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Highlights

• We propose a new algorithm for simulating suspensions of flexible fibers on distributed-memory clusters.
• Our immersed boundary framework captures the full two-way interaction between fluid and flexible fibers.
• The algorithm employs a new pseudo-compressible fluid solver recently proposed by Guermond and Minev.
• Numerical results are validated against the experimental results of S.G. Mason and co-workers.

Abstract

We present an approach for numerically simulating the dynamics of flexible fibers in a three-dimensional shear flow using a
scalable immersed boundary (IB) algorithm based on Guermond and Minev’s pseudo-compressible fluid solver. The fibers are
treated as one-dimensional neutrally-buoyant Kirchhoff rods that resist stretching, bending, and twisting, within the generalized
IB framework. We perform a careful numerical comparison against experiments on single fibers performed by S.G. Mason and
co-workers, who categorized the fiber dynamics into several distinct orbit classes. We show that the orbit class may be determined
using a single dimensionless parameter for low Reynolds flows. Lastly, we simulate dilute suspensions containing up to hundreds
of fibers using a distributed-memory computer cluster. These simulations serve as a stepping stone for studying more complex
suspension dynamics involving aggregation of fibers (or flocculation) and particle sedimentation due to added mass.
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1. Introduction

The behavior of long, flexible fibers in a suspension plays an important role in many applications, including pulp
and paper manufacture, polymer melts, and fiber-reinforced composite materials [1,2]. The dynamics of such suspen-
sions depend heavily on the shape and flexibility of the individual fibers as well as the interactions between fibers.
Because of the complexity of the fiber motion in suspensions, many researchers have developed numerical meth-
ods that afford valuable insight into both individual fiber dynamics and the resulting aggregate suspension rheology
[3,4,2]. These simulations can complement physical experiments by providing information that is not easily obtained
through direct measurement.

In this paper, we develop an approach for simulating a suspension of flexible fibers that is based on the immersed
boundary (IB) method [5], which is a mathematical framework originally developed by Peskin [6] to capture the two-
way interaction between a fluid and an immersed deformable structure. Here, the fluid deforms the elastic structure
while the structure exerts forces onto the fluid. The IB method has been used to study a wide variety of biological and
engineering applications including blood flow through heart valves [7,6], cell growth and deformation [8], jellyfish
locomotion [9], evolution of dry foams [10] and parachute aerodynamics [11].

We treat the flexible fibers as one-dimensional Kirchhoff rods [12] described using the generalized IB framework
developed by Lim et al. [13]. In this approach, the fibers are represented as 1D space curves using a moving Lagrangian
coordinate, wherein at each Lagrangian point an orthonormal triad of vectors describes the orientation and “twist state”
of the rod. This permits the fiber to generate not only a force but also a torque that is applied to the surrounding fluid.

The primary objective of this paper is to develop an efficient methodology for simulating suspensions containing
a large number of flexible fibers. Since solving the full fluid–structure interaction problem comes at the expense
of additional computational work, the underlying parallel algorithm is purposely designed to scale efficiently on
distributed-memory computer clusters. This permits non-dilute suspensions to be simulated efficiently by spreading
the work over multiple processors. The numerical algorithm is based on the work of Wiens and Stockie [14] who
implemented a pseudo-compressible fluid solver developed by Guermond and Minev [15,16] in the IB framework. We
extend this original algorithm to use the Eulerian–Lagrangian discretization employed by Griffith and Lim [17] which
employs a predictor–corrector procedure to evolve the immersed boundary. Here, two separate force spreading and
velocity interpolation steps are applied at each time step which improves the spatial convergence rate of the method.

We begin in Section 2 by reviewing theoretical and experimental results in the literature pertaining to the hydrody-
namics of suspensions containing flexible fibers, as well as discussing several prominent computational approaches.
In Sections 3 and 4, we state the governing equations underlying our IB model for fluid–fiber interaction, as well as
the numerical algorithm used to approximate these equations. In Section 5, we present simulations of fiber dynamics
in both single- and multi-fiber systems, and compare these results to previously published experimental work.

2. Background: pulp fibers

2.1. Theory and experiments

Theoretical investigations of the dynamics of fibers in a shear flow date back to Jeffery in the 1920s [18], who
derived an analytical solution for the motion of a single rigid, neutrally-buoyant ellipsoidal particle immersed in an
incompressible Newtonian fluid (specifically, in a Stokes flow). Jeffery found that such a fiber rotates with a well-
defined periodic orbit having constant period but non-uniform angular velocity. It was later shown by Bretherton [19]
that Jeffery’s analytical solution could be extended to more general axisymmetric particles with non-elliptical cross-
sections by replacing the ellipsoidal aspect ratio ar by an effective aspect ratio a∗

r .
Although the theory for rigid fiber dynamics is relatively well-developed, far less is known about fibers that experi-

ence significant bending. For this reason, experimental observations are of critical importance in understanding the dy-
namics and rheology of suspensions containing flexible fibers. Unlike rigid fibers, flexible fibers undergo a much wider
and richer range of motion when subjected to a background linear shear flow given with velocity field u = (Gy, 0, 0).
This problem was studied in the pioneering work of Mason and co-workers [20–22] who categorized the fiber dynam-
ics into several distinct orbit classes. When motions are confined to the xy-plane, fiber dynamics fall into one of four
orbit classes – rigid, springy, flexible, and complex rotations – which are illustrated in Table 1. The experiments of
Mason et al. involved primarily synthetic fibers (made of rayon and dacron) immersed in highly viscous fluids (such
as corn syrup) although their original motivation was the application to natural wood pulp fiber suspensions.
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Table 1
Two-dimensional orbit classes for flexible fibers whose unstressed state is intrinsically straight.
Source: Adapted from Forgacs et al. [22].

