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Sören Bartels∗

Department of Applied Mathematics, University of Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany

Available online 11 November 2014

Highlights

• Characterization of stability for phase field evolutions at singularities.
• Accuracy of numerical methods when particles vanish.
• Description of phase boundaries when topological changes occur.

Abstract

A priori and a posteriori error estimates for the numerical approximation of phase field models with a polynomial dependence
on the inverse of the interface width as long as no topological changes occur have recently been derived. Numerical experiments
show that they remain robust when topological changes of the interface take place. Based on an asymptotic expansion a lower
bound for the principal eigenvalue of the linearized Allen–Cahn operator near a generic singularity is derived which explains this
experimental observation.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Phase field equations provide a flexible mathematical tool to describe the evolution of interfaces or surfaces in
various processes such as crystal growth, multiphase flows, or crack propagation. In contrast to sharp interface models
their numerical implementation can be realized with standard methods and they are capable of describing topological
changes effectively. The simplest example is the Allen–Cahn equation

∂t u −1u = −ε−2 f (u)

in which ε > 0 is a small parameter that describes the thickness of the diffuse interface that separates regions in which
u ≈ ±1 and f is the derivative of a double well potential, e.g., f (u) = 2(u3

− u). Fig. 1 displays snapshots of a
simple but generic evolution leading to a generic topological change, i.e., a circular interface shrinks and disappears
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Fig. 1. Numerical experiment leading to a topological change. The circular interface that separates regions in which u ≈ ±1 shrinks and collapses
in finite time.

in finite time. Although the mathematical modeling of such events is unclear the agreement with experiments is quite
remarkable. The topological change corresponds to a singularity in the evolution and the approximation properties of
numerical methods may be critically affected. It is the aim of this article to provide a theoretical justification for the
reliability of standard numerical methods at topological changes in a simple model situation.

Spectral estimates have recently been employed to derive error estimates of the form

sup
t∈[T0,T1]

∥u − uh∥ ≤ c1ε
−σ (hα + τβ) exp


c2

 T1

T0

−λ−

AC (t)dt


(1.1)

for the numerical approximation of phase field models such as the Allen–Cahn equation cf. [1–4]. The negative part
λ−

AC = min{λAC , 0} of the principal eigenvalue λAC of the linearized Allen–Cahn operator

−∆ + ε−2 f ′(u(t)) id

about the exact solution at time t enters such estimates exponentially and thus logarithmic bounds for this quantity lead
to useful estimates, cf. [4]. For the smooth evolution of developed interfaces it is known that the eigenvalue remains
uniformly bounded from below [5–7] while for topological changes its modulus attains the square of the inverse of
the interface thickness. Numerical experiments in [4] indicate that the modulus of the principal eigenvalue grows like
1/|t |, t < 0, prior to a topological change at t = 0, before it attains the maximal absolute value proportional to ε−2.
Hence, an integration of it in time leads to a logarithmic bound which implies the robustness of the error estimate. It
is the aim of this paper to provide theoretical support for such a scaling behavior.

For the mean curvature flow

V = −H

with a circle of radius
√

2 at t = −1 as initial data, the evolution is defined through Ṙ = −1/R, i.e., R(t) =
√

2|t |1/2

for −1 ≤ t < 0. The linearization of H in the class of circles is given by

H ′(t) = −
1

R(t)2
= −

1
2
|t |−1

which shows that the linearization of the sharp interface model obeys the scaling property observed for the related
phase field model. Since the Allen–Cahn problem approximates the mean curvature flow as the interface thickness
tends to zero [8,9] we expect that a similar bound holds for the principal eigenvalue of the linearized Allen–Cahn
operator. We adopt the techniques of [6] to give a proof of this statement under the following assumption.

