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Highlights

• We present a parameter-free method for high Reynolds number turbulent flow.
• The method is based on adaptive mesh optimization using adjoint techniques.
• We connect the numerical approximation to dissipative weak solutions.
• Turbulent boundary layers are left unresolved, no bounder layer mesh is needed.
• We highlight benchmark problems for which the method is validated.

Abstract

This article is a review of our work towards a parameter-free method for simulation of turbulent flow at high Reynolds numbers.
In a series of papers we have developed a model for turbulent flow in the form of weak solutions of the Navier–Stokes equations,
approximated by an adaptive finite element method, where: (i) viscous dissipation is assumed to be dominated by turbulent
dissipation proportional to the residual of the equations, and (ii) skin friction at solid walls is assumed to be negligible compared to
inertial effects. The result is a computational model without empirical data, where the only model parameter is the local size of the
finite element mesh. Under adaptive refinement of the mesh based on a posteriori error estimation, output quantities of interest in
the form of functionals of the finite element solution converge to become independent of the mesh resolution, and thus the resulting
method has no adjustable parameters. No ad hoc design of the mesh is needed, instead the mesh is optimized based on solution
features, in particular no bounder layer mesh is needed. We connect the computational method to the mathematical concept of a
dissipative weak solution of the Euler equations, as a model of high Reynolds number turbulent flow, and we highlight a number
of benchmark problems for which the method is validated. The purpose of the article is to present the computational framework in
a concise form, to report on recent progress, and to discuss open problems that are subject to ongoing research.
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1. Introduction

In this paper we review our work towards a general framework for simulation of unsteady high Reynolds number
turbulent flow using adaptive finite element methods, with the purpose to give a coherent presentation of the com-
putational framework, to report on recent progress, and to highlight challenges and open problems. We can refer to
the methodology as Direct Finite Element Simulation (DFS), and we recall the theoretical foundation and show how
DFS offers solutions to the main challenges of turbulence simulation: how to assess the accuracy in a simulation, how
to optimize the use of computational resources, and how to minimize the dependency on application specific model
parameters.

Over the period 2010–2013, we have participated in a number of Computational Fluid Dynamics (CFD) benchmark
workshops organized by the aerospace community (AIAA, NASA, DLR, Boeing, etc.), namely the BANC series
[1–4] (Workshop on Benchmark Problems Airframe Noise Computation) and HiLiftPW-2 [5] (2nd AIAA CFD High
Lift Prediction Workshop). These workshops have gathered leading research groups in the area, as well as major
aerospace companies (e.g. Boeing, Cessna, Aerospace Kawasaki) and the main commercial software developers
(e.g. ANSYS and Exa), with the objective to assess the state of the art computational methods for high Reynolds
number aerodynamics and aeroacoustics in complex geometry. From the results presented in these workshop it is
clear that our CFD methodology is unique in several aspects, in particular: (i) it was the only method that provided
estimates of the error in the computation, (ii) it was the only method with automatic mesh adaptation, and (iii) it was
the only method which was free from model parameters.

In the DFS framework, (i) and (ii) are achieved by goal-oriented a posteriori error estimation, where the error in a
functional of interest can be expressed in terms of the residual of the approximate solution weighted by the solution
of an associated adjoint (dual) problem. A general framework for a posteriori error estimation based on duality for
differential equations was developed in the 1990s described, e.g., in [6–8] and the references therein. Our own work
has been focused on the extension of this framework to CFD and turbulent flow [9–11]. The method is validated for
a range of basic benchmark problems including flow past cylinders, spheres and squares [12–15], where the adaptive
algorithm is shown to converge to the experimental reference data.

The parameter-free aspect (iii) of DFS is related to the fact that no subgrid scale stresses or Reynolds stresses
are parametrized as in LES (Large Eddy Simulation) or RANS (Reynolds Averaged Navier–Stokes equations) [16],
and that for high Reynolds numbers we assume that the skin friction of the boundary layers is dominated by inertial
effects, so that a free slip boundary condition is used at solid boundaries [17–19]. In contrast to RANS and LES, no
averaging or filtering operators are introduced in DFS, the resolution of the turbulent scales is determined as part of
the computation, with the local mesh size adapted based on the required precision in the chosen quantity of interest.
The motivation for the free slip boundary condition is based on the use of a mixed boundary condition, for the normal
velocity and the tangential stresses, similar to standard wall layer models of LES [20].

We now proceed to put the DFS method into the context of research on computational methods for turbulence
simulation, and mathematical research on the Navier–Stokes equations.

1.1. Turbulence simulation

Turbulence is central for our understanding of the world, including the geophysical flow of the ocean-atmosphere
system, and the aerodynamics of vehicles, aircraft and wind turbines, for example. Simulation of turbulent flow is
an outstanding problem that cuts through mathematics, numerical analysis, scientific computing and fluid mechanics.
This interdisciplinary nature of the problem makes it particularly challenging.

The fundamental mathematical model of fluid flow is the nonlinear Navier–Stokes equations in 3 space dimensions,
for which a proof of existence of classical (smooth) solutions in the general case is missing. To compute approximate
solutions of the Navier–Stokes equations in the case of turbulent flow is extremely expensive; an heuristic argument
estimates the number of degrees of freedom needed to resolve all turbulent scales in a Direct Numerical Simulation
(DNS) to be of the order Re9/4, with Re the Reynolds number, which for many decades to come will make DNS
impossible e.g. for geophysical flow or flight aerodynamics where Re ≫ 106.