Orbit class

I Rigid rotation

II Springy rotation

IIIA Loop or S turn

IIIB Snake turn

IV Complex rotation

These experiments on fiber suspensions demonstrate that varying either the hydrodynamic drag force or the fiber
flexibility governs the transition between the various planar orbit classes. In class I orbits, the fiber remains rigid and
rotates as predicted by Jeffery’s equation. When a small flexibility is introduced into the fiber, it undergoes a springy
rotation (class II) in which it bends into a shallow arc as it rotates outside the horizontal plane of shear. When the
fiber flexibility is increased, it experiences significant deformations that take the form of S turns (class IIIA) or snake
turns (class IIIB). Note that S turns require a high degree of initial symmetry so that snake turns are actually far
more prevalent in actual suspensions [20,21]. When the fiber flexibility is increased even further, the fiber may never
straighten out as it returns to the horizontal, in which case the orbit is classified as a complex rotation (class IV). For
the largest values of flexibility encountered in thread-like synthetic fibers, the fiber can transition beyond the class of
complex rotations and undergo convoluted self-intersections as observed by Forgacs and Mason [21] in experiments.

In many cases, the fiber rotation is not constrained to the xy-plane but instead undergoes a genuinely three-
dimensional orbit that protrudes or “buckles” out along the z-direction, although the xy-projection of the fiber may
still belong to one of the planar orbit classes I–IV described above. Note that real suspensions such as wood pulp
also contain irregularly-shaped fibers that are either intrinsically curved or contain kinks or other non-uniformities;
consequently, fiber orbital dynamics in such suspensions are not necessarily confined to these idealized orbit classes.
Indeed, the experiments of Arlov et al. [20] were used to classify a much broader class of genuinely three-dimensional
orbits for wood pulp fibers having an intrinsic curvature.

We close this discussion by defining a dimensionless parameter that can be used to conveniently classify and predict
the orbit class to which a specific fiber belongs. For low Reynolds number shear flow (with Re / 1), the hydrodynamic
drag force experienced by a fiber oriented perpendicular to the plane of shear can be estimated by

Fd = µG D, (1)

where µ is the fluid viscosity, G is the shear rate, and D is the diameter of the fiber [23]. By balancing this drag force
with the corresponding fiber bending force, a single dimensionless parameter can be derived that captures the fiber
flexibility [24]

χ =
µDGL3

E I
, (2)

where L is the fiber length, E is Young’s modulus of the material, and I is moment of area in the plane of bending.
The parameter χ may also be interpreted as a ratio of fiber deflection to fiber length. In a series of 2D numerical
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simulations [25], the parameter χ was shown to provide a useful measure of fiber flexibility that characterizes each
orbit class over a wide range of fluid and fiber parameters. This dimensionless flexibility parameter has also appeared
in the computational studies of Ross and Klingenberg [26] (where they referred to it as a dimensionless shear rate)
and Wherrett et al. [27] (where χ−1 is called a bending number).

2.2. Overview of computational approaches

A popular class of numerical methods for simulating flexible fibers is the so-called bead models in which a flexible
fiber is treated as a string of rigid beads that are linked together by flexible connectors. This approach originated with
the work of Yamamoto and Matsuoka [28] who treated fibers as chains of bonded spheres that are free to stretch,
bend and twist relative to each other. Their approach was extended by Ross and Klingenberg [26] who modeled
fibers as chains of rigid prolate spheroids connected by ball and socket joints. The dynamics of the bead network are
governed by Newton’s laws through a balance of linear and angular momentum that incorporates the hydrodynamic
and interparticle forces acting on each bead. More recently, Klingenberg’s group has validated their model results
against experiments for single fiber dynamics [29] as well as developing a multi-fiber extension that has been used to
simulate flocculation [30]. A similar approach has been applied to the study of turbulent flows in which flexible fibers
are suspended in air [31,32].

A significant shortcoming of Klingenberg’s model and related variants [32,33,27,28] is that they fail to capture the
full fluid–structure interaction in fiber suspensions. Although their approach does include the hydrodynamic force ex-
erted by the fluid on the fiber, the fiber does not itself exert any force back onto the fluid; therefore, the fluid is a passive
medium that obviously neglects any of the complex fluid dynamics that must occur in the region immediately adjacent
to a dynamically deforming fiber. Several recent bead-type models have attempted to address this limitation, for exam-
ple Wu and Aidun who proposed a model for rigid [34] and flexible [35] fibers that incorporates the full fluid–structure
interaction using a Lattice Boltzmann approach. Similarly, Lindström and Uesaka proposed an alternative model for
rigid [36] and flexible [37,38] fibers that uses the incompressible Navier–Stokes equations to model the fluid.