Assumption A. The solution φε of the Allen–Cahn problem in B2 × (−T, 0) with B2 := B2(0) ⊂ R2, i.e., the
function φε that satisfies

∂tφε −1φε = −ε−2 f (φε),

with f (u) := 2(u2
− 1)u and 0 < ε < 1, is for t ≤ −ε2 log(ε−1) given by

φε(r, t) = tanh

(r −

√
2|t |1/2)/ε


+ ε2qε(r, t) (1.2)

with a function qε that satisfies

|qε(r, t)| ≤ c0|t |
−1. (1.3)
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The assumption is motivated by the expansion

φε(x, t) = tanh(d/ε)+ ε2 H2ξ(d/ε)+ O(ε3)

in which d denotes the signed distance to the interface, H is the mean curvature of the interface, and ξ is a smooth
function, cf. [10,9] for details. This assumption is confirmed by numerical experiments reported in Appendix A and
is expected to be justifiable rigorously by an appropriate construction of super- and subsolutions. The assumption
enables us to prove the asserted result.

Theorem 1.1. Suppose that Assumption A holds. Then the estimate

λAC (t) := inf
0≠ψ∈H1(B2)


B2

|∇ψ |
2
+ ε−2 f ′


φε(r, t)


ψ2dx

∥ψ∥
2
L2(B2)

≥ −CAC |t |−1

holds for t ∈ [−T,−ε2 log(ε−1)] with an ε-independent constant CAC ≥ 0.

With this bound for λAC and the unconditional estimate λAC (t) ≥ −C ′

ACε
−2, which follows from considering

ψ = 1 in the definition of λAC , the argument of the exponential factor in (1.1) with T0 = −1 and T1 = 0 satisfies T1

T0

−λ−

AC (t)dt ≤ CAC


−ε2 log(ε−1)

−1
|t |−1dt + C ′

AC

 0

−ε2 log(ε−1)

ε−2dt

= −CAC log(|t |)|−ε
2

−1 + C ′

AC log(ε−1) ≤ C ′′

AC log(ε−1).

This implies that the error bound depends polynomially on ε−1 in the considered situation.

Remarks 1.1. (i) Terms of order ε can be included in (1.2) as long as one restricts to t ≤ −ε2 log(ε−1)2. This
however is not sufficient to prove robust stability estimates.

(ii) The lower bound of Theorem 1.1 is expected to hold also in three space dimensions.
(iii) Since interfaces always become circular in two-dimensional Allen–Cahn evolutions, cf. [11], the considered sit-

uation of Assumption A is generic.
(iv) An equivalent statement to that of Theorem 1.1 is to say that λAC (t) ≥ −cH2

m(t), where Hm(t) is the maximal
curvature of the interface.

2. Allen–Cahn profile on a bounded interval

Given t ≤ −ε2 log(ε−1) we consider the operator

L0
ε,t := −d2/dz2

+ f ′(θ0) in Iε,t := (−|t |1/2/(
√

2ε), 1/ε)

subject to homogeneous Neumann boundary conditions on ∂ Iε,t and define

L0
ε,t (Φ,Ψ) :=


Iε,t

Φ′Ψ ′
+ f ′(θ0)ΦΨdz

for Φ,Ψ ∈ H1(Iε,t ). The function θ0(z) := tanh(z) = (ez
− e−z)/(ez

+ e−z) solves

−θ ′′
+ f (θ) = 0, θ(0) = 0, lim

z→±∞
θ(z) = ±1.

Moreover, θ ′

0(z) = 1/ cosh2(z) and θ ′′

0 (z) = −2 sinh(z)/ cosh3(z) satisfy

0 < θ ′

0(z) ≤ 4e−2|z| and |θ ′′

0 (z)| ≤ 8e−2|z|. (2.1)

Lemma 2.1. The principal eigenvalue λ0
1 of L0

ε,t satisfies

−c4e−(1+2
√

2)|t |1/2/ε
≤ λ0

1 = inf
0≠Ψ∈H1(Iε,t )

L0
ε,t (Ψ ,Ψ)

∥Ψ∥
2
L2(Iε,t )

≤ c1e−2
√

2|t |1/2/ε,

where c1, c4 > 0 are ε-independent constants.
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Proof. The shifted operator L0
ε,t + maxIε,t | f ′(θ0)| is self-adjoint and positive definite so that − maxIε,t | f ′(θ0)| ≤ λ0

