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Abstract

The aim of this paper is to extend the global error estimation and control addressed in Lang and Verwer [SIAM J. Sci. Comput.
29, 2007] for initial value problems to finite difference solutions of semilinear parabolic partial differential equations. The approach
presented there is combined with an estimation of the PDE spatial truncation error by Richardson extrapolation to estimate the
overall error in the computed solution. Approximations of the error transport equations for spatial and temporal global errors are
derived by using asymptotic estimates that neglect higher order error terms for sufficiently small step sizes in space and time.
Asymptotic control in a discrete L2-norm is achieved through tolerance proportionality and uniform or adaptive mesh refinement.
Numerical examples are used to illustrate the reliability of the estimation and control strategies.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

We consider semilinear parabolic partial differential equations

∂t u(t, x) = L(t, x)u(t, x) + g(t, x, u(t, x)), t ∈ (0, T ], x ∈ Ω ⊂ Rd , (1)

in d ∈ N space dimensions, where L is an elliptic operator, and assume that an appropriate system of boundary con-
ditions and the initial condition

u(0, x) = u0(x), x ∈ Ω (2)

are given. The initial boundary value problem is assumed to be well posed and to have a unique continuous solution
u(t, x).
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The method of lines is used to solve (1) numerically. We first discretize the PDE in space by means of finite dif-
ferences of order q > 1 on a (possibly non-uniform) spatial mesh Ωh and solve the resulting system of ODEs using
existing time integrators. For simplicity, we shall assume that this system of time-dependent ODEs can be written in
the general form

U ′

h(t) = Fh(t, Uh(t)), t ∈ (0, T ],

Uh(0) = Uh,0,
(3)

with a unique solution vector Uh(t) being a grid function on Ωh . Let

Rh : u(t, · ) → (Rhu)(t) (4)

be the usual restriction operator defined by (Rhu)(t) = (u(t, x1), . . . , u(t, xN ))T , where xi ∈ Ωh and N is the number
of all mesh points. Then we take as initial condition Uh,0 = Rhu(0).

To simplify the following derivations, we assume that Fh is given by

Fh(t, Uh) = Lh(t)Uh + Gh(t, Uh) (5)

with a finite difference approximation Lh of L , and Gh(t, Rhu) = Rh g(t, ·, u(t, ·)).
To solve the initial value problem (3), we apply a numerical integration method of order p ≥ 1 at a certain time

grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T, (6)

using local control of accuracy. This yields approximations Vh(tn) to Uh(tn), which may be calculated for other values
of t by using a suitable interpolation method provided by the integrator. The global time error is then defined by

eh(t) = Vh(t) − Uh(t). (7)

Numerical experiments in [1] for ODE systems have shown that classical global error estimation based on the first
variational equation is remarkably reliable. In addition, having the property of tolerance proportionality, that is, there
exists a linear relationship between the global time error and the local accuracy tolerance, eh(t) can be successfully
controlled by a second run with an adjusted local tolerance. Numerous techniques to estimate global errors are de-
scribed in [2]. A comparison of various adaptive grid methods for partial differential equations and implementation
issues are presented in [3,4].

In order for the method of lines to be used efficiently, it is necessary to take also into account the spatial discretiza-
tion error. Defining the spatial discretization error by

ηh(t) = Uh(t) − (Rhu)(t), (8)

the vector of overall global errors Eh(t) = Vh(t) − (Rhu)(t) may be written as sum of the global time and spatial
error, that is,

Eh(t) = eh(t) + ηh(t). (9)

We assume that u(t, x) is (q + 2)-times continuously differentiable with respect to x and (p + 1)-times continuously
differentiable with respect to t . Then, with maximum step sizes hmax in space and τmax = maxi=0,...,M−1(tn+1 − tn)

in time it holds for the global space and time error that ∥ηh(tn)∥ = O(hq
max) and ∥eh(tn)∥ = O(τ

p
max), n = 1, . . . , M ,

respectively.
Although a posteriori error estimates and adaptive algorithms for the efficient solution of parabolic problems are

well established (see e.g. [5,6] and references therein), the separation of global time and spatial discretization errors
is still a challenge. First experiences to estimate and balance the spatial discretization error and the error due to time
integration of the ODEs within the method of lines have been made by Schönauer, Schnepf, and Raith [7]. In their
control strategy, the spatial mesh is initially chosen and remains fixed. The spatial truncation error is designated to
be the level to which the local time error must be adapted. Lawson, Berzins, and Dew [8] proposed to additionally
control the local time error with respect to the contribution of the existing error from the previous time steps to the
global error at the end of the next time step. The error in time is enabled to vary in relation to the spatial discretization



K. Debrabant, J. Lang / Comput. Methods Appl. Mech. Engrg. ( ) – 3

error, ensuring that the method of lines with a fixed spatial mesh is being used efficiently. A successful attempt to
assess and to equilibrate the individual discretization errors with respect to a given quantity of interest has been made
by Schmich and Vexler [9]. An adjoint linear parabolic problem has to be solved backwards in time to derive useful
error bounds, which are used to enhance the resolution in time and space to meet a user-prescribed accuracy tolerance.

It is the purpose of this paper to present a new asymptotic error control strategy for the global errors Eh(t), based
on asymptotic estimates. We will mainly focus on reliability. So our aim is to provide error estimates Ẽh(t) ≈ Eh(t)
which are not only asymptotically exact, but also work reliably for moderate tolerances, that is for relatively coarse
discretizations. Approximations of the error transport equations for spatial and temporal global errors are derived by
using asymptotic estimates that neglect higher order error terms for sufficiently small step sizes in space and time. The
approximate global errors are measured in discrete L2-norms. A priori bounds for the global error in such norms are
well known, see e.g. [10,11]. However, reliable a posteriori error estimation and efficient control of the accuracy of
the solution numerically computed to an imposed tolerance level are still challenging. We achieve asymptotic global
error control by iteratively improving the temporal and spatial discretizations according to asymptotic estimates of
eh(t) and ηh(t). The global time error is estimated and controlled along the way fully described in [1]. To estimate
the global spatial error, we follow an approach proposed in [12] (see also [8]) and use Richardson extrapolation to
set up a linearized error transport equation. Both strategies have to be combined in the right manner in order to make
sure that they work reliably. Therefore, we have developed an appropriate control rule for the global spatial error. To
control the overall global error more efficiently, we also consider a new fully space–time adaptive approach.