A completely different approach for capturing flexible fiber dynamics is based on the slender body theory [39]
which exploits approximations to the governing equations based on a small fiber aspect ratio. This is the approach
taken by Tornberg and Shelley [40] who studied flexible filaments in a Stokes flow by deriving a system of one-
dimensional integral equations. They solved these integral equations numerically using a second-order method that
also captures interactions between multiple fibers. This approach has been further extended by Li et al. [41] who used
a similar methodology to investigate the problem of sedimentation (or settling) of flexible fibers. Unlike the bead
models described earlier, this slender-body approach cleanly separates the fiber model from its numerical treatment,
which makes the model more amenable to mathematical analysis and also permits the numerical discretization to
be independently tested through convergence studies. Furthermore, because the fluid has been simplified by assum-
ing a Stokes flow regime, these slender-body discretizations do not require a fluid grid because of the availability of
numerical methods based on Green’s-function solutions that greatly reduce the computational complexity. The only
significant disadvantage of this approach, beside the Stokes flow restriction, is that there are as yet no results that
incorporate any effects of fiber twist [42].

An alternative approach that permits simulating flexible fibers immersed in higher Reynolds flows is the immersed
boundary method. This is the approach taken by Stockie and Green [25] who simulated a single flexible fiber in two
dimensions using a simple representation of the fiber in terms of spring-like forces that resist stretching and bending.
Stockie [43] later extended these results to a single 3D wood pulp fiber using a much more detailed and realistic model
that explicitly captures the interwoven multi-layer network of cellulose fibrils making up the wood cell wall. More
recently, Nguyen and Fauci studied diatom chains using the IB method with a similarly detailed fiber model [44]. The
IB method properly captures the full interaction between the fluid and immersed structure by including the appropriate
no-slip boundary condition along the fiber, although it does come at an additional cost. First of all, in comparison with
slender-body models, the fluid solver portion of the IB algorithm can be significantly more expensive because it solves
the Navier–Stokes equations on a finite difference grid. Secondly, because the IB method aims to capture the detailed
fluid flow around the fiber, the fluid grid needs to be adequately refined in order to resolve details on the order of the
fiber diameter, which in turn places practical limitations on the fiber aspect ratio that can be computed. Thirdly, a de-
tailed characterization of the structure of a three-dimensional fiber such as in [44,43] typically requires thousands of IB
points to resolve and is therefore computationally impractical for simulating semi-dilute suspensions of multiple fibers.
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In this paper, we apply the IB approach to simulate flexible fibers, and we have chosen to treat each fiber instead as a
one-dimensional Kirchhoff rod that resists stretching, bending and twisting, as described in the generalized IB method
of Lim et al. [13]. Additionally, we employ a highly scalable implementation of the generalized IB algorithm [14] that
spreads the computational work over a large number of processors, thereby permitting us to simulate hydrodynamic
interactions in suspensions containing large numbers of flexible fibers.

3. Governing equations

Consider a Newtonian, incompressible fluid that fills a rectangular domain Ω having dimensions Hx × Hy × Hz and
whose state is specified using Eulerian coordinates x = (x, y, z). Immersed within the fluid is a neutrally-buoyant elas-
tic fiber of length L . The fiber is described by a one-dimensional space curve Γ ⊂ Ω , parameterized by the Lagrangian
coordinate s ∈ [0, L]. The spatial configuration of the rod at time t is given in parametric form as x = X(s, t) and
its orientation and “twist state” are defined in terms of the orthonormal triad of vectors {D1(s, t), D2(s, t), D3(s, t)},
where the third triad vector D3 remains tangent to the space curve X. Note that because of numerical considerations
(described shortly), D3(s, t) is not exactly tangent to the space curve X but is rather penalized in a way that it is only
approximately in the tangential direction.

The fluid velocity u(x, t) and pressure p(x, t) at location x and time t are governed by the incompressible Navier–
Stokes equations

ρ


∂u
∂t

+ u · ∇u


+ ∇ p = µ∇
2u + f +

1
2
∇ × n, (3)

∇ · u = 0, (4)

where ρ is the fluid density and µ is the dynamic viscosity (both constants). The Eulerian force and torque densities,
f and n, are written as

f (x, t) =


Γ

F(s, t)Φw(x − X(s, t)) ds and (5)

n(x, t) =


Γ

N(s, t)Φw(x − X(s, t)) ds, (6)

wherein the integrals spread the Lagrangian force and torque densities, F(s, t) and N(s, t), onto points in the fluid.
The interaction between Eulerian and Lagrangian quantities is mediated using the smooth kernel function

Φw(x) =
1

w3 φ
 x1

w


φ

 x2

w


φ

 x3

w


, (7)

where

φ(r) =


1
8
(3 − 2|r | +


1 + 4|r | − 4r2) if 0 ≤ |r | < 1,

1
8
(5 − 2|r | −


−7 + 12|r | − 4r2) if 1 ≤ |r | < 2,

0 if 2 ≤ |r |.