A reduction in the number of degrees of freedom is possible by instead considering models for averaged quantities,
such as statistical mean fields in RANS or spatially filtered fields in LES, at the cost of introducing turbulence/subgrid
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models to model unresolved statistical fluctuations/subgrid scales [16]. This closure problem of turbulence modeling
has proven to be an outstanding problem, where model parameters often have to be tuned to a particular application.
Similarly, subgrid models introduce parameters that need to be chosen by the user, in particular near solid walls it is a
challenge to select proper parameters to accurately capture phenomena such as flow separation [20].

In RANS/LES simulations, the relation between model errors and numerical errors is delicate, since the effect
of the numerical method often is similar to the effect of turbulence/subgrid models, e.g. in the form of dissipation of
kinetic energy. For example, the widely used Smagorinsky subgrid model [21] is closely related to methods of artificial
viscosity used to stabilize numerical methods [22]. To tackle this issue, different approaches have been attempted, from
using high order numerical methods with minimal dissipation, to interpreting the numerical stabilization as the subgrid
model [23,11,24,25], or alternatively trying to balance the two sources of errors [26,10]. The relationship between the
local resolution of the computational mesh and the turbulent length scales of RANS and LES also poses challenges, in
particular near solid walls where small turbulent scales dictate a very fine mesh resolution which dominates the total
computational cost [20].

In the context of finite element methods, Variational Multiscale Stabilized methods (VMS) [24] have been devel-
oped where the variational form of the Navier–Stokes equations is split into resolved scales and subgrid scales, by
decomposing the underlying Hilbert space into a direct sum of a coarse space and a fine space, where a subgrid model
is used to model the fine scale contribution.

1.2. Dissipative weak solutions

In the framework presented in this paper we follow a different path, where we avoid the process of averaging and
scale separation altogether, and thus also the closure problem. For incompressible flow the mathematician Jean Leray
in 1934 [27] proved the existence of a weak solution, or turbulent solution (solution turbulente) in the terminology of
Leray, which is a function that satisfies a weak form of the Navier–Stokes equations (in the sense of distributions).
The work of Leray laid the foundation for the modern mathematical theory of the Navier–Stokes equations, and the
regularized form of the equations used by Leray later inspired a specific class of LES methods [28]. The question
of uniqueness of a weak solution is still an open problem, and whether a weak solution is also a smooth (strong)
solution is formulated as a $1 million Clay Prize problem [29]. A weak solution does not satisfy the standard energy
balance valid for a smooth solution of the Navier–Stokes equations, instead only an energy inequality can be shown to
hold. Partial regularity of a weak solution was proven under the assumption that a generalized energy inequality holds
[30,31], in which case the weak solution is referred to as a suitable weak solution. It can be shown that certain discrete
approximations, including finite element approximations, converge to suitable solutions [32].

For a weak solution, dissipation without viscosity is possible. In particular, Duchon and Robert in 2000 introduced
the notion of a dissipative weak solution as a model for high Reynolds number turbulent flow, where an explicit
expression for the source of inviscid dissipation was derived, which took the form of a local lack of regularity in the
velocity field [33]. Already in 1949, Onsager suggested that weak solutions of the inviscid Euler equations (assuming
such exist) could be used to model high Reynolds number turbulent flow [34]:

“It is of some interest to note that in principle, turbulent dissipation as described could take place just as readily
without the final assistance by viscosity. In the absence of viscosity, the standard proof of the conservation of energy
does not apply, because the velocity field does not remain differentiable!”

A consequence of the idea that turbulent dissipation is independent of viscosity, is that it should be possible to
model turbulence without any empirical parameters. Onsager also conjectured that in such “ideal” turbulence, the
regularity of the velocity field could at most satisfy a Hölder condition with exponent 1/3, otherwise the energy
would be conserved. Several proofs of Onsager’s conjecture have since then been presented, and in their 2006 review
of the work of Onsager, Eyink and Sreenivasan end with a conclusion on the future of Onsager’s ideas [35]:

“We believe that Onsager’s theoretical vision of an ideal turbulence described by inviscid fluid equations is a
proper idealization for understanding high Reynolds number flows. Needless to say, in real physical turbulence there
is viscosity, which is always positive. [. . . ] In the same way, the zero-viscosity limit, which supposes an infinite number
of cascade steps, should be a good idealization for turbulence with a large but finite number of cascade steps, that
is, a Reynolds number which is large but finite. The vindication of this belief, if it is true, must come from a set of
calculational tools for the zero-viscosity limit, which will make it, in the end, a truly predictive device”.
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1.3. Direct finite element simulation

In [11,36,15] we show that approximate dissipative weak solutions can be computed to simulate turbulent flow
using a stabilized finite element method that satisfies certain conditions on stability and consistency, which we refer
to as a General Galerkin (G2) method. We also refer to the computational methodology as DFS, as an extension
to turbulent flow of the general framework for a posteriori error estimation developed in the early 1990s [6–8]. In
particular, for high Reynolds numbers we can set the viscosity to zero, thus realizing a computational model for
turbulent flow free from empirical parameters.