1.
Integration by parts, L0

ε,tθ
′

0 = (−θ ′′

0 + f (θ0))
′
= 0, and (2.1) show

λ0
1 ≤ β2L0

ε,t (θ
′

0, θ
′

0) = β2θ ′

0θ
′′

0 |
1/ε
−|t |1/2/(

√
2ε)

≤ β264e−4|t |1/2/(
√

2ε)
=: c1e−2

√
2|t |1/2/ε, (2.2)

where we used that |t |1/2/(
√

2ε) ≤ 1/ε and defined β2
:= ∥θ ′

0∥
−2
L2(Iε,t )

≤ 1. Set m := max{ f ′(−1), f ′(1)} = 4

and let a0 > 0 be such that f ′(θ0(z)) ≥ 3m/4 for all |z| ≥ a0. Since a0 is independent of ε we may assume that
±(a0 + 1) ∈ Iε,t . Owing to (2.2) we may assume that λ0

1 ≤ m/4. Then, the positive eigenfunction Ψ0
1 satisfies

−(Ψ0
1 )

′′
+ ( f ′(θ0)− λ0

1)Ψ
0
1 = 0,

with f ′(θ0) − λ0
1 ≥ m/2 in Iε,t \ [−a0, a0]. Since ∥Ψ0

1 ∥L2(Iε,t ) = 1 we may choose a′

0 ∈ [a0, a0 + 1] such that

Ψ0
1 (±a′

0) ≤ 1. A comparison argument with the functions

Φ+(z) :=: Ψ(a′

0)
cosh


c(1/ε − z)


cosh


c(1/ε − a′

0)
 , Φ−(z) := Ψ(−a′

0)
cosh


c(|t |1/2/(

√
2ε)+ z)


cosh


c(|t |1/2/(

√
2ε)− a′

0)
 ,

where c =
√

m/2, shows that Ψ0
1 (z) ≤ Φ+(z) for z ≥ a′

0 and Ψ0
1 (z) ≤ Φ−(z) for z ≤ −a′

0, cf. Lemma B.1 for
details. We thus deduce that for z ∈ Iε,t \ [−(a0 + 1), a0 + 1] we have

Ψ0
1 (z) ≤ Φ±(z) ≤ 2e−c|z|eca′

0 ≤ 2e−c|z|ec(a0+1)
=: c2e−

√
2|z|.

This, integration by parts, L0
ε,tθ

′

0 = 0, and (2.1) imply

λ0
1


Iε,t

Ψ0
1 θ

′

0dz =


Iε,t
(L0
ε,tΨ

0
1 )θ

′

0dz = θ ′′

0 Ψ0
1 |

1/ε
−|t |1/2/(

√
2ε)

≥ −16c2e−(
√

2+4)|t |1/2/(
√

2ε).

It remains to prove a lower bound for


Iε,t
Ψ0

1 θ
′

0dz. Owing to θ ′

0 > 0 it suffices to show that Ψ0
1 is uniformly bounded

from below in (−a∗, a∗) for some a∗ independent of ε. Since ∥Ψ0
1 ∥L2(Iε,t ) = 1 and Ψ0

1 (z) ≤ c2e−
√

2|z|, |z| ≥ a0 + 1,
there exists an ε-independent number a∗ > 0 such that a∗

−a∗

|Ψ0
1 (z)|

2dz ≥ 1/2.

The coefficients of L0
ε,t − λ0

1 are uniformly bounded so that an application of Harnack’s inequality, cf., e.g., [12], to
the identity

(L0
ε,t − λ0

1)Ψ
0
1 = 0 in (−a∗

− 1, a∗
+ 1)

implies the existence of a constant c3 > 0 such that

inf
z∈(−a∗,a∗)

Ψ0
1 (z) ≥ c3 sup

z∈(−a∗,a∗)

Ψ0
1 (z) ≥ c3


1

2a∗

 a∗

−a∗

(Ψ0
1 )

2dz

1/2

≥ c3
1

(4a∗)1/2
.