Throughout the paper we will use the terms ‘approximation’ and ‘estimation’ in the sense of asymptotic estimates,
i.e., estimates that involve the Landau symbol O.

The outline of this paper is as follows: In Section 2, we will linearize the transport equations for the global spatial
and the global time error. These contain the residual time error and the spatial truncation error, which are approximated
in Sections 3 and 4. In Section 5 we describe the discretization formulas used to approximate the solutions of the error
transport equations, as well as the strategies used to adaptively adjust the time step size and the spatial mesh in
dependence on the residual time error and the spatial truncation error. Now that we have approximations to the global
time and global spatial error, Section 6 suggests strategies to adapt the local tolerances such that in further runs first
the global time error and then the global spatial error respect some global tolerances provided by the user. Finally,
numerical examples and a summary are given in Sections 7 and 8.

2. Spatial and time error

By making use of the restriction operator Rh , the spatial truncation error is defined by

αh(t) = (Rhu)′(t) − Fh(t, (Rhu)(t)). (10)

From (3) and (10), it follows that the global spatial error ηh(t) representing the accumulation of the spatial discretiza-
tion error is the solution of the initial value problem

η′

h(t) = Fh(t, Uh(t)) − Fh(t, (Rhu)(t)) − αh(t), t ∈ (0, T ],

ηh(0) = 0.
(11)

Assuming Fh to be twice continuously differentiable, the mean value theorem for vector functions applied to g̃(ξ) =

Fh(t, (Rhu)(t) + ξηh(t)) yields

η′

h(t) = ∂Uh Fh(t, Uh(t)) ηh(t) − αh(t) + O(ηh(t)2), t ∈ (0, T ],

ηh(0) = 0.
(12)

With Vh(t) being the continuous extension of the numerical approximation to (3), the residual time error is defined by

rh(t) = V ′

h(t) − Fh(t, Vh(t)). (13)

Thus the global time error eh(t) fulfils the initial value problem

e′

h(t) = Fh(t, Vh(t)) − Fh(t, Uh(t)) + rh(t), t ∈ (0, T ],

eh(0) = 0.
(14)
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Again, the mean value theorem yields

e′

h(t) = ∂Uh Fh(t, Vh(t)) eh(t) + rh(t) + O(eh(t)2), t ∈ (0, T ],

eh(0) = 0.
(15)

Apparently, by implementing proper choices of the defects αh(t) and rh(t), solving (12) and (15) will in leading order
provide approximations to the true global error. The issue of how to approximate the spatial truncation error and the
residual time error will be discussed in Sections 3 and 4.

3. Approximation of the residual time error

The numerical approximation of the global time error eh(t) as defined in (15) requires the construction of an
appropriate nearby solution Vh(t) which is used in (13) to define the residual time error rh(t). The usual way is
to construct an interpolatory polynomial from the numerical solutions by using Lagrange or Hermite interpolation.
The latter one exploits the fact that with approximations Vh,n := Vh(tn) at certain time points also first derivatives
Fh,n := Fh(tn, Vh,n) are given. In the following we present an approach proposed in [1] to obtain the nearby solution
through piecewise cubic Hermite interpolation. It turns out that this is useful as long as 1 ≤ p ≤ 3 with p being the
order of the time integration method. One step methods of order less or equal three are quite popular in the method of
lines approach, since they are easy to program and the number of the arising linear systems is still of moderate size.

At every subinterval [tn, tn+1] we form

Vh(t) = Vh,n + An(t − tn) + Bn(t − tn)2
+ Cn(t − tn)3, tn ≤ t ≤ tn+1, (16)

and choose the coefficients such that V ′

h(tn) = Fh,n and V ′

h(tn+1) = Fh,n+1. This gives

Vh(tn + θτn) = v0(θ)Vh,n + v1(θ)Vh,n+1 + τnw0(θ)Fh,n + τnw1(θ)Fh,n+1 (17)

with 0 ≤ θ ≤ 1, and

v0(θ) = (1 − θ)2(1 + 2θ), v1(θ) = θ2(3 − 2θ), w0(θ) = (1 − θ)2θ,

w1(θ) = θ2(θ − 1),
(18)

which imply

Vh(tn+1/2) =
1
2
(Vh,n + Vh,n+1) +

τn

8
(Fh,n − Fh,n+1) (19)

and

V ′

h(tn+1/2) =
3

2τn
(Vh,n+1 − Vh,n) −

1
4
(Fh,n + Fh,n+1). (20)

With (19) and (20) we compute from (13) the residual time error halfway the step interval as

rh(tn+1/2) =
3

2τn
(Vh,n+1 − Vh,n) −

1
4
(Fh,n + Fh,n+1)

− Fh


tn+

1
2
,

1
2
(Vh,n + Vh,n+1) +

τn

8
(Fh,n − Fh,n+1)


. (21)

On the other hand, assuming that Fh is four times continuously differentiable with respect to the solution, we obtain
from (13) by applying the Simpson rule that tn+1

tn
rh(t) dt = (Vh,n+1 − Vh,n) −

τn

6
(Fh,n + Fh,n+1) −

2
3
τn Fh


tn+

1
2
, Vh(tn+1/2)


+ O(τ 5

n ) (22)

and consequently

1
τn

 tn+1

tn
rh(t) dt =

2
3

rh(tn+1/2) + O(τ 4
n ). (23)
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As rh(tn+
1
2
) = O(τ

min{p,4}
n ), the approximation (23) is useful as long as p ≤ 3. Then, as in [1, Section 2.1] we

consider instead of (15) the step size frozen version

ẽ′

h(t) = ∂Uh Fh(tn, Vh,n) ẽh(t) +
2
3

rh


tn+

1
2


, t ∈ (tn, tn+1], n = 0, . . . , M − 1,

ẽh(0) = 0
(24)

to approximate the global time error eh(t).