We argue that the proper mathematical objects for assessing well-posedness in DFS are functionals of the computed
weak solutions [37]. To represent the error in a functional of a dissipative weak solution we introduce a dual (adjoint)
linearized problem, which opens for a posteriori estimation of the error in outputs of interest, such as the drag and
lift of an airplane. The a posteriori error representation can be used to construct efficient adaptive algorithms, where
the computational mesh and the finite element space are optimized for the computation of a particular output of
interest (goal functional) to a certain accuracy using minimal computational resources. Thus also the local resolution
of turbulent scales is determined as part of the computation (a posteriori) based on what functional is the goal of
the simulation. For example, approximation of the aeroacoustic sources in a turbulent flow past a landing gear may
demand a different mesh resolution than approximation of the aerodynamic forces on the same landing gear [1,2].

A classical problem of great significance is the prediction of aerodynamic forces acting on a body in a high
Reynolds number flow. The choice of boundary conditions in the simulation is here central. As already noted, for
realistic applications e.g. in flight aerodynamics, full resolution of a turbulent boundary layer in DNS is impossible
due to the computational cost. In LES, typical models of the near wall turbulent flow are wall shear stress models [20]
or local RANS models near the wall [38], where both approaches demand high resolution boundary layer meshes and
calibration of model parameters.

In [18] we investigate a simple wall shear stress model parametrized by the skin friction stress generated by the
turbulent boundary layer. We find that for very high Reynolds numbers, corresponding to small skin friction, the
macroscopic flow is largely independent of the wall shear stress model. In particular, the skin friction parameter can
be set to zero, corresponding to a free slip boundary condition, and no boundary layer mesh is needed. For high
Reynolds number flow, DFS with a free slip boundary condition has been shown to be an efficient and accurate model
for approximation of aerodynamic forces and aeroacoustic sources [1–3,5].

In this paper the G2/DFS framework is presented in Section 2, and we give a brief description of a detailed
implementation of the method in Section 3. In Section 4 we summarize a set of validation studies for the computational
model, in Section 5 we discuss challenges and open problems related to the dual problem, and in Section 6 we give a
short summary.

2. The G2/DFS computational framework

Low Mach number flow can be approximated by incompressible flow, and the focus of this paper is the model of
incompressible high Reynolds number turbulent flow around bluff or streamlined bodies, where the Reynolds number
is defined as Re =

U L
ν

, with U a characteristic velocity, L a characteristic length and ν is the kinematic viscosity.
Further, we assume that turbulent boundary layers are fully developed, so that transition to turbulence in the boundary
layers is not part of the model.

We choose mixed boundary conditions in the form of prescribing the normal component of the velocity and the
tangential components of the viscous shear stresses, with the purpose to avoid resolution of thin boundary layers
at high Reynolds numbers. The normal velocity is set to zero relative the body, corresponding to a no penetration
boundary condition, whereas the tangential shear stresses must be provided as data to the problem. Boundary stress
data is typically not available, but viscous shear stresses, measured in the form of a non-dimensional skin friction
coefficient, is known to decrease with increasing Reynolds number [39]. In LES, wall-layer models take a similar form,
with wall shear stress proportional to skin friction [20]. Thus, this form of boundary conditions can be motivated both
by standard arguments from the LES literature [16], noting that both LES and DFS concern models of the unresolved
turbulent flow near the boundary, and by strict mathematical arguments choosing mixed Dirichlet–Neumann type
boundary conditions for the Navier–Stokes equations.
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2.1. Mathematical model

The Navier–Stokes equations for incompressible flow of (small positive) constant kinematic viscosity ν in a
(bounded) volume Ω in R3 around a fixed rigid body with smooth boundary Γ over a time interval I = [0, T ],
take the form: Find the velocity u = (u1, u2, u3) and pressure p depending on (x, t) ∈ Ω ∪ Γ × I , such that

u̇ + (u · ∇)u + ∇ p − ∇ · τ = 0 in Ω × I,

∇ · u = 0 in Ω × I,

un = 0 on Γ × I,

τsk = βutk on Γ × I,

u(·, 0) = u0 in Ω ,

(1)

with k = 1, 2, u̇ =
∂u
∂t , un = u · n the fluid velocity normal to Γ with n a unit outward normal vector, τ =

τ(u) = 2νϵ(u) the viscous stress with ϵ(u) the standard velocity strain, τsk the tangential stresses and utk = u · tk the
tangential velocities with tk orthogonal tangent vectors, and u0 a given initial condition.

We assume suitable far-field inflow/outflow boundary conditions, and we note the Dirichlet–Neumann boundary
condition in the normal and tangential directions, respectively, with the effect of turbulent boundary layers modeled
by a (skin) friction parameter β. With zero viscosity ν and boundary friction β, the model (1) reduces to the inviscid
Euler equations.

In [33] it is shown that for any weak solution (u, p) of the Euler equations (assumed to exist), a local energy
equation is satisfied (in the sense of distributions)

d

dt


1
2
|u|

2


+ ∇ ·


u


1
2
|u|

2
+ p


+ D(u) = 0, (2)

with D(u) defined in terms of the local smoothness of u. If D(u) ≥ 0, then (u, p) is referred to as a dissipative weak
solution.

