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Abstract

This paper presents a set of new analytical expressions for evaluating radial integrals appearing in the stress computation of
several kinds of variable coefficient elastic problems using the radial integration boundary element method (RIBEM). The strong
singularity involved in the stress integral equation is explicitly removed from the derivation of the analytical expressions. This
approach can improve the computational efficiency considerably and can overcome the time-consuming deficiency of RIBEM in
computing involved radial integrals. In addition, because it can solve many kinds of variable coefficient elastic problems, this
approach has a very wide applicability. The fourth-order spline (Radial Basis Function) RBF is employed to approximate the
unknowns appearing in domain integrals caused by the variation of the shear modulus. The radial integration method is utilized to
convert domain integrals to the boundary, which results in a pure boundary discretization algorithm. Numerical examples are given
to demonstrate the efficiency of the presented formulations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The conventional boundary integral equations dealing with non-homogeneous and non-linear elastic problems
[1,2] include domain integrals in the resulting integral equations. To evaluate these domain integrals, the computational
region is required to be discretized into internal cells, which makes BEM lose its distinct advantage of only boundary
discretization. To circumvent this deficiency, methods of transforming domain integrals into equivalent boundary
integrals are proposed and have been frequently used. In these methods, the dual reciprocity method (DRM) developed
by Brebbia [2] is extensively utilized. However, DRM requires particular solutions to basis functions, which restricts
its application to complicated problems. Recently, a new transformation method, the radial integration method
(RIM), has been developed by Gao [3,4], which not only can transform any complicated domain integrals to the
boundary in a unified way without using particular solutions, but also can remove various singularities appearing
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in domain integrals [5,6]. Due to the advantages of RIM that particular solutions are not required and several
domain integrals appearing in the same integral equation can be dealt with simultaneously, RIM-based boundary
element method has won a good favor from many BEM researchers [7–10] in recent years. However, although the
radial integration boundary element method (RIBEM) is very flexible to deal with the general non-linear and non-
homogeneous problems [11,12], evaluation of the radial integrals numerically is very time-consuming compared to
other methods [13,14], especially for large three-dimensional problems.

In this paper, a new type of boundary-only integral equation analysis technique is developed for several kinds of
variable coefficient elastic stress computation based on the fundamental solutions of homogeneous problems. Unlike
the existing method (e.g. [9]) which evaluates the radial integrals numerically, the method developed in this paper
can analytically integrate the radial integrals by using the fourth-order spline radial basis function (RBF). The strong
singularity involved in the stress integral equation [15] is explicitly removed from the derivation of the analytical ex-
pressions. Through use of the derived analytical expressions in RIBEM, the computational efficiency can be improved
considerably. Three numerical examples are given to demonstrate the efficiency of the presented method, which show
that approximately 80% computational time can be saved by using the analytical expressions than by using numerical
method to compute the radial integrals. Though the formulations are derived on the elastic stress background, they
can also be applied to other physical problems based on the use of RIBEM (e.g. [16–19]).

2. Review of non-homogeneous BEM in elastic problems [9]

Consider non-homogeneous and linear elastic solid materials. In the absence of body forces, the equilibrium
equation is given by

σ jk,k = 0 (1)

where σ jk represents the stress tensor, a comma ‘,’ after a quantity represents spatial derivatives, and repeated
indexes denote summation. It is assumed that the shear modulus µ of the material depends on Cartesian coordinates
while Poisson’s ratio ν is constant. Under this assumption, the stress tensor σ jk and the displacement gradient
uk,l = ∂uk/∂xl are related by the following generalized Hooke’s law:

σi j = Ci jkluk,l = µC0
i jkluk,l (2)

where C0
i jkl is the elastic constitutive tensor [20]. The weak-form of the equilibrium equation (1) can be written as

follows:
Ω

Ui jσ jk,kdΩ = 0 (3)

where Ui j is a weight function, which is taken as Kelvin’s displacement fundamental solution in this paper.
Substituting Eq. (2) into Eq. (3) and applying Gauss’s divergence theorem yield [20]

cũi (xp) =


Γ

Ui j (x, xp)t j (x)dΓ (x) −


Γ

Ti j (x, xp)ũ j (x)dΓ (x) +


Ω

Vi j (x, xp)ũ j (x)dΩ(x) (4)

where c = 1 for internal points and c = 0.5 for smooth boundary nodes. The fundamental solutions Ui j and Ti j
appearing in Eq. (4) can be found in usual elasticity BEM book, e.g. [20] and the kernel function Vi j can be expressed
as follows:

Vi j =
−1

4πα(1 − ν)rα


r,kµ̃,k[(1 − 2ν)δi j + βr,ir, j ] + (1 − 2ν)(µ̃,ir, j − µ̃, jr,i )


(5)

in which, β = 2 (2D) or β = 3 (3D), and α = β − 1. ũ j and µ̃ are the normalized displacements and shear modulus
defined as follows:

ũ j = µu j

µ̃ = ln µ.
(6)
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From the first expression of Eq. (6), it follows that

∂ui

∂x p
j

=
1
µ


∂ ũi

∂x p
j

− ũi
∂µ̃

∂x p
j


. (7)

Taking the partial derivative of Eq. (4) with respect to the source point x p, and then substituting the result into Eq.
(7) and making use of Eq. (2), we can obtain the following stress integral equation.

σi j (xp) =


Γ

Ui jk(x, xp)tk(x)dΓ (x) −


Γ

Ti jk(x, xp)ũk(x)dΓ (x)

+


Ω

Vi jk(x, xp)ũk(x)dΩ(x) + Fi jk(xp)ũk(xp) (8)

in which the kernel functions Ui jk and Ti jk are the same as given in usual BEM books (e.g., [20]), and other quantities
are as follows:

Vi jk =
1

2πα(1 − v)

1
rβ

{βµ̃,mr,m[(1 − 2v)δi jr,k + v(δikr, j + δ jkr,i ) − γ r,ir, jr,k]

+ βv(µ̃,ir, j + µ̃, jr,i )r,k + (1 − 2v)(βµ̃,kr,ir, j + µ̃, jδik + µ̃,iδ jk) − (1 − 4v)µ̃,kδi j } (9)

Fi jk =


−1

4(1 − v)
((δi j µ̃,k + δikµ̃, j + δ jkµ̃,i )) for 2D

−1
15(1 − v)

((2 + 10v)δi j µ̃,k + (7 − 5v)(δikµ̃, j + δ jkµ̃,i )) for 3D.

(10)

3. Transformation of domain integrals to the boundary by RIM

To avoid discretizing the computational domain into cells in evaluating the domain integrals appearing in Eqs. (4)
and (8), the radial integration method (RIM) [3–6] is applied to convert these domain integrals into equivalent bound-
ary integrals and results in a boundary-only discretization algorithm. However, since the normalized displacement
µ̃k(x) appearing in Eqs. (4) and (8) is unknown, the RIM formulations cannot be directly evaluated. To solve this
problem, the unknowns are approximated by a series of prescribed radial basis functions (RBFs). Thus,

ũi (x) =


A

αAφA(R) + ak xk + a0 (11)
A

αA
= 0,


A

αAx A
i = 0 (12)

in which, R =
x − xA

 is the distance from the application point xA to the field point x, αA and ak are coefficients
to be determined by nodal displacement values through a node allocation scheme, and φA is the radial basis function.
Numerical investigation indicates that the 4th order spline-type radial basis function can give very stable results [9],
its expression being as follows:

φA(R/dA) =

1 − 6


R

dA

2

+ 8


R

dA

3

− 3


R

dA

4

0 ≤ R ≤ dA

0 R ≥ dA

(13)

where, dA is the support size for the application point A. Substituting Eq. (11) into the domain integral of Eqs. (4) and
(8) and applying RIM formulations [3–6] yield

Ω
Vi j ũ j dΩ =


A

αA
j


Γ

1
rα

∂r

∂n
F A

i j dΓ + ak
j


Γ

r,k

rα

∂r

∂n
F1

i j dΓ (14)

F A
i j =

 r

0
rαVi jφ

Adr (15)
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Fig. 1. Relationship between distances.