(8)

Here, w represents an effective thickness of the rod which is set to some multiple of the fluid mesh width h; that is,
w = Ch for some integer multiple C ∈ Z+. Note that if w = h, the kernel Φw(x) is identical to the discrete delta
function employed in many immersed boundary methods [45–47].

The rod is modeled as a Kirchhoff rod [12] using the generalized immersed boundary framework of Lim [13].
Balancing linear and angular momentum yields the Lagrangian force and torque densities

F =
∂Frod

∂s
, (9)

N =
∂Nrod

∂s
+

∂X
∂s

× Frod, (10)
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in terms of the internal force Frod(s, t) and moment Nrod(s, t) transmitted across a segment of the rod. Internal quan-
tities are expanded in the basis {D1, D2, D3

} as

Frod
= F1D1

+ F2D2
+ F3D3, (11)

Nrod
= N 1D1

+ N 2D2
+ N 3D3, (12)

where the coefficient functions are defined by the constitutive relations

N 1
= a1


∂D2

∂s
· D3

− κ1


, N 2

= a2


∂D3

∂s
· D1

− κ2


, N 3

= a3


∂D1

∂s
· D2

− τ


, (13)

F1
= b1


D1

·
∂X
∂s


, F2

= b2


D2

·
∂X
∂s


, F3

= b3


D3

·
∂X
∂s

− 1


. (14)

Eqs. (13) incorporate the resistance of the rod to bending and twisting, with a1 and a2 being the bending moduli
(about axes D1 and D2 respectively) while a3 is the twisting modulus. The constants (κ1, κ2, τ ) define the intrinsic

twist vector of the rod where κ :=


κ2

1 + κ2
2 is the intrinsic curvature and τ is the intrinsic twist in the stress-free

configuration. The remaining force terms (14) act to keep the triad vector D3 approximately aligned with the tan-
gent curve ∂X/∂s and also penalize any stretching of the rod from its equilibrium configuration. Accordingly, the
generalized IB method can be viewed as a type of penalty method in which the rod is only approximately inexten-
sible and approximately aligned with the orthonormal triad, and the constants b1, b2 and b3 play the role of penalty
parameters.

The final equations required to close the system are evolution equations for the rod configuration and triad vectors

∂X
∂t

(s, t) = U(s, t), (15)

∂Dα

∂t
(s, t) = W(s, t) × Dα(s, t), (16)

where α = 1, 2, 3, and U(s, t) and W(s, t) are the linear and angular velocities along the axis of the rod respectively.
These equations require that the rod translate and rotate according to the local average linear and angular velocity of
the fluid, and are interpolated in the standard IB fashion as

U(s, t) =


Ω

u(x, t)Φw(x − X(s, t)) dx, (17)

W(s, t) =
1
2


Ω

∇ × u(x, t)Φw(x − X(s, t)) dx. (18)

By using the same kernel function Φw as in (5)–(6), we ensure that energy is conserved during the Eulerian–
Lagrangian interactions [13].

3.1. Problem geometry and initial conditions

The problem geometry is illustrated in Fig. 1, showing a fiber Γ immersed in a rectangular fluid domain Ω . Peri-
odic boundary conditions are imposed on the fluid in the x- and z-directions, while the fluid is sheared in the vertical
(y) direction. The shear flow is induced by imparting a horizontal motion to the top and bottom boundaries, with the
top wall moving at speed Utop and the bottom wall in the opposite direction at speed Ubot. In practice, we impose
Utop = Ubot := U and set the initial fluid velocity to the linear shear profile u(x, 0) =


G(y − Hy/2), 0, 0


that

would develop in the absence of the fiber, with shear rate G = 2U/Hy . The fiber of length L is placed at the center
of the fluid domain which is specified by the constant X0, and we consider three different initial configurations for the
fiber:
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Fig. 1. Problem geometry for a single fiber Γ located at the center of a periodic, rectangular channel Ω of dimension Hx × Hy × Hz . A planar
shear flow is generated by forcing the top and bottom walls to move with constant velocities ±Utop.

Configuration 1. The fiber is initially straight and is parameterized by

X(s, 0) = ((ϵ0 + 1)s, 0, 0) + X0,

D1(s, 0) = (0, 1, 0) ,

D2(s, 0) = (0, 0, 1) ,

D3(s, 0) = (1, 0, 0) ,

where 0 ≤ s < L and ϵ0 is a perturbation parameter that initially stretches the fiber.
Configuration 2. The fiber is curved in the xy-plane with

X(s, 0) = (r0 cos(s/r0 + π), r0 sin(s/r0 + π), 0) + X0,

D1(s, 0) = (0, 0, 1) ,

D2(s, 0) = (cos(s/r0 + π), sin(s/r0 + π), 0) ,

D3(s, 0) = (sin(s/r0), cos(s/r0 + π), 0) ,

where αbr0π ≤ s < αer0π , and αb and αe are constants with 0 ≤ αb < αe ≤ 1. Here, the fiber is a
segment of a circle of radius r0 lying in the xy-plane and having length L = (αe −αb)πr0. Choosing
a sufficiently large radius r0 generates fiber with small initial curvature.