2.2. Finite element method

In G2/DFS we compute approximate solutions of the Navier–Stokes equations (1) by a weighted residual stabilized
finite element method, of the form: Find Û = (U, P) ∈ Vh such that for all v̂ = (v, q) ∈ Vh

[R(U ; Û ), v̂] + [h R(U ; Û ), R(U ; v̂)] = 0, (3)

where Vh is a space–time finite element space with velocities v satisfying v · n = 0 on Γ , [·, ·] is an L2(Ω × I ) inner
product, R(U ; v̂) = (v̇ + U · ∇v + ∇q,∇ · v) is the residual, and h is the local mesh size. The first term in (3)
establishes Û as a weak solution of (1) and the second term introduces kinetic energy dissipation

Dh(Û ) = [h R(U ; Û ), R(U ; Û )] = ∥h0.5 R(U ; Û )∥2
L2

(4)

bounded by data with ∥ · ∥L2 an L2(Ω × I ) norm [36].
Notice that here ν and β are set to zero with instead the weighted residual stabilization introducing a dissipative

effect as an automatic turbulence model. This is analogous to the dissipative weak solutions introduced by Duchon and
Robert [33], with dissipation caused by a lack of smoothness in the velocity field, unrelated to viscous dissipation. For
a smooth solution Û , corresponding to a small residual in L2(Ω × I ), the dissipative effect of the weighted residual
stabilization vanishes. In Section 4 we recall validation results that show that DFS based on the Euler equations is a
good approximation of high Reynolds number turbulent flow. We also find that with sufficient mesh resolution, Dh(Û )
in (4) is independent of the local mesh size h [15].

In Section 3 we give a precise definition of a particular implementation of G2/DFS, but many choices are possible
as long as certain conditions for stability and consistency are satisfied [36,15].
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2.3. Boundary conditions

It is well known that for viscous flow, thin boundary layers develop near solid walls over which the velocity changes
from the velocity of the wall to the free stream velocity. The thickness of these boundary layers scale with the Reynolds
number, and at high Reynolds numbers the boundary layers are so thin that computational resolution is impractical
or impossible. At sufficiently high Reynolds numbers the boundary layers undergo transition to turbulence, where
computational resolution of turbulent boundary layers is even less realistic in any application of significance [20]. For
example, full computational resolution in DNS of the turbulent flow around a car or an airplane, including boundary
layers, is impossible for many decades to come [40].

Ever since the introduction of the boundary layer concept by Prandtl [41], models of the flow decoupling the
boundary layer from the interior flow have been pursued, in which the effect of the boundary layer is modeled as a
boundary condition for the interior flow [20]. In (1) we model the effect of turbulent boundary layers as a small skin
friction stress at the solid boundary, which dissipates kinetic energy proportional to β. The sensitivity of the solution
with respect to perturbations in the skin friction parameter β is investigated in [17,18], where it is found that for
small β (corresponding to high Reynolds numbers) the sensitivity is low. In particular, for external flow at Reynolds
numbers higher than Re > 106 we typically approximate the small skin friction by zero, which makes DFS into a
parameter-free model of high Reynolds number external flow.

We have presented evidence in the form of analysis and computational studies, that the macroscopic features of
high Reynolds number flow, including 3D flow separation, is mainly determined by large scale stability aspects, rather
than boundary layer effects [19,1–3,5].

2.4. A posteriori error estimation

The goal of a simulation can often be formulated as computing a number of output quantities, for example the lift
and drag of an airplane. To estimate the error in an output functional of interest we use a posteriori error analysis
based on sensitivity information from the solution of a adjoint (dual) problem.

We define a target functional M(û) = [û, ψ̂]+ [pn, ψΓ ]Γ , where ψ̂ = (ψ, χ) is a given weight function acting as
data for the dual problem, and ψΓ is boundary data for the dual velocity, with [·, ·]Γ a L2(Γ × I ) inner product. For
example, to choose the sum of the lift and drag of an airplane as the target functional we set ψ̂ = 0 andψΓ = vD +vL ,
with vD and vL unit vectors in directions opposite and normal to the flight direction, respectively.

The difference in output M(û) − M(Û ) = [û, ψ̂] + [pn, ψΓ ]Γ − [Û , ψ̂] − [Pn, ψΓ ]Γ of two DFS solutions û
and Û on different meshes with maximal mesh size h, can be represented as

M(û)− M(Û ) = [R(u; û)− R(U ; Û ), ϕ̂] (5)

where ϕ̂ = (ϕ, θ) is a solution of the adjoint linearized problem

−ϕ̇ − (u · ∇)ϕ + ∇U Tϕ + ∇θ = ψ in Ω × I,

∇ · ϕ = χ in Ω × I,

ϕ = ψΓ on Γ × I,

ϕ(·, T ) = 0 in Ω ,

(6)

where (∇U Tϕ) j =
3

i=1 ∂Ui/∂x jϕi .
If we assume that the time step is bounded by some constant times h, we can bound the output error using basic

analysis [36]:

|M(û)− M(Û )| ≤ C∥h0.5ϕ̂∥H1 , (7)

with a constant C depending on data and bounds on the magnitude of the discrete velocities u and U . We can thus
guarantee stability in output if ∥h0.5ϕ̂∥H1 is small, where H1

= H1(Ω × I ) is the standard Hilbert space with
associated norm. We note, however, that for turbulent flow the loss of sharpness in the bound in (7) may be significant,
due to the use of a global Cauchy–Schwarz inequality. Therefore, in adaptive algorithms, the error representation in
(5) is used directly, or with only local bounds on each cell in the finite element mesh.
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2.5. Adaptive algorithms

A posteriori error estimation provides a powerful tool for the development of robust and efficient adaptive algo-
rithms. The basic idea of adaptive algorithms is to optimize the computational method with respect to the goal (output
of interest) of the computation. Typical parameters of an adaptive finite element method include the local mesh size
(h-adaptivity), local degree of the finite element approximation (p-adaptivity), local shape of the cells (r -adaptivity),
or combinations thereof.