F1
i j =

 r

0
rβ Vi j dr (16)

and 
Ω

Vi jk ũkdΩ =


A

αA
k


Γ

1
rα

∂r

∂n
F A

i jkdΓ + al
k


Γ

r,l

rα

∂r

∂n
F1

i jkdΓ (17)

F A
i jk =

 r

0
rαVi jkφ

Adr (18)

F1
i jk =

 r

0
rβ Vi jkdr. (19)

To evaluate the radial integrals shown in Eqs. (15) and (18), referring to Fig. 1, the following relationships are
used:

R =


r2 + 2sr + R̄2, S = r,i R̄i , R̄i = x p

i − x A
i . (20)

From Eq. (5), it can be seen that the radial integrals in Eq. (15) are regular and can be integrated without any diffi-
culty. However, from Eq. (9) we can see that the radial integrals for F A

i jk in Eq. (18) are strongly singular with the
order of (1/r) when the source point approaches the field point. Therefore, a special technique, referred as singularity
separation technique, is required to evaluate these radial integrals.

4. Analytical expressions for evaluation of radial integrals in stress computation

The radial integrals shown by Eqs. (15)–(19) can be evaluated analytically or numerically by using the following
variable transformation relationship:

xi = yi + r, ir (21)

where, xi and yi are the coordinates of source point and field point respectively, and r, i = ∂r/∂xi .
It is noted that r, i and yi are constants for the radial integral. This is an important characteristic of RIM, which

makes the evaluation of the radial integrals in Eqs. (15)–(19) possible and easy for any complicated function.
Using the conventional singularity separation scheme, Eq. (18) can be rewritten as follows:

F A
i jk =

 r

0
rαVi jkφ

Adr =

 r

0
rαVi jk


φA(R) − φA(0)


dr +

 r

0
rαVi jkφ

A(0)dr (22)

where φA(0) is the expression when r = 0.
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Table 1
Three kinds of variable shear modulus.

Case 1 (exponential change of linear order) Case 2 (linear) Case 3 (exponential change of secondary order)

µ µ0eci xi µ0 + ci xi µ0ec0+ci xi +ci j xi x j

µ̃ ln µ0 + ci xi ln(µ0 + ci xi ) ln µ0 + c0 + ci xi + ci j xi x j
µ̃,i ci

ci
µ0+c j x j

ci + c jk (δi j xk + δik x j )

Considering r,i is constant in the radial integral, according to the expression of kernel function Eqs. (5) and (9),
Eq. (16) can be easily derived and Eqs. (15) and (18) can include radial integral of the following categories:

F1
i jk →

 r

0
µ̃,i dr (23a)

F A
i j →

 r

0
φA(R)µ̃,i dr (23b)

F A
i jk →

 r

0

φA(R) − φA(0)

r
µ̃,i dr,

 r

0

µ̃,i

r
dr. (23c)

Using a numerical integral formula to calculate the radial integral is usually very time-consuming, especially for
large three-dimensional problems. If we can evaluate these integrals in an analytical method, it can greatly improve
the computational efficiency. Here are the analytical expressions of the three kinds of representative variable shear
modulus as shown in Table 1.

For the above-mentioned shear modulus change forms, the following gives the analytical calculation formula of
the radial basis function based on Table 1.

4.1. The radial integral analytical expressions of F1
i jk →

 r
0 µ̃,i dr

Using Eq. (21), the integral F1
i jk →

 r
0 µ̃,i dr from Eq. (23a) can be easily derived as follows:

For case 1: r

0
µ̃,i dr = cir. (24)

For case 2:

µ̃,i =
ci

µ0 + c j x p
j + c jr, jr

(25)

 r

0
µ̃,i dr =

ci ln(µ0 + c j x j )

c jr, j
=

ci ln µ

c jr, j
. (26)

For case 3:

µ̃,i = ci + c jk(δi j x p
k + δik x p

j ) + c jk(δi jr,k + δikr, j )r (27) r

0
µ̃,i dr = [ci + c jk(δi j x p

k + δik x p
j )]r +

1
2

c jk(δi jr,k + δikr, j )r
2. (28)

4.2. The radial integral analytical expressions of F A
i jk →

 r
0

µ̃,i
r dr

Similarly, using Eq. (21), the integral
 r

0
µ̃,i
r dr from Eq. (23c) can be derived as follows:

For case 1: r

0

µ̃,i

r
dr = ci ln r. (29)
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Fig. 2. Intersections between line and circle.