Configuration 3. Similar to Configuration 2, except that the fiber is curved in the xz-plane with

X(s, 0) = ((ϵ0 + r0) cos(s/r0), 0, (ϵ0 + r0) sin(s/r0)) + X0,

D1(s, 0) = (0, − 1, 0) ,

D2(s, 0) = (cos(s/r0), 0, sin(s/r0)) ,

D3(s, 0) = (sin(s/r0 + π), 0, cos(s/r0)) ,

where αbr0π ≤ s < αer0π , and αb and αe are constants satisfying 0 ≤ αb < αe ≤ 1.

For all three configurations, the rod has open ends so that boundary conditions are required at s = 0 and L . We
assume that the internal force and moment vanish at the endpoints, corresponding to Frod

−1/2 = Frod
Ns−1/2 = 0 and

Nrod
−1/2 = Nrod

Ns−1/2 = 0, which are consistent with the boundary conditions applied by Lim [48].

4. Numerical method

Here, we provide only a very brief overview of the numerical method used to solve the governing equations, while
a detailed description of the method and its parallel implementation can be found in [49,14].

When discretizing the governing equations we use two separate computational grids, one each for the Eulerian
and Lagrangian variables. The fluid domain is divided into an Nx × Ny × Nz , uniform, rectangular mesh where each
cell has side length h. We employ a marker-and-cell (MAC) discretization [50] wherein the pressure is approximated
at cell center points xi, j,k for i, j, k = 0, 1, . . . , N − 1, while velocity components are located on cell faces. The
Lagrangian variables are discretized at Ns uniformly-spaced points denoted by sℓ = ℓ1s for ℓ = 0, 1, . . . , Ns − 1
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with 1s = L/Ns . Since our current implementation is restricted to periodic fluid domains, the top and bottom wall
boundary conditions are imposed by slightly increasing the size of the fluid domain in the y-direction and introducing
planes of IB tether points along y = 0 and Hy that are attached by very stiff springs to points moving at the specified
velocities Utop and Ubot. We did this for convenience only, since neither the governing equations nor the fluid solver
is restricted to periodic domains.

The IB equations are approximated using a fractional-step method described by Wiens and Stockie [14] in which
the calculation of fluid variables is decoupled from that of the immersed boundary. For integrating the fluid equations,
we use the pseudo-compressibility method developed by Guermond and Minev [15,16], which employs a directional-
splitting strategy that reduces to a series of one-dimensional tridiagonal systems. These linear systems can be solved
efficiently on distributed-memory clusters by combining Thomas’s algorithm with a Schur-complement technique.

When integrating the rod position and orthonormal triad vectors forward in time, we use the predictor–corrector
procedure devised by Griffith and Lim [17]. This differentiates our numerical method from the approach taken
in [14], where an Adams–Bashforth extrapolation was used to evolve the immersed boundary in time. Although
the predictor–corrector procedure introduces additional work, the expense is completely offset by allowing a much
larger time step while maintaining a higher convergence rate.

Lastly, the constitutive relations (9)–(14) are discretized in the same manner as in Lim et al. [13], with the main
difference being in how the orthonormal triad vectors are interpolated onto half Lagrangian steps s

ℓ+ 1
2

= (ℓ +
1
2 )1s.

Here, we use the Rodrigues’ rotation formula as described in [49] instead of taking the principal square root used by
Lim et al. [13].

If we assume that the state variables are all known at time tn , the IB algorithm for a single time step 1t proceeds
as follows.

1. Interpolate the linear and angular fluid velocities onto the rod using the delta kernel Φw(x) to obtain Un and Wn .
2. Predict the rod position Xn+1,∗ and orthonormal triad vectors (Dα)n+1,∗ at time tn+1 = (n + 1)1t to first order for

α = 1, 2, 3.
3. Calculate the Lagrangian force and torque densities, F and N, at times tn and tn+1 using the discretization employed

by Lim et al. [13].
4. Spread the Lagrangian force and torque densities just calculated onto fluid grid points. Then approximate the

Eulerian force and torque density, f n+
1
2 and nn+

1
2 , at time tn+

1
2

= (n +
1
2 )1t using an arithmetic average.

5. Integrate the incompressible Navier–Stokes equations to time tn+1 using (f n+
1
2 +

1
2∇ × nn+

1
2 ) as the external body

force.
6. Correct the rod position Xn+1 and orthonormal triad (Dα)n+1 to second order. This requires interpolating the linear

and angular fluid velocity at time tn+1 onto the rod location.

An extensive convergence study has been performed for this algorithm in [49] that clearly shows the method converges
with second-order spatial accuracy for a related problem involving a closed, twisted ring in three dimensions. For
completeness, we have also included convergence results for the flexible fiber problem in Section 5.1.

5. Numerical results

5.1. Intrinsically straight fibers

We begin by considering the behavior of a single flexible fiber immersed in a shear flow, where the equilibrium fiber
state is intrinsically straight (with no bend, no twist). As described earlier in Section 2, experimental observations show
that such fibers are characterized by a well-defined orbital motion that can be separated into one of several distinct
orbit classes according to a fiber flexibility parameter χ that captures the ratio of fiber bending force to hydrodynamic
drag. This section aims to investigate the full range of these two-dimensional orbital motions.