To construct an adaptive DFS algorithm we compute a solution Û for which we use the error representation (5)
to estimate the output error |M(û) − M(Û )|, with û any DFS solution computed on a finer mesh than Û . We can
either choose û and Û to be two DFS solutions computed on different meshes in the mesh hierarchy generated by the
adaptive algorithm, or alternatively to consider û to be an ideal solution computed on a finest mesh possible in which
case we use the approximation u ≈ U in the dual problem (6).

An adaptive algorithm is based on an estimate of the local contribution to the global error, which is obtained by
splitting the error representation (5) into a sum of error indicators En,K over the cells K in the discrete space mesh
T h , and the time intervals In = (tn−1, tn), n = 1, . . . , N , that is

M(û)− M(Û ) =

N
n=1


K∈T h

En,K =

N
n=1


K∈T h

[R(u; û)− R(U ; Û ), ϕ̂]n,K (8)

with [·, ·]n,K an L2(K × In) inner product.

2.6. Approximation of the dual solution

There are several technical aspects with respect to how to apply the error representation formula (8) in an adaptive
algorithm, in particular with regards to the approximation of ϕ̂, the solution to the dual problem.

The dual problem is linear, but runs backward in time which is a challenge since the DFS velocities u and U act as
coefficients in the dual problem and thus have to be stored as data. In practice, the dual problem is often solved by using
a similar finite element method as used for the primal DFS problem, and the coefficients u and U can be interpolated in
time to minimize data storage, with possibly a restart scheme to increase accuracy. Also, several different approaches
are possible for how to apply the error representation formula (8) in practice [42], to retain sharpness and achieve
maximal robustness.

When we use the approximation u ≈ U in the dual problem we introduce a linearization error which is hard to
estimate a priori, since worst case estimates based on Gröwall’s inequality grossly overestimate the effect [36]. In
practice, computations on a sequence of meshes with different associated approximations U provide an estimate of
the asymptotic effect of this linearization error on the resulting a posteriori error estimates.

More specifically, the accuracy in the a posteriori error estimates depends on the accuracy in the approximation
of the dual problem, which is affected by (i) perturbations in data and (ii) errors from computational approximation.
As part of the adaptive algorithm, approximations of the dual problem are computed on a hierarchy of computational
meshes, which can be used as a robustness test with respect to (i)–(ii), improving the reliability of the a posteriori
error estimates.

3. DFS implementation

We now give a detailed presentation of one implementation of DFS, in the form of the cG(1)cG(1) method with
piecewise linear approximation in space and time over tetrahedral meshes. In Section 4 we recall validation studies of
this method.

3.1. The cG(1)cG(1) method

The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in space and time. With cG(1) in
time the trial functions are continuous piecewise linear and the test functions piecewise constant. cG(1) in space
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corresponds to both test functions and trial functions being continuous piecewise linear. Let 0 = t0 < t1 < · · · <

tN = T be a sequence of discrete time steps with associated time intervals In = (tn−1, tn) of length kn = tn − tn−1
and space–time slabs Sn = Ω × In , and let W ⊂ H1(Ω) be a finite element space consisting of continuous piecewise
linear functions on a tetrahedral mesh T h of mesh size h(x) with W0 the functions v ∈ W satisfying the Dirichlet
boundary condition v · n|Γ = 0.

We seek Û = (U, P), continuous piecewise linear in space and time: For n = 1, . . . , N , find (U n, Pn) ≡ (U (tn),
P(tn)) with U n

∈ V n
0 ≡ [W0]

3 and Pn
∈ W , such that

((U n
− U n−1)k−1

n + Ū n
· ∇Ū n, v)− (Pn,∇ · v)

+ (∇ · Ū n, q)+ SDn
δ (Ū

n, Pn
; v, q) = 0 ∀v̂ = (v, q) ∈ V n

0 × W n, (9)

where Ū n
=

1
2 (U

n
+ U n−1) and Pn are piecewise constant in time over In , with the stabilizing term

SDn
δ (Ū

n, Pn
; v, q) ≡ (δ1(Ū

n
· ∇Ū n

+ ∇ Pn), Ū n
· ∇v + ∇q)+ (δ2∇ · Ū n,∇ · v), (10)

and

(v,w) =


K∈T h


K
v · w dx,

with the stabilization parameters δ1 = κ1(k−2
n + |U n−1

|
2h−2)−1/2 and δ2 = κ2h|U n−1

|, where κ1 and κ2 are positive
constants of unit size. We choose a time step size kn = CC F L minx∈Ω h/|U n−1

|, with CC F L a constant of unit size.

Remark 1. The cG(1) discretization in time does not allow for a fully consistent stabilization of the method, since
the velocity test functions are constant in time. To make the method fully consistent while keeping a least squares
stabilization of the residual, we would need to use test functions that are linear discontinuous in time, corresponding
to a cG(1)dG(1) method. The main motivation for using cG(1)cG(1) is the reduction of the number of degrees of
freedom by a factor 2.

3.2. cG(1)cG(1) energy equation

We recall that a cG(1)cG(1) solution satisfies a local energy equation, with dissipation directly proportional to
the local residual, with the proof given in [15]. We define a family of smooth positive test functions φn(x) for
n = 1, . . . , N , with local compact support supp φn ⊂ Ω , and we define a piecewise constant function in time
defined by φ(x, t) = φn(x) for t ∈ In , normalized such that

N
n=1


Ω
φn(x) dx kn = 1.