For case 2:
Referring to Eq. (25), it follows: r

0

µ̃,i

r
dr =

ci

µ0 + c j x p
j

ln


r

µ


. (30)

For case 3:
Referring to Eq. (27), it follows: r

0

µ̃,m

r
dr = [cm + ci j (δim x p

j + δ jm x p
i )] ln r + ci j (δimr, j + δ jmr,i )r. (31)

4.3. The radial integral analytical expressions of F A
i j →

 r
0 φA(R)µ̃,i dr

Using Eq. (21), the integral F A
i j →

 r
0 φA(R)µ̃,i dr from Eq. (23b) can be derived as follows:

For case 1: (exponential change of linear order)
Since µ̃,i = ci is constant for µ = µ0eci xi , the integral can be rewritten as follows: Ψ1 =

 r
0 φAdr , referring to

Ref. [16] and based on Eqs. (14) and (20), it can be derived that:

Ψ1 =

 r

0
φAdr =

 r2

r1


1 − 6


R

dA

2

+ 8


R

dA

3

− 3


R

dA

4


dr

= r −


3
5

r5
− 3sr4

− 2r3(R̄2
+ 2s2) − 6sr2 R̄2

− 3r R̄4


/d4
A+

[(r + s)(2r2
+ 5R̄2

+ 4rs − 3s2)


r2 + 2sr + R̄2 + 3(R̄2
− s2)2

log(r + s +


r2 + 2sr + R̄2)]/d3

A − (2r3
− 6sr2

− 6R̄2r)/d2
A


r2

r1

(32)

where r1 and r2 are the intersections between the line r and the circle centered at A with radius of dA, as shown in
Fig. 2.

For case 2: (linear)
Referring to Eq. (25), and let a = µ0 + c j x p

j , b = c jr, j and then referring to Fig. 2, the radial integral can be
derived based on Eqs. (14) and (20) that: r

0
φA(R)µ̃,i dr =

ci

12b5d4
A

(−9b4r4
+ 12b3r3(a − 4bs) + 36br(a − 2bs)(a2

+ 2b2(d2
A + R̄2) − 2abs)

− 18b2r2(a2
− 4abs + 2b2(d2

A + R̄2
+ 2s2)) + 16b2dA R(6a2

− 3ab(r + 5s)

+ b2(8R̄2
+ 2r2

+ 7rs + 3s2)) + 12(−3a4
+ b4(d4

A − 6d2
A R̄2

− 3R̄4)

+ 12a3bs + 12ab3s(d2
A + R̄2) − 6a2b2(d2

A + R̄2
+ 2s2)) ln(a + br)

− 48bdA(a − bs)(2a2
− 4abs + b2(3R̄2

− s2)) ln


r + s +


r2 + 2sr + R̄2


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Fig. 3. A special intersection.

+ 96bdA(a2
+ b2 R̄2

− 2abs)
3
2 (ln(a + br) − ln(b(R̄2

+ rs)

− a(r + s) +


r2 + 2sr + R̄2


a2 + b2 R̄2 − 2abs))). (33)

For the expression as shown in Eq. (33), it should be noted that a special case, r + s +


r2 + 2sr + R̄2 = 0, may

occur. In this case, s = −R̄, as shown in Fig. 3, and F A
i j →

 r
0 φA(R)µ̃,i dr can be integrated as follows: r

0
φA(R)µ̃,i dr =

c

12b5d4
A(r − R̄)

(br(36a3(r − k) − 6a2b(24R̄2
− 16dA|R̄ − r | − 27R̄r + 3r2)

+ 12ab2(24R̄2r − 18R̄3
− 4dA(|R̄ − r |)(r − 6R̄) − 7R̄r2

+ r3
+ 6d2

A(r − R̄))