In all simulations, we use the numerical parameters listed in Tables 2 and 4. Since the fiber motion is confined to the
xy-plane, we significantly reduce the execution time of a simulation by shrinking the domain depth Hz , which allows
us to run 100+ simulations in a reasonable timeframe. Note that these results are virtually identical to simulations
using a larger domain (Hz = 2), which we confirmed through numerous computational experiments. In all simulations,
we choose physical parameters that are consistent with natural (unbeaten) kraft pulp fibers, taking a fiber length of
0.1–0.3 cm and flexural rigidity of 0.001–0.07 g cm3/s2 [51,52]. Because fibers in our numerical simulations have
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Table 2
Numerical and physical parameter values used in rigid fiber simulations.

Parameter Symbol Value

Size of fluid domain Ω Hx × Hy × Hz 2 ×
1
2 × 16h cm

Number of fluid grid points Nx × Ny × Nz 256 × 64 × 16
Fluid mesh width h 1/128 cm
Fluid density ρ 1.0 g/cm3

Fluid viscosity µ 10.0 g/(cm s)
Speed of moving plates Utop = Ubot 8 cm/s
Shear rate G 32 s−1

Time step 1t 1e − 5 s
Fiber length L 0.3 cm
Fiber mesh width 1s L/120 cm
Bending and twisting modulus (EI) a1 = a2 = a3 0.7 dyne cm2

Shear and stretch modulus b1 = b2 = b3 540 dyne
Fiber effective thickness w 0.0078125 cm
Intrinsic twist vector (κ1, κ2, τ ) (0, 0, 0)

Fiber length perturbation ϵ0 0.001
Support of delta kernel C 4

diameter that is proportional to the effective thickness w, our simulated fibers are actually thicker than a natural pulp
fiber. For example, we use a delta function regularization corresponding to w ≈ 80 µm, whereas a natural pulp fiber
has a diameter between 20 and 80 µm. Since the precise dependence of the simulated fiber diameter on w is unknown,
we appeal to the work of Bringley and Peskin [53] where they observed that a one-dimensional array of rigid IB points
has an effective numerical thickness of D ≈ 2w. Although these results may not be strictly applicable in the present
setting, this approximation is sufficient for our purposes. Any remaining discrepancy in the fiber diameter can then be
accommodated for by adjusting the value of fiber drag force (see Fd from Eq. (1)).

In Figs. 3 and 4, we display snapshots of the dynamics of a fiber with initial configuration lying in the xy-plane and
for six values of the dimensionless flexibility parameter χ between 0.19 and 1.125e5. As expected, the simulations
exhibit a range of different orbital motions that transition between the various orbit classes (rigid, springy, flexible,
complex, coiled) as the flexibility increases. We also note that within the intermediate range of χ values, we observe
both S turns and snake turns depending on the symmetry of the initial fiber configuration. Despite being very rare in
actual fiber suspensions, S turns turn out to be remarkably stable in our idealized setting with a planar shear flow;
indeed, it is only when asymmetry is introduced in the fiber through (for example) the initial shape or a length-
dependent stiffness that snake turns are observed instead of S turns. These results are consistent with those of Mason
and co-workers [20,21] who observed that S turns required a high degree of symmetry that is rarely achieved in
experiments. For the largest value of χ = 1.125e5 in Fig. 4(c) we observe a coiled orbit with self-entanglement, and
although this type of behavior is not pertinent to pulp fibers, Forgacs and Mason [21] did observe such coiling with
thread-like synthetic fibers. Eventually, this fiber forms a complex writhing bundle as the fiber undergoes self-contact,
but because our model does not incorporate any contact (fiber-on-fiber) forces we make no claim that these results
correspond to physically accurate coiling dynamics.

To demonstrate the accuracy of our method, we present a convergence study based on simulations of a snake
turn. Except for shrinking the fluid domain to 1 ×

1
2 × 16/128 cm and increasing the fiber bending stiffness to

3.0e − 3 dyne cm2, the numerical parameters remain unchanged from Table 4. We estimate the convergence rate in a
sequence of solution quantities qN , q2N and q4N on successively finer grids as

R [q; N ] = log2


E [q; N ]

E [q; 2N ]


, (19)

where the error

E [q; N ] = ∥qN − I 2N→N q2N ∥2 (20)

is measured in the discrete ℓ2 norm and the operator I interpolates a solution to a coarser mesh. The finer grid simu-
lations use the modified parameter sets (h = 1/256, 1t = 5e − 6, C = 8) and (h = 1/512, 1t = 2.5e − 6, C = 16).
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Table 3

Relative errors in the discrete ℓ2 norm for a snake turn simulation at time t = 0.15.

E [u; N ] / max |u512| E [p; N ] / max |p512| E [X; N ] /L

N = 128 2.69e − 3 2.94e − 3 9.91e − 3
N = 256 1.29e − 3 1.58e − 3 2.69e − 3

Fig. 2. Fiber configuration for a snake turn simulation at three different spatial resolutions.

Table 4
Parameter modifications for the flexible fiber simulations in Figs. 3 and 4. Only those
parameters that have changed relative to values indicated in Table 2 are shown here.