Remark 3.1. When defined as above by using cubic Hermite interpolation, rh(tn+1/2) can also be used to retrieve in
leading order the local error δn+1 at time tn+1 of any one-step method of order 1 ≤ p ≤ 3 through the relation

rh(tn+1/2) =
3
2

δn+1

τn
+ O(τ

p+1
n ), (25)

(see also [1, Section 2.2] and [13]). So, controlling rh(tn+1/2) in a local step size procedure is equivalent to the error-
per-unit-step strategy (EPUS), which gives the favourite property of tolerance proportionality [14] and will also be
exploited in our numerical tests. �

Remark 3.2. Defining the continuous extension by other means than by cubic Hermite interpolation is possible. In
this case, however, the approximation (23) will in general not hold, but one could use, e.g., (22). The advantage of
(23) is that rh(tn+

1
2
) can be efficiently used to control local time stepping as described in Section 5. �

4. Approximation of the spatial truncation error

An efficient strategy to estimate the spatial truncation error by Richardson extrapolation is proposed in [12]. We
will adopt this approach to our setting.

Suppose we are given a second semi-discretization of the PDE system (1), now with doubled local mesh sizes 2h,

U ′

2h(t) = F2h(t, U2h(t)), t ∈ (0, T ],

U2h(0) = U2h,0.
(26)

In practice, one first chooses Ω2h and constructs then Ωh through uniform refinement. We assume that the solution
U2h(t) to the discretized PDE on the coarse mesh Ω2h exists and is unique. For Lipschitz continuous F2h , this con-
dition is fulfilled. We define the restriction operator Rh

2h from the fine grid Ωh to the coarse grid Ω2h by the identity
R2h = Rh

2h Rh (where Rh and R2h are defined by (4) on Ωh and Ω2h , respectively) and set

ηc
h(t) = Rh

2hηh(t), U c
h (t) = Rh

2hUh(t), V c
h (t) = Rh

2h Vh(t). (27)

From the second assumption it follows that

ηc
h(t) = 2−qη2h(t) + O(hq+1) (28)

and therefore

R2hu(t) =
2q

2q − 1
U c

h (t) −
1

2q − 1
U2h(t) + O(hq+1). (29)

The relation U c
h (t) − U2h(t) = ηc

h(t) − η2h(t) together with (28) gives

U c
h (t) − U2h(t) =

1 − 2q

2q η2h(t) + O(hq+1). (30)

The spatial truncation error on the coarse mesh Ω2h is analogously to (10) defined as

α2h(t) = (R2hu)′(t) − F2h(t, R2hu(t)). (31)

Substituting R2hu(t) from (29) into the derivative on the right-hand side and using the ODE system (26) to replace
U ′

2h(t), we obtain
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α2h(t) =
2q

2q − 1


(U c

h )′(t) − F2h(t, R2hu(t))


+
1

2q − 1


F2h(t, R2hu(t)) − F2h(t, U2h(t))


+ O(hq+1).

As (29) and (30) imply that

R2hu(t) = U c
h (t) −

1
2q η2h(t) + O(hq+1) = U2h(t) − η2h(t) + O(hq+1)

we get

α2h(t) =
2q

2q − 1


(U c

h )′(t) − F2h


t, U c

h (t) −
1
2q η2h(t) + O(hq+1)


+

1
2q − 1


F2h


t, U2h(t) − η2h(t) + O(hq+1)


− F2h(t, U2h(t))


+ O(hq+1). (32)

Taylor expansions yield

α2h(t) =
2q

2q − 1


(U c

h )′(t) − F2h(t, U c
h (t))


+ O(hq+1). (33)

Analogously to (7), we set ec
h(t) = V c

h (t) − U c
h (t). Substituting (U c

h )′(t) by Rh
2h Fh(t, Uh(t)) and using again Taylor

expansion it follows that

α2h(t) =
2q

2q − 1


Rh

2h Fh(t, Vh(t)) − F2h(t, V c
h (t))


+ O(hq+1)

−
2q

2q − 1


Rh

2h


∂Uh Fh(t, Vh(t)) eh(t)


− ∂Uh F2h(t, V c

h (t))ec
h(t)


+ O(eh(t)2). (34)

Assuming the term on the right-hand side involving the global time error to be sufficiently small, we can use

α̃2h(t) =
2q

2q − 1


Rh

2h Fh(t, Vh(t)) − F2h(t, V c
h (t))


(35)

as approximation for the spatial truncation error on the coarse mesh. To guarantee a suitable quality of the estimate
(35) we shall first control the global time error with the aim that afterwards the overall error is dominated by the
spatial truncation error (see Section 6).

An approximation α̃h(t) of the spatial truncation error on the (original) fine mesh is obtained by interpolation
respecting the order of accuracy (see Section 5). Thus, to approximate the global spatial error ηh(t) we consider
instead of (12) the step-size frozen version

η̃′

h(t) = ∂Uh Fh(tn, Vh,n) η̃h(t) − α̃h(t), t ∈ (tn, tn+1], n = 0, . . . , M − 1,

η̃h(0) = 0.
(36)

Remark 4.1. If an approximation ẽh(t) of the global time error has already been computed, we could make use of
U c

h (t) ≈ V c
h (t)− ẽc

h(t) to obtain a better approximation of α2h(t) from (33). However, we have found the following in
our experiments: Using the step size frozen equations (24) and (36) together with (33) to approximate the global time
and spatial error did not yield a significantly better approximation, not even in the case when the global time error
was not small. Since in practice the use of formula (33) requires additional function evaluations, Eq. (35) appears to
be more efficient. �

Remark 4.2. We note that special care has to be taken in handling the spatial truncation error at the boundary when
derivative boundary conditions are present. This requests interpolation adopted to the correct order of accuracy,
see [12]. �

5. The example discretization formulas

In order to keep the illustration as simple as possible we restrict ourselves to one space dimension. For the spatial
discretization of (1) we use standard second-order finite differences. Hence we have q = 2. The discrete L2-norm on
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a non-uniform mesh

x0 < x1 < · · · < xN < xN+1, hi = xi − xi−1, i = 1, . . . , N + 1, (37)

for a vector y = (y1, . . . , yN )T
∈ RN is defined through

∥y∥
2

=

N
i=1

hi + hi+1

2
y2

i . (38)

Here, the components y0 and yN+1 which are given by the boundary values are not considered.
Adaptive time integration. The example time integration formulas are taken from [1]. For the sake of completeness

we shall give a short summary of the implementation used. To generate the time grid (6) we use as an example
integrator the 3rd-order, A-stable Runge–Kutta–Rosenbrock scheme ROS3P, see [5,15] for more details. The property
of tolerance proportionality [14] is asymptotically ensured through working for the local residual with

Est =
2
3

(Ih − γ τn Ah,n)−1rh(tn+1/2), Ah,n = ∂Uh Fh(tn, Vh,n), (39)

where γ is the stability coefficient of ROS3P. The common filter (Ih − γ τn Ah,n) serves to damp spurious stiff
components which would otherwise be amplified through the Fh-evaluations within rh(tn+1/2).

Let Dn = ∥Est∥ and Toln = TolA + TolR∥Vh,n∥ with TolA and TolR given local tolerances. If Dn > Toln
the step is rejected and redone. Otherwise the step is accepted and we advance in time. In both cases, rτn , where
r = (Toln/Dn)1/3, is in leading order equal to the step size which would have led to fulfil the local tolerance condition
exactly, and which we therefore want to use in the next step. To be precautious, we multiply rτn with a safety factor of
0.9. Further, to avoid too rapid step size changes, the step size is in each step only allowed to increase by maximally
50% and to decrease by maximally 1/3, leading overall to the new step size being determined by

τnew = min

1.5, max(2/3, 0.9 r)


τn, r = (Toln/Dn)1/3. (40)

After each step size change we adjust τnew to τn+1 = (T − tn)/⌊(1 + (T − tn)/τnew)⌋ so as to avoid an unnecessarily
small final time step to reach the end point T . The initial step size τ0 is prescribed and is adjusted similarly. This
heuristics works quite well in practice.

The linear error transport equations (24) and (36) are simultaneously solved by means of the implicit midpoint rule,
which gives approximations ẽh,n and η̃h,n to the global time and spatial error at time t = tn . We use the implementa-
tions 

Ih −
1
2
τn Ah,n


δen+1 = 2ẽh,n +

2
3
τnr(tn+1/2),

ẽh,n+1 = δen+1 − ẽh,n,

(41)

and 
Ih −

1
2
τn Ah,n


δηn+1 = 2η̃h,n − τnα̃h(tn+1/2),

η̃h,n+1 = δηn+1 − η̃h,n .

(42)

Clearly, the matrices Ah,n already computed within ROS3P can be reused. The spatial truncation error α̃2h(t) at
t = tn+1/2 is given by

α̃2h(tn+1/2) =
4
3


Rh

2h Fh

tn+1/2, Vh(tn+1/2)


− F2h


tn+1/2, Rh

2h Vh(tn+1/2)


. (43)

Since Vh(tn+1/2) and Fh(tn+1/2, Vh(tn+1/2)) are available from the computation of rh(tn+1/2) in (21), this requires
only one function evaluation on the coarse grid. The vector α̃2h(tn+1/2) on the coarse mesh is prolongated to the
fine mesh and is then divided by 2q

= 4 if the neighbouring fine grid points are equidistant, otherwise it is divided
by 2q−1

= 2. The remaining α̃h(tn+1/2) on the fine mesh are computed by interpolation respecting the order of the
neighbouring spatial truncation errors.
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Due to freezing the coefficients in each time step, the second-order midpoint rule is a first-order method when
interpreted for solving the linearized equations (15) and (12). Thus if all is going well, we asymptotically have
ẽh,n = eh(tn) + O(τ 4

max) and η̃h,n = ηh(tn) + O(τmaxhq
max) + O(hq+1

max ).
After computing the spatial truncation errors we can solve the discretized error transport equations (42) for all η̃h,n .

We shall distinguish between two different mesh adaptation approaches: (i) globally uniform and (ii) locally adaptive
refinement. Although the uniform strategy may be less efficient, it is very easy to implement and therefore of special
practical interest if software packages which do no allow dynamic adaptive mesh refinement are used.

Uniform spatial refinement. Let Tol be a given tolerance. Then our aim is to guarantee ∥ηh(T )∥ ≤ Tol. From (42),
we get an approximate value η̃h,M for the spatial discretization error at T . If the desired accuracy is still not satisfied,
i.e., ∥η̃h,M∥ > Tol, we choose a new (uniform) spatial resolution

hnew =
q


Tol

∥η̃h,M∥
h (44)

to account for achieving ∥ηhnew(T )∥ ≈ Tol. From hnew we determine a new number of mesh points. The whole
computation is redone with the new spatial mesh.

Adaptive spatial refinement. The main idea of our local spatial mesh control is based on the observation that the
principle of tolerance proportionality can also be applied to the spatial discretization error. Multiplying all α̃h(tn+1/2)

in (42) by a certain constant multiplies all η̃h,n+1 by the same constant since η̃h,0 = 0. Set Tolαn = TolαA + TolαR∥Vh,n∥

where TolαA and TolαR are given local tolerances and define a local estimator An through

A2
n =


i : xi ∈Fh

2hi |α̃i (tn+1/2)|
2, (45)

where Fh denotes the set of all (fine) mesh points that do not belong to the coarse mesh. Remember we have second
order of the spatial truncation error in these points. If An ≤ Tolαn the mesh is only coarsened. Otherwise, if An > Tolαn
the mesh is improved by refinement and coarsening as well. We set αtol = 0.9 Tolαn /

√
N and mark all xi ∈ Fh

for refinement if


hi α̃i (tn+1/2) > αtol

and for coarsening if


hi α̃i (tn+1/2) < 0.1 αtol.
(46)

Grid adaptation is first performed for the coarse mesh and afterwards the fine mesh is constructed by halving each
interval. If xi is marked for refinement the corresponding coarse grid interval is halved. Grid points are only removed
if there are two equidistant neighbouring intervals the midpoints of which are marked for coarsening. Finally, the grid
is smoothed such that 0.5 ≤ hi/hi−1 ≤ 2 everywhere. Data transfer from old to new meshes is done by cubic Hermite
interpolation where the necessary first derivatives are determined from fourth order finite differences.