+ b3(−36d2
A(4R̄2

− 5R̄r + r2) + 16dA(|R̄ − r |)(18R̄2
− 9R̄r + 2r2)

− 3(48R̄4
− 84R̄3r + 52R̄2r2

− 19R̄r3
+ 3r4)))

+ 12(3a − bdA + 3bR̄)(a + b(dA + R̄))3(R̄ − r) ln(a + br)). (34)

For case 3: (exponential change of secondary order)
Referring to Eq. (27) and let a = ci + c jk(δi j x p

k + δik x p
j ), b = c jk(δi jr,k + δikr, j ) then referring to Fig. 2 and

based on Eqs. (14) and (20), it can be derived that: r

0
φA(R)µ̃,i dr =

1

10d4
A


2a(5d4

Ar + 5dA(r + s)R(5R̄2
+ 2r2

+ 4rs − 3s2) − 10d2
Ar(3R̄2

+ r(r + 3s))

− r(15d4
A + 10d2

Ar(r + 3s) + r2(3r2
+ 15rs + 20s2))) + b(5d4

Ar2
+ 2dA R(8(R̄2

+ r2)2

+ r(7R̄2
+ 22r2)s + (2r2

− 25R̄2)s2
− 5rs3

+ 15s4)

− 5R̄2r2(6R̄2
+ r(3r + 8s)) − r2(15R̄4

+ 5R̄2r(3r + 8s) + r2(5r2
+ 24rs + 30s2)))

+ 30dA(a − bs)(R̄2
− s2)2 ln


r + s +


r2 + 2sr + R̄2


. (35)

Similarly, for the expression as shown in Eq. (35), it should be noted that a special case, r +s +


r2 + 2sr + R̄2 =

0, may occur. In this case, s = −R̄, as shown in Fig. 3, and F A
i j →

 r
0 φA(R)µ̃,i dr can be integrated as follows: r

0
φA(R)µ̃,i dr =

−1

10d4
A

((R̄ − r)(10d4
A(a + bR̄) − 20d2

A(a + bR̄)(R̄ − r)2
+ 15bd2

A(R̄ − r)3

− 6(a + bR̄)(R̄ − r)4
+ 5b(R̄ − r)5

+ 5bd4
A(r − R̄)

+ 4dA(|R̄ − r |
3(5a + b(R̄ + 4r)))). (36)

4.4. The radial integral analytical expressions of F A
i jk →

 r
0

φA(R)−φA(0)
r µ̃,i dr

Similarly also, using Eq. (21), the integral F A
i jk →

 r
0

φA(R)−φA(0)
r µ̃,i dr from Eq. (23c) can be derived as

follows:
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Fig. 4. Another special intersection.

For case 1: (exponential change of linear order)

Since µ̃,i = ci is constant for µ = µ0eci xi , the integral can be rewritten as follows: ci
 r

0
φA(R)−φA(0)

r dr and based
on Eqs. (14) and (20), it can be derived that [19]: r

0

φA
− φA(0)

r
dr = −


0.75r4

+ 12(d2
A + R̄2)rs −

4
3

dA(8R̄2
+ 2r2

+ 7rs + 3s2)


r2 + 2sr + R̄2

+ 4r3s + 4sdA(s2
− 3R̄2) ln


r + s +


r2 + 2sr + R̄2


+ 3r2(d2

A + R̄2
+ 2s2)

+ 8dA R̄3 ln


R̄2
+ rs + R̄

√
r2+2sr+R̄2


d4

A (37)

where r1 and r2 are the intersections between the line r and the circle centered at A with radius of dA, as shown in
Fig. 2.