Orbit Class Configuration Parameters

Springy 2 r0 = 0.45, αb = 0.4, αe = 0.6, E I = 2.5e − 2,
1s ≈ 1.25e − 3, L ≈ 0.282

S turn 1 E I = 3.0e − 3

Snake turn 2 r0 = 0.45, αb = 0.4, αe = 0.6, E I = 3.0e − 3,
1s ≈ 1.25e − 3, L ≈ 0.282

Complex 2 r0 = 0.4, αb = 0.4, αe = 0.6, µ = 15, E I = 1.0e−3,
1s ≈ 1.25e − 3, L ≈ 0.251

Coiled 1 G = 64, µ = 90, E I = 1.0e − 4, L = 0.5

The errors in the computed solutions at time t = 0.15 s are listed in Table 3, and the corresponding convergence rates
are R [u; 128] = 1.05, R [p; 128] = 0.90, and R [X; 128] = 1.88. The final fiber configuration from each of these
simulations is pictured in Fig. 2 from which the convergence of the numerical solution is clear.

When the initial fiber configuration is rotated into the xz-plane, the resulting dynamics are non-planar but still
follow orbits qualitatively similar to those derived by Jeffery [18]. Examples of these non-planar orbits are given in
the first author’s doctoral thesis [49], which show that the flexible fiber undergoes a motion consisting of a rotations
in the xy-plane superimposed on a rocking motion back and forth about the z-axis in the xz-plane.

We next explore in more detail the dependence of the fiber orbit class on the dimensionless flexibility parameter
χ . To this end, we perform a much larger series of simulations with varying fiber length (L = 0.1–0.3 cm), diameter
(D ≈ 156–312 µm), flexural rigidity (E I = 0.001–0.1 dyne cm2), shear rate (G = 20–120 s−1) and viscosity
(µ = 0.07–100.0 g/(cm s)) corresponding to Reynolds numbers lying in the range 0.0027–23.9. For each simulation,
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(a) Rigid orbit (χ = 0.19, E I = 7.0e − 1, L = 0.3).

(b) Springy orbit (χ = 4.49, E I = 2.5e − 2, L ≈ 0.282).

(c) Snake orbit (χ = 37.38, E I = 3.0e − 3, L ≈ 0.282).

Fig. 3. Snapshots of fiber position and fluid vorticity in the xy-plane for a half-rotation in a rigid, springy and snake orbit. Parameter values are
listed in Tables 2 and 4.

we assign the fiber dynamics to one of the four orbit classes I–IV by calculating the total fiber curvature

λ(t) =

 L

0

∂D3

∂s
(s, t)

 ds,

and using the maximum curvature over a half-rotation t0 ≤ t ≤ t1 to apply the following criteria:

• I: The orbit is rigid if maxt0≤t≤t1 λ(t) < 0.4.
• II: The orbit is springy if 0.4 ≤ maxt0≤t≤t1 λ(t) < 3.7.
• III: The orbit is an S or snake turn if 3.7 ≤ maxt0≤t≤t1 λ(t) and λ(t1) < 2.5.
• IV: The orbit is complex if 3.7 ≤ maxt0≤t≤t1 λ(t) and 2.5 ≥ λ(t1).

Note that S/snake turns and complex rotations have the same range of maximum curvature, and that we use the fiber
curvature λ(t1) at the end of the half-rotation to determine whether or not the fiber has straightened out.

Simulations are depicted graphically in Fig. 5 in terms of two plots of flexural rigidity E I and drag force Fd versus
dimensionless flexibility χ . Each point on the plots corresponds to a simulation using a specific choice of physical
parameters, and the point type is assigned based on the orbit classification criteria above. From these two plots, it
is evident that there is a clear division of orbits into classes I, II and III along vertical divisions that correspond to
values of χ ∼= 3.85 and χ ∼= 20.0. The boundary between classes III and IV is not as sharply defined, but can still
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(a) S orbit (χ = 45.00, E I = 3.0e − 3, L = 0.3).

(b) Complex orbit (χ = 119.06, E I = 1.0e − 3, and L ≈ 0.251).

(c) Coiled orbit (χ = 1.125e5, E I = 1.0e − 4, and L = 0.5).

Fig. 4. Snapshots of fiber position and fluid vorticity in the xy-plane for an S turn, complex and coiled orbit. Parameter values are listed in Tables 2
and 4.

be assigned to a value of flexibility χ ≈ 65.0. These class boundaries are consistent with the simulations reported
by Nguyen and Fauci [44]. Based on these observations, we conclude that the dimensionless flexibility χ provides
a useful measure for characterizing orbit classes at the lower Reynolds numbers considered here. We note that the
simulated drag rates shown in Fig. 5(b) are significantly higher than the experimental values for dacron because we
are limited in terms of how high a fiber aspect ratio we can simulate owing to grid resolution. The delta function
regularization introduces an effective diameter to the fibers and in order to reduce this to the same diameter of the
dacron fiber in the experiments would require a fluid grid that is prohibitively expensive.