After mesh adaptation the local time step is redone with the new mesh. The procedure is continued until first
Dn ≤ Toln and second An ≤ Tolαn hold. The whole strategy aims at equidistributing the local values

√
hi α̃i (tn+1/2).

Asymptotically we get

An ≈


2


i : xi ∈Fh

α2
tol

1/2

=


2


i : xi ∈Fh

0.81 (Tolαn )2

N

1/2

≈ 0.9 Tolαn , (47)

where the factor 0.9 improves the robustness of the equidistribution principle.

6. The control rules

Like for the ODE case studied in [1] our aim is to provide global error estimates and to control the accuracy of
the numerically computed solution to the imposed tolerance level. Let GTolA and GTolR be the global tolerances.
Then we start with the local tolerances TolA = GTolA, TolR = GTolR , and in the spatially adaptive case also with
TolαA = Cα GTolA, and TolαR = Cα GTolR , where the factor Cα > 1 ensures that the residual time error is small with
respect to the spatial truncation error and therefore the use of (35) is justified.
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Table 1
Algorithmic structure of the overall control strategy when uniform refinement in space is used.

Step Control algorithm with uniform refinement in space

Step 0 Choose global tolerances GTolA and GTolR .
Choose CT , Ccontrol, h0, q, and τ0.
Set local tolerances TolA = GTolA and TolR = GTolR .
Set h = h0.

Step 1 Run numerical schemes to compute Vh,M , ẽh,M , η̃h,M .
Compute TolM = GTolA + GTolR∥Vh,M∥.

Step 2 IF ∥ẽh,M∥ ≤ CT CcontrolTolM GOTO Step 3.
ELSE set

fac = CT TolM/∥ẽh,M∥, TolA = TolA · fac, TolR = TolR · fac
and GOTO Step 1.

Step 3 IF ∥ẽh,M + η̃h,M∥ ≤ CcontrolTolM GOTO Step 4.
ELSE set h = q


(1 − CT )TolM/∥η̃h,M∥ h and GOTO Step 1.

Step 4 IF h ≠ h0 compute qnum.
ELSE set h = 2h, run numerical schemes again and compute then

qnum.
IF qnum ≈ q accept fine grid solution and STOP.
ELSE set h0 = 2h0, h = h0 and GOTO Step 1.

Suppose the numerical schemes have delivered an approximate solution Vh,M and global estimates ẽh,M and η̃h,M
for the time and spatial error at time tM = T . We then verify whether

∥ẽh,M∥ ≤ CT CcontrolTolM , TolM = GTolA + GTolR∥Vh,M∥, (48)

where Ccontrol ≈ 1, typically >1, and CT ∈ (0, 1) denotes the fraction desired for the global time error with respect
to the tolerance TolM . If (48) does not hold, the whole computation is redone over [0, T ] with the same initial step τ0
and the adjusted local tolerances

TolA = TolA · fac, TolR = TolR · fac, fac = CT TolM/∥ẽh,M∥. (49)

Based on tolerance proportionality, reducing the local error estimates with the factor fac will reduce eh(T ) by fac [14].
If (48) holds, we check whether

∥ẽh,M + η̃h,M∥ ≤ CcontrolTolM . (50)

If it is true, the overall error Eh(T ) = Vh(T ) − (Rhu)(t) = eh(T )+ηh(T ) is considered small enough relative to
the chosen tolerance and Vh,M is accepted. Otherwise, the whole computation is redone with the (already) adjusted
tolerances (49) and an improved spatial resolution.

In the uniform case, we use the new mesh size computed from (44) with Tol = (1 − CT )TolM . To check the
convergence behaviour in space and therefore also the quality of the approximation of the spatial truncation error, we
additionally compute the numerically observed order

qnum = log


∥η̃h,M∥

∥η̃hnew,M∥


log


h

hnew


. (51)

If qnum computed for the final run is not close to the expected value q used for our Richardson extrapolation, we
reason that the approximation of the spatial truncation errors has failed due to a dominating global time error, which
happens, e.g., if the initial spatial mesh is already too fine. Consequently, we coarsen the initial mesh by a factor two
and start again. If the control approach stops without a mesh refinement, we perform an additional control run on the
coarse mesh and compute qnum from (51) with hnew = 2h. It turns out that this simple strategy works quite robustly,
provided that the meshes used are able to resolve the basic behaviour of the solution. The algorithmic structure of our
control strategy with uniform refinement in space is given in Table 1.

In the adaptive case, we choose new local tolerances

TolαA = TolαA · fac, TolαR = TolαR · fac, fac = (1 − CT )TolM/∥η̃h,M∥, (52)
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Table 2
Algorithmic structure of the overall control strategy when adaptive refinement in space is used.

Step Control algorithm with adaptive refinement in space

Step 0 Choose global tolerances GTolA and GTolR .
Choose CT , Ccontrol, Cα , q , and τ0.
Set local tolerances

TolA = GTolA , TolR = GTolR , TolαA = Cα GTolA , and
TolαR = Cα GTolR .

Choose initial spatial mesh.

Step 1 Run numerical schemes to compute Vh,M , ẽh,M , η̃h,M .
Compute TolM = GTolA + GTolR∥Vh,M∥.

Step 2 IF ∥ẽh,M∥ ≤ CT CcontrolTolM GOTO Step 3.
ELSE set

fac = CT TolM/∥ẽh,M∥, TolA = TolA · fac, TolR = TolR · fac
and GOTO Step 1.