For the expression as shown in Eq. (37), it should be noted that the special cases, r + s +


r2 + 2sr + R̄2 = 0

and R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0 may occur. In these cases, s = −R̄, and F A
i j →

 r
0 φA(R)µ̃,i dr can be integrated

as follows:
When r + s +


r2 + 2sr + R̄2 = 0, then R = R̄ − r , as shown in Fig. 3 and it can be derived that [19]: r

0

φA
− φA(R̄)

r
dr = r(36d2

A(4R̄ − r) − 16dA(18R̄2
− 9R̄r + 2r2)

+ 3(48R̄3
− 36R̄2r + 16R̄r2

− 3r3))/(12d4
A). (38)

When R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0, R = r − R̄, as shown in Fig. 4 and it can be derived that [19]: r

0

φA
− φA(R̄)

r
dr = (r(36d2

A(4R̄ − r) + 16dA(18R̄2
− 9R̄r + 2r2)

+ 3(48R̄3
− 36R̄2r + 16R̄r2

− 3r3)) − 192dA R̄3 ln(r))/(12d4
A). (39)

For case 2: (linear)
Referring to Eq. (25) and let a = µ0 + c j x p

j , b = c jr, j , and then referring to Fig. 2, the radial integral can be
derived based on Eqs. (14) and (20) that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr =

ci

d4
A


3r2(a − 4bs) − 2br3

+ 8dA R(−2a + b(r + 5s))

2b2

+

4dA(2a2
− 6abs + 3b2(s2

+ R̄2)) ln


r + s +


r2 + 2sr + R̄2


− 3r(a2

− 4abs + 2b2(d2
A + R̄2

+ 2s2))

b3

+
(3a4

+ 8b4dA R̄3
− 12a3bs − 12ab3(d2

A + R̄2)s + 6a2b2(d2
A + R̄2

+ 2s2)) ln(a + br)

ab4
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−

8dA R̄3 ln


R̄2
+ rs + R̄


r2 + 2sr + R̄2


a

+

8dA(a2
+ b2 R̄2

− 2abs)
3
2 ln


b(R̄2

+ rs) − a(r + s) + R


a2 + b2 R̄2 − 2abs


− ln(a + br)

ab3


. (40)

For the expression as shown in Eq. (40), it should be noted that the special cases, r + s +


r2 + 2sr + R̄2 = 0

and R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0 may occur. In these cases, s = −R̄ and F A
i j →

 r
0 φA(R)µ̃,i dr can be integrated as

follows:
When r + s +


r2 + 2sr + R̄2 = 0, then R = R̄ − r , as shown in Fig. 3 and it can be derived that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr = (ci (−br(6a2

+ ab(−16dA + 24R̄ − 3r)

+ 2b2(6d2
A + 18R̄2

− 6R̄r + r2
+ 4dA(r − 6R̄)))

+ 2(3a2
+ 12b3(dA − R̄)2 R̄ + a2b(12R̄ − 8dA)

+ 6ab2(d2
A − 4dA R̄ + 3R̄2)) ln(a + br)))/(2b4d4

A). (41)

When R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0, then R = r − R̄, as shown in Fig. 4 and it can be derived that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr = (ci (−abr(6a2

+ ab(16dA + 24R̄ − 3r)

+ 2b2(6d2
A + 18R̄2

− 6R̄r + r2
+ 4dA(6R̄ − r)))

− 32b4dA R̄3 ln(r) + 2(a + 2bR̄)(3a3
+ 8b3dA R̄2

+ a2b(6R̄ + 8dA)

+ 2ab2(3d2
A + 4dA R̄ + 3R̄2)) ln(a + br)))/(2ab4d4

A). (42)

For case 3: (exponential change of secondary order)
Referring to Eq. (27) and let a = ci + c jk(δi j x p

k + δik x p
j ), b = c jk(δi jr,k + δikr, j ) then referring to Fig. 2 and

based on Eqs. (14) and (20), it can be derived that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr =

1

d4
A


−

3br5

5
−

3
4

r4(a + 4bs) − 4r(2bdA R̄3
+ 3a(R̄2

+ d2
A)s)

− 3r2(2b(R̄2
+ d2

A)s + a(R̄2
+ d2

A + 2s2)) − 2r3(2as + b(R̄2
+ d2

A + 2s2))

+
1
3

dA R(3b(r + s)(5R̄2
+ 2r2

+ 4rs − 3s2) + 4a(8R̄2
+ 2r2

+ 7rs + 3s2))

+ dA(3b(R̄2
− s2)2

− 4as(s2
− 3R̄2)) ln


r + s +


r2 + 2sr + R̄2


− 8adA R̄3 ln


R̄2

+ rs + R̄


r2 + 2sr + R̄2


. (43)