Theorem 2. Noting that δi ≤ Ch, for i = 1, 2, we have the following local energy estimate for cG(1)cG(1): N
n=1


Ω


1
2
(|U n

|
2
− |U n−1

|
2)k−1

n + ∇ ·


Ū n


1
2
|Ū n

|
2
+ Pn


φn dx


kn

+

N
n=1


Ω
(δ1|R̄1(Ū

n, Pn)|2 + δ2|R̄2(Ū
n)|2)φn dx


kn


≤ Ch1/2

max,φ,n

with hmax,φ,n ≡ maxn:supp φn≠∅(maxx∈supp φn h(x)), and with the residuals R̄1(Ū n, Pn) and R̄2(Ū n) defined by

R̄1(v, q) = v̇ + Ū n
· ∇v + ∇q, (11)

R̄2(v, q) = ∇ · v, (12)

for t ∈ In .
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If we choose a test function φ with a suitable local support, and with φ j = 0 for all j ≠ n, Theorem 2 states that
for t ∈ In , a cG(1)cG(1) solution up to the factor Ch0.5

max,φ,n weakly satisfies (integrated against a smooth positive test
function with local support) a local energy equation of the form:

d

dt


1
2
|U n

|
2


+ ∇ ·


Ū n


1
2
|Ū n

|
2
+ Pn


= −Dn

h (Û ), (13)

with Dn
h (Û ) ≡ δ1|R̄1(Ū n, Pn)|2 + δ2|R̄2(Ū n)|2 ≥ 0, a residual based numerical dissipation, and with d

dt (
1
2 |U n

|
2) ≡

1
2 (|U

n
|
2
− |U n−1

|
2)k−1

n .
This local energy equation connects to a dissipative weak Euler solution [33], with inertial energy dissipation

resulting from local non-smoothness of the solution, and not from any viscosity. The dissipative term Dn
h (Û ) in (13)

reflects local non-smoothness in the solution identified by the residuals, and is observed to be independent of h under
sufficient mesh resolution [12,15]

3.3. A posteriori error analysis and an adaptive algorithm

Using standard techniques of a posteriori error analysis, see e.g. [36], we can derive an a posteriori error estimate
for cG(1)cG(1).

Theorem 3. If Û = (U, P) solves (9), û = (u, p) is a weak solution to (1), and ϕ̂ = (ϕ, θ) solves (6), then we
have the following a posteriori error estimate for the output M(Û ) = [Û , ψ̂] with respect to the reference output
M(û) = [û, ψ̂]:

|M(û)− M(Û )| ≤

N
n=1


K∈T h

En,K (14)

where

En,K ≡


In

|R1(Û )|K · ω1 dt +


In

|R2(U )|K ω2 dt +


In

|SDn
δ (Û ; ϕ̂)K | dt

with

R1(Û ) = U̇ + (U · ∇)U + ∇ P,

R2(U ) = ∇ · U,

where SDn
δ (·; ·)K is a local version of the stabilizing form (10), and the stability weights are given by

ω1 = Ck
n,K kn|ϕ̇|K ,∞ + Ch

n,K hK |∇ϕ|K ,

ω2 = Ck
n,K kn|θ̇ |K ,∞ + Ch

n,K hK |∇θ |K ,

where hK is the diameter of element K in the mesh T h,Ch
n,K ,Ck

n,K represent interpolation constants, |w|K ≡

(∥w1∥K , ∥w2∥K , ∥w3∥K ) with ∥w∥K = (w,w)
1/2
K , and the dot denotes the scalar product in R3.

Based on the a posteriori error estimate (14), we design a basic adaptive algorithm where the mesh is kept constant
in time. Starting from an initial mesh the primal problem is computed for the full time interval after which the dual
problem is solved backwards over the same time interval using a similar cG(1)cG(1) discretization as for the primal
problem (same trial and test space, least squares stabilization of the residual except the time derivative, and the same
stabilization parameters and time discretization). The error indicators EK =

N
n=1 En,K are then computed for each

cell K in the mesh. The cells with the highest error indicators EK are bisected to generate a new refined mesh, for
which the algorithm starts over until convergence in M(Û ) is detected.

The primal solution U for each mesh is stored to be used as data for the dual problem, where the approximation
u ≈ U is used for the coefficient u in (6). For demanding large scale problems where it is too expensive to store
the complete time series of the primal solution, snapshots of Û are stored with a certain frequency, and intermediate
solution fields are reconstructed by interpolation in time.
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Adaptive algorithm: given initial coarse mesh T h
0 , k = 0,

(1) compute the solution Û to the primal problem using T h
k

(2) compute the solution ϕ̂ to the dual problem using T h
k

(3) if convergence in M(Û ) is observed, or if the estimated error


K∈T h EK is less than a
given tolerance, then STOP, else

(4) bisect 10% of cells K ∈ T h
k with highest error indicators EK

(5) set k = k + 1 , then goto (1)

3.4. Software implementation

The adaptive algorithm and the cG(1)cG(1) solvers for the primal and dual problems are implemented in the
continuum mechanics solver Unicorn [43] that builds on the high performance (HPC) branch of the finite element
problem solving environment DOLFIN, part of the FEniCS project [44]. DOLFIN-HPC is optimized for distributed
memory architectures using a hybrid MPI+OpenMP approach with efficient parallel I/O (MPI I/O) [45,46], where
ParMETIS [47] is used for mesh partitioning. DOLFIN-HPC supports several parallel linear algebra packages, but
mostly rely on PETSc [48].