Step 3 IF ∥ẽh,M + η̃h,M∥ ≤ CcontrolTolM accept solution and STOP.
ELSE set

fac = (1 − CT )TolM/∥η̃h,M∥, TolαA = TolαA · fac, TolαR = TolαR · fac
and GOTO Step 1.

and the whole computation is redone over the interval [0, T ]. Based on tolerance proportionality, reducing the local
truncation error with the factor fac will reduce ηh(T ) by fac. In Table 2, the algorithmic structure of our control
strategy with adaptive refinement in space is displayed. Note that now the index h refers to a sequence of spatial
meshes adapted at each time point tn .

Summarizing, the first check (48) and the possible second control computation serve to significantly reduce the
global time error. This enables us to make use of the approximation (35) for the spatial truncation error, which
otherwise could not be trusted. The second step based on suitable spatial mesh improvement attempts to bring the
overall error down to the imposed tolerance. Using the sum of the approximate global time and spatial error inside
the norm in (50), we take advantage of favourable effects of error cancellation. These two steps are successively
repeated until the second check is successful. Additionally, if uniform mesh refinement is used we take into account
the numerically observed order in space to assess the approximation of the spatial truncation error.

7. Numerical illustrations

To illustrate the performance of the global error estimators and the control strategy, we consider three test problems:
(i) the highly stable heat equation with nonhomogeneous Neumann boundary conditions [12], (ii) the nonlinear
convection-dominated Burgers’ equation [8,12], and (iii) the Allen–Cahn equation modelling a diffusion–reaction
problem [1]. Analytic solutions are known for all three problems. Uniform spatial refinement is studied for all three test
cases. For Burgers’ and Allen–Cahn problem, these results are compared to those obtained with adaptive refinement.
We omit the corresponding results for the heat equation, since the solution is very smooth in space and hence adaptive
refinement is not necessary. The challenge here is to control the fast decay in time.

We set GTolA = GTolR = GTol for GTol = 10−l , l = 2, . . . , 7 and start with one and the same initial step
size τ0 = 10−5. Equally spaced meshes of 25, 51, 103, 207, 415, 831, and 1663 points are used as initial mesh. The
control parameters introduced above for the control rules are CT = 1/3, Ccontrol = 1.2, and Cα = 10. All runs were
performed, but for convenience we only select a representative set of them for our presentation.

We define the estimated global error Ẽh,M = ẽh,M + η̃h,M at time t = T and set indicators Θest =

∥Ẽh,M∥/∥Eh(T )∥ for the ratio of the estimated global error and the true global error, and Θctr = TolM/∥Eh(T )∥

for the ratio of the desired tolerance and the true global error. Thus, Θctr ≥ 1/Ccontrol = 5/6 indicates control of the
true global error.

The tables of results contain the following quantities, Tol = TolA = TolR from (49), Tolα = TolαA = TolαR from
(52), TolM = GTol (1 + ∥Vh,M∥) from (48), the estimated global error Ẽh,M , the estimated time error ẽh,M , and the
estimated spatial truncation error η̃h,M . Note that we always start with Tol = GTol in the first run. The ratios Θest
and Θctr serve to illustrate the quality of the global error estimation and the control. If uniform refinement in space is
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Table 3
Selected data for the heat equation with Neumann boundary conditions. Uniform refinement in space is used.

applied, the numerically observed order qnum for the spatial error is given. It will be clear from the tables of results
whether a tolerance-adapted run to control the global time error, a spatial mesh adaptation step or an additional control
run on a coarser grid was necessary. Especially, the latter is marked by a dashed line.

7.1. Heat equation with Neumann boundary conditions

This heat equation provides an example with inhomogeneous Neumann boundary conditions:

∂t u = ∂xx u, 0 < x < 1.0, 0 < t ≤ T = 0.2, (53)

and boundary conditions ∂x u = π e−π2t cos(πx) at x = 0 and x = 1. The initial condition is consistent with the
analytic solution u(x, t) = e−π2t sin(πx). Although the solution is very stable, it is not easy to provide good error
estimates as stated in [8,12].

To approximate the inhomogeneous Neumann boundary conditions we introduce artificial mesh points x−1 = −h
and xN+2 = 1 + h, discretize ∂x u(0) and ∂x u(1) by second order central differences, and use the approximate
differential equation at the boundary to eliminate the artificial solution values. In consequence, we have global spatial
order q = 2 in all mesh points, but when interpolating the estimated spatial truncation error we have to respect that it
is of first order at the boundary (see also Remark 4.2).

Due to the high stability of the problem the global time errors are much smaller than imposed local tolerances.
So, control of the global time error is redundant here and control runs were only carried out in case of insufficient
spatial resolutions. Table 3 shows results for various tolerances and initial meshes. We select two runs to explain
the control strategy. For the third simulation, we take GTol = 10−4 and start with the local tolerance Tol = 10−4.
Using 103 mesh points in space, we run the computation and get the following approximations of the time and spatial
errors: ∥ẽh,M∥ = 2.01 × 10−6 and ∥η̃h,M∥ = 4.44 × 10−5. The control checks for the time error estimate, ∥ẽh,M∥ ≤

CT CcontrolTolM = 4.4 × 10−5, and for the global error, ∥Ẽh,M∥ = 4.27 × 10−5
≤ 1.32 × 10−4

= CcontrolTolM , are
positive, so that we already can stop after the first run. In accordance with our safety strategy, we additionally perform
one run on a coarser mesh with half of the grid points, i.e., N = 51. The numerically observed order computed from
(51) is qnum = 2.01. We reason that our assumption for a successful Richardson extrapolation to estimate the spatial
truncation error is fulfilled and accept the numerical solution. Choosing GTol = 10−7 and N = 25, the approximate
time error is still very small, but the check for the global error, 8.24 × 10−4

≤ 1.32 × 10−7, obviously fails. From
(44), we compute a new number of spatial mesh points, N = 2759. Finally, the second run is successful and with the
numerically observed spatial order qnum = 2.01 the numerical solution is accepted.