For the expression as shown in Eq. (43), it should be noted that the special cases, r + s +


r2 + 2sr + R̄2 = 0 and

R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0 may occur. In these cases, s = −R̄, and F A
i j →

 r
0 φA(R)µ̃,i dr can be integrated as:

When r + s +


r2 + 2sr + R̄2 = 0, then R = R̄ − r , as shown in Fig. 3 and it can be derived that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr = −(0.6br5

+ 0.25(3a + 8bdA − 12bR̄)r4

+
2
3
(a(4dA − 6R̄) + 3b(d2

A − 4dA R̄ + 3R̄2))r3

− 3(dA − R̄)(2b(dA − R̄)R̄ − a(dA − 3R̄))r2
− 12a(dA − R̄)2 R̄r)/d4

A. (44)
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Fig. 5. Geometry and boundary conditions of 2D plate.

When R̄2
+ rs + R̄

√
r2+2sr+R̄2

= 0, then R = r − R̄, as shown in Fig. 4 and it can be derived that: r

0

φA(R) − φA(R̄)

r
µ̃,i dr = (4R̄(−4bdA R̄2

+ 3a(dA + R̄)2)r

+ 3(dA + R̄)(2bR̄(dA + R̄) − a(dA + 3R̄))r2

+
2
3
(a(4dA + 6R̄) − 3b(d2

A + 4dA R̄ + 3R̄2))r3

+ 0.25(−3a + 8bdA + 12bR̄)r4
− 0.6br5

− 16adA R̄3 ln(r))/d4
A. (45)

Substituting these analytical expressions into Eqs. (15) and (18) and then substituting Eq. (11) into the above
equation and the results into Eqs. (4) and (8) for boundary and internal points, one can establish the desired system
of equations. It should be noted that the expressions of Eqs. (24)–(45) are suitable for solving both 2D and 3D
problems.

5. Numerical examples

A computer code called RIBEM (radial integration BEM) has been developed using the formulations derived
in this paper. To verify the correctness of the derived formulations, three numerical examples are presented in the
following.

5.1. Stresses over a 2D rectangular plate

The first example to be considered is an isotropic, continuously non-homogeneous elastic rectangular plate with
the dimensions L ×W as shown in Fig. 5. The investigated plate is subjected to a uniform tensile stress loading σ = 1.

The boundary of the plate is discretized into 52 equally-spaced linear boundary elements: 20 along longitudinal and
6 along transversal directions. 95 internal nodes are used as shown in Fig. 6. Poisson’s ratio is selected as ν = 0.25
and an exponential variation of shear modulus in the transversal y direction is used, which is described by

µ = µ0eβy, β =
1
W

ln


µW

µ0


µ0 = 4000, µW = 8000.

For comparison, this problem is also computed using the FEM software ANSYS. Fig. 7 shows the computed
displacement component u1 over the top-side, while Fig. 8 shows the computed stress σ11 along the middle line
x = 0.5 of the plate and Fig. 9 shows a plot of the results.

From Figs. 7–9, it can be seen that the RIBEM results are very close to the FEM solutions. This demonstrates
that the derived analytical expressions are correct for this example. In this example, the computational time using
numerical solution is 4 s, while RIBEM takes 2 s. About 50% of computational time is saved.
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Fig. 6. BEM model of the plate.

Fig. 7. Displacement distribution along top-side of the plate.

Fig. 8. Stress σ11 distribution along middle line of the plate.

5.2. Stress over a 3D hexahedral

The second example is a 3D hexahedral elastic analysis. Fig. 10 shows the dimensions and boundary conditions of
the hexahedral structure. The bottom surface of the composite model is fixed, while the top surface of the hexahedral
is subjected to a pressure of 100 units and others are traction free. Poisson’s ratio is selected as ν = 0.25.

An exponential variation of shear modulus along the z direction is assumed, which is described as follows:

µ = µ1eγ z2
, γ =

1

H2 ln
µ2

µ1
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Fig. 9. x-direction displacement contour of the plate.

Fig. 10. Dimensions and boundary conditions of the hexahedral.