This proves λ0
1 ≥ −c4e−(1+2

√
2)|t |1/2/ε and finishes the proof. �

3. Reduction to the one-dimensional situation

Under the assumptions on φε stated in Assumption A, the estimation of λAC reduces to a one-dimensional problem.
For ψ ∈ C1(B2) we have

B2

ε|∇ψ |
2
+ ε−1 f ′(φε)ψ

2dx ≥ 2π
 1+

√
2|t |1/2

|t |1/2/
√

2


ε|ψr |

2
+ ε−1 f ′(φε)ψ

2rdr.
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The transformation z = (r −
√

2|t |1/2)/ε and the rescaling Ψ(z) := ε1/2ψ(r) lead to
B2

ε|∇ψ |
2
+ ε−1 f ′(φε)ψ

2dx ≥
2π
ε


Iε,t


|Ψz |

2
+ f ′(φ̃ε)Ψ2 J̃ (z)dz =:

2π
ε

Lε,t (Ψ ,Ψ), (3.1)

where Iε,t =

−|t |1/2/(

√
2ε), 1/ε


, J̃ (z) = εz +

√
2|t |1/2, and φ̃ε(z, t) = φε(εz +

√
2|t |1/2) = θ0(z) + ε2q̃ε(z, t)

with q̃ε(z, t) = qε(εz +
√

2|t |1/2, t). Since

∥ψ∥
2
L2(B2)

≥ 2π
 1+

√
2|t |1/2

|t |1/2/
√

2
ψ2rdr = 2π


Iε,t

Ψ2 J̃ (z)dz.

Theorem 1.1 follows from the next lemma.

Lemma 3.1. For t ∈ [−T,−ε2 log(ε−1)] the principal eigenvalue λ1 of Lε,t defined in (3.1) satisfies

−c8ε
2
|t |−1

≤ λ1 = inf
0≠Ψ∈H1(Iε,t )

Lε,t (Ψ ,Ψ)

∥Ψ J̃ 1/2∥2
L2(Iε,t )

≤ c6ε|t |
−1,

where c6, c8 > 0 are ε-independent constants.

Proof. Let Ψ ∈ H1(Iε,t ) and define Ψ := J̃ 1/2Ψ . Noting Ψz J̃ 1/2
= Ψz − ε J̃−1Ψ/2, where J̃−1

:= 1/ J̃ , we deduce

Lε,t (Ψ ,Ψ) =


Iε,t

Ψ2
z + f ′(φ̃ε(z, t))Ψ2dz +

ε2

4


Iε,t

J̃−2Ψ2dz − ε


Iε,t

J̃−1ΨΨzdz

= L0
ε,t (
Ψ , Ψ)+


Iε,t


f ′(φ̃ε(z, t))− f ′(θ0(z))

Ψ2dz

+
ε2

4


Iε,t

J̃−2Ψ2dz −
ε

2


Iε,t

J̃−1(Ψ2)zdz.

A Taylor expansion of the quadratic function f ′ about θ0 shows

f ′

φ̃ε(z, t)


− f ′


θ0(z)


= ε2 f ′′(θ0)q̃ε + f ′′′(θ0)(ε

2q̃ε)
2/2 =: ε2rε (3.2)

with |rε| ≤ c5|t |−1 owing to (1.3). An integration by parts and ( J̃−1)z = − J̃−2ε lead to

−


Iε,t

J̃−1(Ψ2)zdz = −ε


Iε,t

J̃−2Ψ2dz − J̃−1Ψ2
|
1/ε
−|t |1/2/(

√
2ε)
.