The global error estimation and control appear to work very well for this problem, where the influence of the
initial mesh points is less strong. This holds also for other combinations of tolerances and initial meshes. The re-
sults are visualized in Fig. 1. Note the high quality of the estimator Ẽh,M (and therefore also of η̃h,M ), showing that
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Fig. 1. Evolution of the efficiency indicators Θest (left) and Θctr (right) for the heat equation with Neumann boundary conditions and global
tolerances GTol = 10−i , i = 2, . . . , 7. Different icons represent different GTols. The progress in the local time tolerance Tol is described by
diverse colouring (the reader is referred to the web version of this article). Control of the true global error, i.e. Θctr ≥ 5/6, is achieved in all cases.
Only for higher tolerances GTol = 10−6, 10−7, a second run is necessary, indicated by connected icons. The quality of the estimates is very high.

Table 4
Selected data for Burgers’ equation with 51 initial mesh points. Uniform refinement in space is used.

the derivative boundary condition is well resolved within the Richardson extrapolation. For the runs with tolerances
GTol = 10−2, 10−3, 10−4, 10−5, the order of the spatial convergence was successfully checked with a second run on
the coarse mesh, that is, we can trust the first run.

7.2. Burgers’ equation

The second problem is the nonlinear Burgers’ equation

∂t u = ε ∂xx u − u∂x u, 0 < x < 1.0, 0 < t ≤ T = 1.0, (54)

where ε = 0.015 is used in the experiments. Dirichlet boundary conditions and initial conditions are consistent with
the analytic solution defined by

u(x, t) =
r1 + 5r2 + 10r3

10(r1 + r2 + r3)
, (55)

where r1(x) = e0.45x/ε, r2(t, x) = e0.01(10+6t+25x)/ε, and r3(t) = e0.025(6.5+9.9t)/ε.
We note that this equation does not formally fit into our setting of semilinear parabolic equations, and e.g. the

linearized error transport equations (12) and (15) are no longer valid, as the O-terms would now be divided by the
spatial discretization step size h. However, it is indeed interesting to see how the proposed algorithm performs for this
widely used benchmark problem.

In Table 4 we present results with uniform refinement in space for all tolerances used and the 51-point initial
mesh. The use of a relatively coarse mesh at the beginning is the natural choice in practice. No adaptation in time is
necessary, which is mainly due to the small first time step and the maximum factor 1.5 which is allowed in (40) for
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Table 5
Selected data for Burgers’ equation. Adaptive refinement in space is used.

Fig. 2. Evolution of the efficiency indicators Θest (left) and Θctr (right) for the Burgers problem, global tolerances GTol = 10−i , i = 2, . . . , 7,
and uniform refinement in space. Different icons represent different GTols. The progress in the local time tolerance Tol is described by diverse
colouring (the reader is referred to the web version of this article). Control of the true global error, i.e. Θctr ≥ 5/6, is achieved in all cases. Except
for GTol = 10−2, a second run is necessary for all global tolerances, indicated by connected icons. The quality of the estimates is very high.

a step size enlargement. For the tolerance GTol = 10−2, the numerical solution is accepted since the corresponding
control run on a coarser mesh shows qnum ≈ 2, the expected value. Remarkably excellent estimates are obtained for
higher tolerances. Here, control is always achieved after one spatial mesh improvement.

Let us have a closer look at the second run. We choose GTol = 10−3 and start with a local tolerance Tol = 10−3

for the time integrator. The inspection of the global time error, ∥ẽh,M∥ = 1.54 × 10−4, shows that the control rule
(48) is fulfilled. So an adaption of the local tolerance Tol is not necessary. However, the approximate global error,
∥Ẽh,M∥ = 2.83 × 10−3, is still too large due to an unacceptable spatial error, ∥η̃h,M∥ = 2.74 × 10−3. We compute
a new number of spatial points, N = 75, from (44) and perform a second run which is now successful. With the
numerically observed spatial order qnum = 2.00 the numerical solution is considered as accurate enough.

The evolution of the indicators Θest and Θctr is visualized in Fig. 2.
The overall algorithm performs also well when adaptive spatial refinement is used, as can be seen from Table 5.

The quality of the estimation process is again very good, which leads to a significant reduction of the number of mesh
points compared with the uniform approach. We have used Cα = 10 in the first two runs and Cα = 100 in the other
ones to set Tolα = Cα Tol at the beginning. The number of adaptive grid points at the final time T is denoted by NM .
After adjusting the spatial meshes until An ≤ Tolαn = Tolα(1 + ∥Vh,n∥) holds, no further runs with higher tolerances
in time are necessary. The evolution of the indicators Θest and Θctr is visualized in Fig. 3.

The numerical solutions obtained with Tol = 10−3 and 51 uniform grid points (left) and adaptive spatial refinement
with 45 grid points at the final time (right) are plotted in Fig. 4. With less grid points, the adaptive scheme reduces the
global error by nearly a factor 3.

7.3. The Allen–Cahn equation

The third problem is the bi-stable Allen–Cahn equation which is defined by

∂t u = 10−2 ∂xx u + 100u (1 − u2), 0 < x < 2.5, 0 < t ≤ T = 0.5, (56)

with the initial function and Dirichlet boundary values taken from the exact wave front solution u(x, t) = (1 +

eλ (x−α t))−1, λ = 50
√

2, α = 1.5
√

2. This problem was also used in [1,13].
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Fig. 3. Evolution of the efficiency indicators Θest (left) and Θctr (right) for the Burgers problem, global tolerances GTol = 10−i , i = 2, . . . , 4,
and adaptive refinement in space. Here, Tolα is the local spatial tolerance. Different icons represent different GTols. The progress in the local
time tolerance Tol is described by diverse colouring (the reader is referred to the web version of this article). Control of the true global error, i.e.
Θctr ≥ 5/6, is achieved in all cases. Except for GTol = 10−3 and Tolα = 10−2, a second run is necessary for all global tolerances, indicated by
connected icons. The quality of the estimates is very high.

Fig. 4. Temporal evolution of the numerical solution for Burgers’ problem with Tol = 10−3 and 51 uniform grid points (left) and adaptive spatial
refinement with 45 grid points at the final time (right).