Fig. 11. BEM model of the hexahedral.

in which H = 8 being the height of the hexahedral, µ1 = 4000 and µ2 = 8000 being the shear modulus on the
bottom and top sides of the hexahedral, respectively.

The BEM model is shown in Fig. 11, which consists of 448 linear boundary elements and 655 nodes, among which
the number of boundary and internal nodes are 450 and 205, respectively. The displacements at 7 internal points alone
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Fig. 12. Computed displacement for the hexahedral.

Fig. 13. Computed stress σzz of the hexahedral.

the z direction are investigated, which are located at the line of x = 0, y = 0 as shown in Fig. 10. For comparison,
the problem is also computed using the FEM software ANSYS. Fig. 12 shows the computed results using RIBEM
and FEM for the 7 internal points, while Fig. 13 shows the computed stress σzz along the z direction midline of the
hexahedral and Fig. 14 shows a plot of the z direction displacement contour.

From Figs. 12–14, it can be seen that the presented RIBEM results are in good agreement with FEM results,
although coarse meshes are used in BEM. In addition to be sure, the displacements computed using FEM are similar
to those using the current RIBEM with the same coarse meshes as in RIBEM, but the accuracy of stresses using FEM
is worse than using RIBEM. Therefore, to achieve a same accurate stress results, a finer mesh is necessary for FEM.
This demonstrates the advantage of RIBEM over FEM in meshing aspect.

In this example, the computational time using numerical solution is about 25 min, while RIBEM takes about 6 min.
This means that more than 75% computational time is saved.

5.3. Stress over a 3D cube

To test the computational efficiency of the presented method, the third example is a 3D cube elastic analysis. Fig. 15
shows the BEM model of the cube with the dimensions of 10 × 10 × 10. The bottom surface of the model is fixed,
while the top surface of the cube is subjected to a pressure of 100 units and others are traction free. The linearly
varying shear modulus along the z-direction is µ = µ1 + r z, where r =

1
H (µ2 − µ1) with H = 10 being the height
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Fig. 14. Displacement contour of the results.

Fig. 15. BEM model of the cube.

of the cube, µ1 = 4000 and µ2 = 8000 being the shear modulus on the bottom and top sides of the cube, respectively
and Poisson’s ratio is also selected as ν = 0.25.

The BEM model is shown in Fig. 15, which consists of 600 linear boundary elements and 1331 nodes, among
which the number of boundary and internal nodes are 602 and 729, respectively. The displacements at 9 internal
points are investigated, which are located at the line of x = 5, y = 5. For comparison, the problem is also computed
using the FEM software ANSYS. Fig. 16 shows the computed displacement results using RIBEM and FEM for the
9 internal points, while Fig. 17 shows the computed stress σzz along the z direction midline of the cube and Fig. 18
shows a plot of the z direction displacement contour.

From Figs. 16–18, it can be seen that the presented RIBEM results are in good agreement with FEM results,
although coarse meshes are used in both BEM and FEM. In this example, the computational time spent in numerical
solution is about 176 min, while RIBEM takes about 37 min, nearly 80% computational time is saved. It is expected
that more computational time can be saved using the present method for larger engineering problems.
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Fig. 16. Computed displacement for the cube.

Fig. 17. Computed stress σzz of cube.

6. Conclusion

An efficient boundary element analysis approach is presented for solving elastic stress problems with several kinds
of variable shear modulus. The radial integration method is used to transform the domain integrals appearing in the
stress boundary-domain integral equations into boundary integrals. The radial integral in RIM with several kinds
of variable shear modulus is analytically integrated for domain integrals based on the employment of the compactly
supported fourth-order spline RBF. The strong singularity involved in the stress integral equation is explicitly removed
for the derivation of the analytical expressions. The derived formulation can save computational time considerably in
forming non-homogeneous integral coefficients.

For the use of the RIBEM to solve other problems [8,16], the final radial integrals can be classified into the eval-
uation of line integral as shown in Eq. (23), and the integration results Eqs. (24)–(45) can be applied to solve a broad
range of engineering problems, not just limited to elastic problems.
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Fig. 18. Displacement contour of the results.
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