4. Validation and application of DFS

DFS is based on the computation of finite element approximations on adaptively refined computational meshes. In
particular, no ad hoc mesh design is needed, since solutions features such as flow separation and turbulent wakes are
automatically detected by the adaptive method through a posteriori error estimation with sensitivity information from
the solution of a dual problem. A hierarchy of adaptively refined meshes is generated for which convergence can be
observed with respect to an output of interest. The method has been applied for a number of bluff body flow problems
over a range of Reynolds numbers, and we here recall some validation results for DFS in the form of the cG(1)cG(1)
method.

4.1. Medium Reynolds number flow

At medium Reynolds numbers, Re < 105, boundary layers are laminar and can be resolved by the computational
mesh. For this case, viscous effects are not negligible so that the viscosity is kept in the model (1), and no slip boundary
conditions are chosen where the velocity is set to zero on the solid boundary Γ . DFS in the form of the cG(1)cG(1)
method has been validated for a number of model problems of simple geometry bluff bodies, including a surface
mounted cube and a rectangular cylinder [12,11], a sphere [13] and a circular cylinder [14]. In each case, convergence
is observed for output quantities such as drag, lift and pressure coefficients, and Strouhal numbers, and the adaptive
algorithm leads to an efficient method often using orders of magnitude fewer number of degrees of freedom compared
to LES methods based on ad hoc design of the mesh.

4.2. High Reynolds number flow

In high Reynolds number flow, with Re > 106, boundary layers are turbulent and are in most cases too expensive
to resolve, and must instead be modeled. To accurately predict e.g. aerodynamic forces it is critical to capture the
correct flow separation, which can be connected to the boundary layer, in case flow separation is not triggered by
sharp features in the geometry [15]. Drag crisis for a circular cylinder is an illustrative example, where flow separation
moves downstream the cylinder wall as a consequence of transition to turbulence in the boundary layer [49]. In [18] we
model drag crisis by decreasing the skin friction parameter β in the model (1), where we find that the DFS simulations
reproduce the observed drag crisis scenario from experiments [50–53].

In particular, we find that for small β the solution is insensitive to the particular value of β, so that we reach
an ultimate regime where the turbulent boundary layer is modeled by a zero friction free slip boundary condition.
This free slip model has the benefit of being a parameter-free model of turbulent boundary layers, which requires no
boundary layer mesh since no boundary layer is resolved. The basic assumptions underlying the model is that the
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turbulent boundary layers are fully developed, since transition to turbulence in the boundary layers is not part of the
model.

For a high Reynolds number, the free slip boundary condition has been shown to be a good model in the sense that
flow separation and thereby the surface pressure distribution is well approximated. For high Reynolds numbers, the
main contribution to the aerodynamic forces on a body comes from the surface pressure distribution, and thus the free
slip model has a high potential in aerodynamics applications.

DFS with a free slip boundary condition has been validated for the standard benchmarks of a NACA 0012 wing [54]
and a 30P30N high lift device [4], where close agreement with experimental measurement was found in aerodynamic
forces and surface pressure distribution.

4.3. Complex geometry

To assess the capability of DFS for challenging high Reynolds number flow problems in complex geometry, we
have participated in a number of benchmark workshops with detailed experimental data available for validation,
including the first, second and third Workshop on Benchmark problems for Airframe Noise Computations (BANC-I,
-II, -III) [2–4], and the 2nd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2) [5].

Good agreement was found between DFS simulations and experimental measurements in all workshops, and
two features distinguished DFS from all other methodologies: (i) DFS was the only method using adaptive mesh
optimization, and (ii) DFS was the only method leaving boundary layers unresolved (free slip boundary conditions
were used for all problems). Both (i) and (ii) contributed to the fact that the number of degrees of freedom used in
DFS was significantly lower than in other methods, often several magnitudes less.

In HiLiftPW-2 the task was to simulate flow at high Reynolds number around a full wing-body model of an airplane,
where DFS was the only method based on the Navier–Stokes equations that simulated the unsteady flow [5]; aside from
2 contributions based on Lattice Boltzmann Methods all other contributions used stationary RANS. Good agreement
of DFS simulations and experimental data was found in aerodynamic forces and surface pressure distributions on the
wings, and the transient simulation data provided additional data on the flow at high angles of attack modeling take-off
and landing. In particular, convergence of the adaptive algorithm to experimental reference data for lift and drag was
observed for angles of attack in the pre-stalled regime, see Fig. 1.

We note that since viscosity and skin friction are assumed to be negligible, the only input data to the DFS model is
the geometry of the airplane, in the form of an initial coarse mesh.

5. Discussion

To our best knowledge, application of adjoint based adaptive methods to simulate unsteady turbulent flow in 3D is
still rare [55], probably one of the main reasons is the challenges posed by the dual problem. In particular, there is a
computational challenge associated with storing the primal solution used as data in the dual problem. To address this
challenge for large problems, snapshots of the full spatial field U can be stored with a certain frequency, from which
intermediate fields can be reconstructed by interpolation, or by re-computing the primal solution over the intermediate
time intervals.