Fig. 5. Evolution of the efficiency indicators Θest (left) and Θctr (right) for the Allen–Cahn problem, global tolerances GTol = 10−i , i = 2, . . . , 4,
and uniform refinement in space. Different icons represent different GTols. The progress in the local time tolerance Tol is described by diverse
colouring (the reader is referred to the web version of this article). Control of the true global error, i.e. Θctr ≥ 5/6, is achieved in all cases. An
improvement of the spatial meshes is necessary for all global tolerances, indicated by connected icons. The quality of the estimates is very high
after the control runs.

First we apply uniform refinement in space. Table 6 reveals a high quality of the global error estimation and also
the control process works quite well. Let us pick one exemplary run out to explain the overall control strategy in
more detail. Starting with GTol = Tol = 10−3 and 831 mesh points, which corresponds to the fourth simulation,
the numerical scheme delivers global error estimates ∥ẽh,M∥ = 2.87 × 10−3 and ∥η̃h,M∥ = 5.12 × 10−3 for
the time and spatial error of the approximate solution Vh,M at the final time tM = T . The first check for the
time error estimate ∥ẽh,M∥ ≤ CT CcontrolTolM = 8.08 × 10−4 fails and we adjust the local tolerances by a factor
fac = CT TolM/∥ẽh,M∥ = 2.35 × 10−1, which yields the new Tol = 2.35 10−4. The computation is then redone.
Due to the tolerance proportionality, in the second run the time error is significantly reduced and the inequality
∥ẽh,M∥ ≤ 8.08 × 10−4 is now valid. We proceed with checking ∥Ẽh,M∥ ≤ CcontrolTolM = 2.42 × 10−3, which is still
not true. From (44), we compute a new number of spatial mesh points N = 1521. Finally, the third run is successful
and with the numerically observed spatial order qnum = 2.02 the numerical solution is accepted.
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Table 6
Selected data for the Allen–Cahn problem. Uniform refinement in space is used.

Table 7
Selected data for the Allen–Cahn problem. Adaptive refinement in space is used.

Fig. 6. Evolution of the efficiency indicators Θest (left) and Θctr (right) for the Allen–Cahn problem, global tolerances GTol = 10−i , i = 2, . . . , 4,
and adaptive refinement in space. Here, Tolα is the local spatial tolerance. Different icons represent different GTols. The progress in the local time
tolerance Tol is described by diverse colouring (the reader is referred to the web version of this article). Control of the true global error, i.e.
Θctr ≥ 5/6, is achieved in all cases. The quality of the estimates is very high.

The ratios for Θest = ∥Ẽh,M∥/∥Eh(T )∥ in Table 6 lie after the control runs between 1.04 and 1.23. Control of
the global error, that is ∥Eh(T )∥ ≤ CcontrolTolM , is in general achieved after two steps (one step to adjust the time
grid and one step to control the spatial discretization), whereas the efficiency index Θctr = TolM/∥Eh(T )∥ is close to
three. This results from a systematic cancellation effect between the global time and spatial error, which is not taken
into account when computing hnew from (44). The evolution of the indicators Θest and Θctr is visualized in Fig. 5.
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Fig. 7. Temporal evolution of the numerical solution for the Allen–Cahn problem with Tol = 10−2 and 415 uniform grid points (left) and adaptive
spatial refinement with 245 grid points at the final time (right).

Next we consider locally adaptive spatial grid enhancement instead of globally uniform adaptation. Within each
time step the grid is adapted by refinement and coarsening, based on an equidistribution principle, until An ≤ Tolαn =

Tolα(1 + ∥Vh,n∥) holds. This yields a sequence of non-uniform meshes. Let NM denote the number of adaptive grid
points obtained at the final time T . The first three runs in Table 7 correspond to our standard setting Cα = 10, i.e.,
Tolα = 10 Tol. In this case, after adjusting the local tolerances for the time integration no further run with higher
tolerances in space is necessary. To demonstrate the robustness of the algorithm, we select two additional runs with
Cα = 10l , l = 2, 3, for GTol = 10−4. In both cases, coarser meshes are used at the beginning and a second control
run has to be done to decrease the spatial discretization error. The resulting adaptive spatial meshes are comparable.
Control of the global error is always achieved. The estimation process works again quite well. The evolution of the
indicators Θest and Θctr is visualized in Fig. 6. Compared to the uniform case, significantly less spatial degrees of
freedoms are needed to reach the desired tolerances. The reduction rate varies between 40% and 70%. In Fig. 7 we
have plotted the numerical solutions obtained with Tol = 10−2 and 415 uniform grid points (left) and adaptive spatial
refinement with 245 grid points at the final time (right). The accuracies are comparable.

8. Summary

We have developed an error control strategy for finite difference solutions of parabolic equations, involving both
temporal and spatial discretization errors. The global time error strategy discussed in [1] appears to provide an excel-
lent starting point for the development of such an algorithm. The classical ODE approach used there and the principle
of tolerance proportionality are combined with an efficient estimation of the spatial error and mesh adaptation to con-
trol the overall global error. Two approaches have been presented to handle spatial mesh improvement: (i) globally
uniform refinement and (ii) local refinement and coarsening based on an equidistribution principle. Inspired by [12],
we have used Richardson extrapolation to approximate the spatial truncation error within the method of lines. Our con-
trol strategy aims at balancing the spatial and temporal discretization error in order to achieve an accuracy imposed
by the user.

The key ingredients are: (i) linearized error transport equations equipped with sufficiently accurate defects to ap-
proximate the global time error and global spatial error and (ii) uniform or adaptive mesh refinement and local error
control in time based on tolerance proportionality to achieve global error control. For illustration of the performance
and effectiveness of our approach, we have implemented second-order finite differences in one space dimension and
the example integrator ROS3P [15]. On the basis of three different test problems we could observe that our approach
is very reliable, both with respect to estimation and control.

Needless to say that spatial mesh adaptation locally in time is more efficient for solutions having a strongly
nonuniform nature in space, especially if it varies over time. This is clearly visible for the travelling wave solution of
the Allen–Cahn problem. However, optimized uniform strategies might also be of interest if users would like to extend
their own software packages not having the option of dynamic adaptive mesh refinement to global error control.
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