This implies

Lε,t (Ψ ,Ψ) = L0
ε,t (
Ψ , Ψ)+ ε2


Iε,t

rεΨ2dz −
ε2

4


Iε,t

J̃−2Ψ2dz −
ε

2
J̃−1Ψ2

|
1/ε
−|t |1/2/(

√
2ε)
. (3.3)

We conclude with (2.1) and (2.2) that

λ1 = inf
∥Ψ J̃ 1/2∥L2(Iε,t )

=1
Lε,t (Ψ ,Ψ) ≤ Lε,t (β J̃−1/2θ ′

0, β J̃−1/2θ ′

0)

≤ β2L0
ε,t (θ

′

0, θ
′

0)+ c5ε
2
|t |−1

+ β2 ε

2


θ ′

0(−
√

2|t |1/2/(2ε))
2

≤ c6ε|t |
−1,

where we used that e−2
√

2|t |1/2/ε
≤ 1 for ε sufficiently small. Let Ψ1 be the positive eigenfunction corresponding to

λ1 with ∥Ψ1 J̃ 1/2
∥L2(Iε,t ) = 1 and note that Ψ1 satisfies

− J̃−1 d

dz


J̃

d

dz
Ψ1

+ f ′(φ̃ε(z, t))Ψ1 = λ1Ψ1
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in Iε,t . We may assume that λ1 ≤ m/4, and f ′(φ̃ε(z, t)) ≥ 3m/4 for z ≥ a0 with an ε-independent number a0 > 0
such that a0 + 1 ≤ 1/ε. Let a′

0 ∈ [a0, a0 + 1] such that Ψ1(a′

0) J̃
1/2(a′

0) ≤ 1. Employing the comparison function

Φ(z) = Ψ1(a
′

0)
cosh


c(1/ε − z)


cosh


c(1/ε − a′

0)
 ,

where c =
√

m/2, we deduce that, cf. Lemma B.2 for details,

Ψ1(z) ≤ c7e−
√

2z J̃−1/2(a′

0).

With Ψ1 := J̃ 1/2Ψ1 we deduce from (3.3) and Lemma 2.1 that

λ1 = Lε,t (Ψ1,Ψ1) ≥ L0
ε,t (
Ψ1, Ψ1)− c5ε

2
|t |−1

−
ε2

4
sup

z∈Iε,t
J̃−2(z)−

ε

2


Ψ1(1/ε)

2
≥ λ0

1 − c5ε
2
|t |−1

− ε2
|t |−1

− c7εe
−2

√
2/ε J̃−1(a′

0) ≥ −c8ε
2
|t |−1,

provided that ε is sufficiently small so that e−2
√

2/ε J̃−1(a′

0) ≤ ε. �

Remark 3.1. For t ≤ −ε2 log(ε−1)2 we have the upper bound λ1 ≤ c6ε
2
|t |−1.

4. Conclusion

We have discussed in this paper the robustness of error estimates for the approximation of phase field models with
standard numerical techniques. Those error estimates avoid an explicit exponential dependence on the inverse of the
small phase field parameter but include the principal eigenvalue of the linearized differential operator. The precise
properties of this crucial quantity are only rigorously understood for the smooth evolution of interfaces. Numerical
experiments reveal a scaling behavior at singularities that implies the robustness of the error estimates through
topological changes. For an important class of generic topological changes we have shown that this behavior can be
rigorously analyzed and thereby explained the surprisingly good approximation properties of standard computational
methods at singularities.

Appendix A. Experimental verification of Assumption A

For a triangulation T of B2 with mesh-size h ∼ 2−8 we approximated the Allen–Cahn problem with a semi-implicit
time-stepping scheme with step-size τ = h/10 for the initial data u0(r) = tanh


(r −

√
2|t0|1/2)


/ε at t0 = −1/4. In

Fig. 2 we plotted for ε = 2−ℓ, ℓ = 2, 3, 4, 5 the quantity

ηε(t) := ε−2 max
z∈N

|uh(z, t)− tanh

(|z| −

√
2|t |1/2)/ε


|,

where N denotes the set of nodes in the triangulation T . The results show that ηε(t) ≤ c|t |−1 and thus justify
Assumption A.

