has been developed using the formulations derived in this paper. This
code can use linear and quadratic boundary elements. Two examples with piecewise homogeneous materials are pre-
sented in the following and computational results are compared with those from the Finite Element Method (FEM)
and MDBEM [4] to verify the correctness of the developed formulations.

Example 1 (Thick-Walled Cylinder Consisting of Three Media Under Internal Pressure). A thick cylinder, consisting
of three media, with an internal diameter of 200 units and an external diameter of 400 units, is subjected to an internal
pressure of ten units (P = 10) under the plane strain condition.

Due to symmetry, a quarter of the cylinder is analyzed. The geometry and boundary conditions of this example
are shown in Fig. 4. The material properties are: shear modules of elasticity µ1 = 400, µ2 = 800, µ3 = 4000,
and Poisson’s ratio ν = 0.25. Both the inner and outer circumferential lines are discretized into 12 equally-spaced
quadratic boundary elements; the middle curved line, the interface, is discretized into 6 continuous equally-spaced
quadratic boundary elements, respectively; and each of the three straight lines along the radial direction is discretized
into 10 equally-spaced quadratic elements. The whole BEM model has a total of 44 outer boundary elements and 16
interface elements and 138 nodes, of which there are 8 inner nodes. Fig. 5 shows the BEM model of computation.

Figs. 6 and 7 show the computed displacements ux and stress σxx along the radial direction over the middle straight
line, respectively. Figs. 8 and 9 show the computed displacements u y and stress σyy along the ring direction interface
over the middle curve line, respectively and Figs. 10 and 11 show the computed displacements ux and stress σxx
of the inner nodes, respectively. For comparison, results obtained using MDBEM [4] with the same node pattern
are also provided. From Figs. 6–11, it can be seen that the presented IIBEM results are in very good agreement
with MDBEM results, except for the two end nodes of Fig. 7 where the stress concentration effect may cause the
discrepancy.
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Fig. 5. BEM model of the three media cylinder.

Fig. 6. Distribution of displacement ux along radial direction.

Fig. 7. Distribution of stress σxx along radial direction.



K. Yang et al. / Comput. Methods Appl. Mech. Engrg. 287 (2015) 54–68 65

Fig. 8. Displacement in y direction over the middle curve line.

Fig. 9. Stress σyy over the middle curve line.

Fig. 10. Displacement in x direction at inner nodes.

Example 2 (Plate with a Cylinder Consisting of Two Media Under Tensile Loading). A 3D rectangular plate with
a cylinder, consisting of two media, with an internal diameter of 1.8 units and an external diameter of 2.7 units, is
subjected to a uniform tensile loading of ten units (P = 10) as depicted in Fig. 12.

Due to symmetry, a quarter of the plate is analyzed. The geometry and boundary conditions of this example are
shown in Figs. 12 and 13. The material properties are: shear modules of elasticity µ1 = 4000, µ2 = 400 and
Poisson’s ratio ν = 0.25. Both the inner and outer circumferential lines are discretized into 20 equally-spaced
quadratic boundary elements. The whole BEM model has a total of 254 outer boundary elements and 20 interface
elements and 897 nodes. Fig. 14 shows the BEM model of computation.
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Fig. 11. Stress σxx at inner nodes.

Fig. 12. Rectangular plate under tensile loading.

Fig. 13. A quarter of plate consisting of two media.

Fig. 14. BEM model of the two media plate.
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Fig. 15. Displacement in x direction over the interface curve line.

Fig. 16. Stress σxx over the interface curve line.

Fig. 17. Contour of the computed stress.

Figs. 15 and 16 show the computed displacements ux and stress σxx along the ring direction interface over the
middle curve line, respectively. For comparison, results obtained using FEM software ANSYS with the same node
pattern are also provided. Fig. 17 shows the contour plot of the computed σxx stress.

From Figs. 15 and 16, it can be seen that the presented IIBEM results are in very good agreement with FEM results,
although coarse meshes are used in BEM. In addition to be sure, the displacements computed using FEM are similar
to those using the current IIBEM with the same coarse meshes as in IIBEM, but the accuracy of stresses using FEM is
worse than using IIBEM. Therefore, to achieve a same accurate stress result, a finer mesh is necessary for FEM. This
demonstrates the advantage of IIBEM over FEM in the meshing aspect.
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6. Concluding discussions

In this paper, a new boundary element method (BEM) is developed for computing 2D and 3D multi-medium in-
terface stresses. The main feature of the method is that a single integral equation is used to solve multiple-medium
problems. Comparing to the commonly used conventional multi-domain boundary element method, it has the advan-
tages of less labor effort in preparing the input data, fast evaluation of interface integrals, and no need to assemble the
system of equations from individual medium’s contributions.

By using the lately proposed method treating hyper-singular boundary integrals, the hyper-singular integrals ap-
pearing in the stress boundary integral equations can be evaluated precisely. Numerical examples have demonstrated
the correctness of the developed method.
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