Another challenge concerns the stability of the dual problem linearized at a turbulent flow field. Characteristic for
turbulent flow are chaotic particle paths which make prediction of point values hard or impossible, popularly referred
to as the butterfly effect. But turbulence is also a dissipative mechanism, similar to a shock in high Mach number flow,
with many stable features in the sense of the macroscopic flow, which makes prediction of mean values possible. For
example, although the particular set of particle paths around an airplane is impossible to predict, the net effect in terms
of the time average of aerodynamic forces is a stable quantity.

5.1. Stability of the dual problem

Particle paths in a turbulence simulation are chaotic, but mean value output can be stable. The difference between
two computed solutions û and Û with respect to an output functional M(·) can be expressed as the duality pairing of
local residual errors with the solution of a dual (adjoint) problem linearized at the two computed solutions, which is the
posteriori error representation (5) that is the foundation of the DFS adaptive method. In particular, the computational
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Fig. 1. Convergence under adaptive mesh refinement of drag and lift coefficients towards experimental values (Unicorn) (results in preparation to
be published), compared to state-of-the-art CFD methods (EXA, TAU, Fluent) (published as part of the HighLiftPW-2 workshop).

Fig. 2. From [5]: Snapshot of the magnitude of dual velocity (left), and an adaptively refined computational mesh optimized for lift and drag
approximation (right).

approximation of the dual solution is at the heart of the methodology, and thus the well-posedness of the dual problem
is critical: is the dual problem solvable, and what is the sensitivity in the dual solution with respect to its data (the
linearization error)?

A worst case analytical estimate using Grönwall’s inequality bounds the dual solution in terms of rapid exponential
growth in time [36], although in practice approximations of the dual solution for turbulent flow are routinely computed
as part of the DFS method, see e.g. Fig. 2. Practical computation also shows that the dual solution is stable with
respect to perturbations in data in the form of approximate primal solutions on different computational meshes. That
is, when the computational mesh is sufficiently refined so that the output functional of interest M(Û ) (e.g. drag) has
converged, little difference is seen in dual solutions ϕ̂ linearized at different approximate solutions Û from this class
of approximate solutions, which is observed as part of the adaptive algorithm [36].

The dual equations is a system of convection–reaction equations that take the gradient ∇U as reaction coefficient.
Given the sharp gradients in turbulent flow, how is well-posedness of the dual problem possible? We observe com-
putability of the discretized dual equations, but from this we cannot infer that the continuous dual problem is stable.
In [36] we argue that the stability of the dual problem is possible by cancellation, since in a turbulent flow the gradient
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Fig. 3. Vorticity visualized by a Q-criterion: snapshot of a DFS solution of the flow around of a wing-body configuration (left) [5], and flow around
a Gulfstream G550 nose landing gear (right) [3].

is oscillating rapidly, so that exponential growth is alternating with exponential decay. In particular, a turbulent wake
is dominated by vortices on a range of scales, see Fig. 3, where each individual vortex tube is a stable flow structure
in the sense that a linearized stability analysis show no exponential perturbation growth [36].

5.2. Blowup of the dual solution

Exponential growth of the dual solution with drag data is reported in [56] for flow around a cylinder at Re = 500,
which conforms with worst case analytical estimates. This is contrary to the observations we have made for bluff
body flow at higher Reynolds numbers, reported e.g. in [14] for circular cylinder flow at Re = 3900, where the dual
solution is stable with converging a posteriori error estimates.

Is this difference related to differences in the computational methods used to compute the approximate dual
solutions, or is it related to a fundamental difference between the two flows? This is still an open question, but we
note that the flow at Re = 500 and Re = 3900 have important differences, where the flow at Re = 500 has a more
pronounced von Karman street whereas the turbulent wake is more stable at Re = 3900.

If dual solutions consistently would show blowup for high Reynolds number turbulent flow, then the linearized
approach can be questioned for this class of flows. One alternative to the linearized error analysis would be
forward propagation of perturbations through ensembles of solutions. For example, in weather forecasting both these
approaches are used to quantify uncertainties in the predictions.

Whether there is a fundamental problem with duality based methods for turbulent flow remains to be seen, but
so far we have not encountered any stability problems using the methods presented in this paper, other than for the
case of 2D compressible flow at increasing Reynolds numbers [57], where strong vorticity production in the primal
problem is the result of the sharpening of boundary layers, and where no non-viscous mechanism for dissipation of
vorticity is available in 2D. In 3D flow, turbulence develop that dissipate vorticity through vortex stretching, which
can be observed in corresponding 3D simulations [14].

6. Summary

We have reviewed a computational framework for turbulence simulation based on adaptive finite element approx-
imation, which we refer to as Direct Finite Element Simulation (DFS). For high Reynolds numbers, viscosity and
wall shear stress are assumed to be negligible compared to inertial effects, and thus the DFS model has no empirical
parameters. We interpret a DFS approximation as a dissipative weak solution, for which we can estimate the error
with respect to output functionals using duality analysis.

Validation of the method has been carried out for a number of benchmark problems, where it is found that DFS
simulations compare well with experimental data, while at the same time being a very efficient methodology in terms
of the number of degrees of freedom needed to compute output data such as aerodynamics forces and surface pressure
distributions. The main distinguishing features of the parameter-free version of DFS are: (i) the computational mesh
is optimized based on a goal functional using a posteriori error estimation, and (ii) turbulent boundary layers are left
unresolved.
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