Appendix B. Comparison principles

Lemma B.1. (a) Let a < b, set I := (a, b) ⊆ R, let p, q ∈ C(I ), and suppose p ≥ q ≥ 0. Assume Ψ ,Φ ∈ C2(R),
satisfy Ψ ≥ 0, Ψ(a) = Φ(a), Ψ ′(b) = Φ′(b) = 0, and

−Ψ ′′
+ pΨ = 0, −Φ′′

+ qΦ = 0 in I.

Then Ψ ≤ Φ. The same conclusion holds if Ψ(b) = Φ(b) and Ψ ′(a) = Φ′(a) = 0.
(b) Let a < b set I+ := (a, b) and I− := (−b,−a). For ψ ∈ C(R) and c ≥ 0 the functions Φ± : I± → R, defined by

Φ± : z → Ψ(±a)
cosh(c(b ∓ z))

cosh(c(b − a))

satisfy Φ±(±a) = Ψ(±a), Φ′
±(±b) = 0, and −Φ′′

± + c2Φ± = 0 in I±. For z ∈ I± we have

|Φ±(z)| ≤ 2|Ψ(±a)|e−c|z|eca . (B.1)
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Fig. 2. Experimental bounds on the second order term in the asymptotic expansion.

Proof. (a) The function E := Ψ − Φ satisfies E(a) = 0, E ′(b) = 0, and −E ′′
+ q E ≤ 0 in I . Suppose there

exist a ≤ α < β ≤ b such that E |(α,β) > 0 and E(α) = E(β) = 0. Then E ′(α) > 0 and E ′(β) ≤ 0 contradict
E ′′

≥ q E ≥ 0 in (α, β), i.e., the fact that E ′ is monotonically increasing in (α, β). Hence, E ≤ 0, i.e., Ψ ≤ Φ. The
second case is analogous.

(b) The identities follow from cosh′′
= cosh and sinh(0) = 0. The estimates are consequences of the bounds

cosh(c(b ∓ z))

cosh(c(b − a))
=

ec(b∓z)
+ e−c(b∓z)

ec(b−a) + e−c(b−a)
=

e∓czecb

e−caecb

 1 + e−2c(b∓z)

1 + e−2c(b−a)


≤ 2e∓czeca, (B.2)

where we used e−2c(b∓z)
≤ 1 for z < b and −b < z, respectively. �

Lemma B.2. Let a < b such that I = (a, b) ⊆ Iε,t :=

−|t |1/2/(

√
2ε), 1/ε


, p ∈ C(I ), and c ≥ 0 such that p ≥ c2.

Let Ψ ∈ C2(I ) be non-negative with Ψ ′(b) = 0 and

− J̃−1 d

dz


J̃

d

dz


Ψ + pΨ = 0

in I , where J̃−1
= 1/ J̃ with J̃ (z) = εz +

√
2|t |1/2. Then, Ψ(z) ≤ 2Ψ(a)e−czeca .

Proof. Defining

Φ : I → R, z → Ψ(a)
cosh(c(b − z))

cosh(c(b − a))

we have −Φ′′
+ c2Φ = 0, Φ(a) = Ψ(a), and Φ′(b) = 0. With J̃z = ε and Φ′

≤ 0, J̃ > 0 in I we deduce

− J̃−1 d

dz


J̃

d

dz


Φ + c2Φ = −ε J̃−1Φ′

− J̃−1 J̃Φ′′
+ c2Φ = −ε J̃−1Φ′

≥ 0.

Since p ≥ c2 and Ψ ≥ 0 the function E := Ψ − Φ satisfies

− J̃−1 d

dz


J̃

d

dz


E + c2 E = ε J̃−1Φ′

≤ 0

and E(a) = 0, E ′(b) = 0. Suppose that (α, β) ⊆ I is maximal with E |(α,β) > 0. Then, since J̃ > 0 we have
J̃ (α)E ′(α) > 0 and J̃ (β)E ′(β) ≤ 0. This contradicts

d

dz
( J̃ E ′) =

d

dz


J̃

d

dz


E ≥ J̃ c2 E ≥ 0

and shows that E ≤ 0, i.e., Ψ ≤ Φ. The proof of the estimate follows from (B.2). �
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