We conclude this section by performing a further comparison of our numerical simulations with the experiments
of Forgacs and Mason [21] on dacron fibers in corn syrup. First of all, we list the parameters and observed orbit class
for several of these experiments in Table 5. Based on values of χ · E I , we see that this rescaled flexibility parameter
may be used to classify each orbit, assuming that E I is constant in all experiments. However, we emphasize that since
Forgacs and Mason did not provide a value for the flexural rigidity (E I ), we were unable to determine the value of χ

explicitly.
Because these experiments were all performed with dacron fibers, we next explore further the assumption that E I

is roughly constant, and also whether the experimental results are consistent with the division of orbit classes in our
simulations in Fig. 5. First of all, we remark that all experimental data points are consistent with our simulations if
2.46e − 4 < E I < 3.71e − 4 (dyne cm2). Unfortunately, Young’s modulus E for dacron is known to vary over an
extremely wide range of 71.5 MPa ≤ E ≤ 22.1 GPa between various manufacturers [54]. However, the manufacturer
of the fibers used by Forgacs and Mason was identified as E.I. du Pont de Nemours and Co., and we were able to
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Fig. 5. Summary of all simulations showing the relationship between orbit class and different values of the dimensionless flexibility χ , flexural
rigidity E I and drag rate Fd . Open markers denote the experimental data shown in Table 5 where E = 3 GPa.

Table 5
Experimental results obtained from Forgacs and Mason [21] for synthetic dacron fibers.

Orbit class χ · E I G (s−1) µ (g/(cm s)) L (cm) D (µm)

Rigid 1.96e − 4 3.921 11.4 0.1778 7.8
Rigid 1.01e − 3 5.143 91.2 0.1404 7.8
Springy 1.43e − 3 4.763 11.4 0.3229 7.8
Springy 2.39e − 3 5.965 91.2 0.1778 7.8
Springy 4.91e − 3 4.879 91.2 0.2418 7.8
Flexible 1.16e − 2 4.825 91.2 0.3229 7.8

find a patent filed by this company in 1969 [55] for several dacron blends that lists a much tighter range for Young’s
modulus of 2.0 GPa < E < 3.5 GPa. Therefore, the hypothetical E I of these synthetic fibers would be between
3.63e − 4 < E I < 6.36e − 4, which is consistent with our numerical results! Furthermore, most data points are still
classified correctly when the E I falls outside our consistency range (2.46e − 4 < E I < 3.71e − 4). To illustrate, we
have plotted the experimental data in Fig. 5 using open markers, assuming E = 3 GPa (giving an E I = 5.45e − 4).
Here, we observe that all experimental data are classified correctly, except for one data point. Therefore, we conclude
from these results that our simulations are in excellent agreement with experimental data.

5.2. Intrinsically curved fibers

We next consider single flexible fibers that have an intrinsic curvature at equilibrium, a situation that is often en-
countered for natural fibers such as wood pulp. We use the base parameter values in Table 2 and simulate two cases
corresponding to the modifications listed in Table 6. In both cases, the fiber is initialized as a curved segment of
a circular arc with intrinsic twist vector (κ1, κ2, τ ) = (1/r0, 0, 0), which keeps the initial fiber configuration at
equilibrium (that is, N 1

= N 2
= N 3

= 0 at t = 0).
The resulting orbits depicted in Figs. 6 and 7 clearly correspond to S- and snake-like orbits. The projections of both

fibers in the xy-plane behave like the corresponding planar orbits considered in Section 5.1, but protrude into the xz-
plane. These simulations reproduce similar orbital dynamics to those observed in experiments of Arlov et al. [20]. The
first author’s thesis [49] shows additional simulations for a fiber initially oriented along the z-direction and undergoing
an additional axial spin, for which the fiber rotates around the z-axis and slightly straightens out as it rotates into the
shear flow.

5.3. Multiple flexible fibers

For our last series of simulations, we consider an idealized representation of a fiber suspension that permits us
to employ the domain tiling techniques described in [14]. In these computations, we simulate a Px × 1 × Pz array
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Table 6
Parameter modifications for the flexible fiber simulations in Figs. 6 and 7. Only those parameters
that have changed relative to values in Table 2 are shown here.

Orbit class Configuration Parameters

S turn 3 Hz = 2, r0 = 0.45, αb = 0.4, αe = 0.6, E I = 3.0e−3,
ϵ0 = 1e − 3, 1s ≈ 1.25e − 3, L ≈ 0.282

Snake turn 2 Hz = 2, r0 = 0.45, αb = 0.4, αe = 0.6, E I = 3.0e−3,
Θxz = π/16, 1s ≈ 1.25e − 3, L ≈ 0.282

Fig. 6. Snapshots of an S turn orbit for an intrinsically curved fiber with parameters in Tables 2 and 6.

of fibers immersed in the fluid domain Ω = [0, Px Hx ] × [0, Hy] × [0, Pz Hz] using the boundary conditions stated
in Section 3.1. The code runs in parallel on a P = Px × Pz array of computer processors (Py = 1) and the fluid
domain Ω is partitioned along the x- and z-axes so that one processor labeled I, K is responsible for each subdomain
ΩI,K = [(I − 1)Hx , I Hx ] × [0, Hy] × [(K − 1)Hz, K Hz], for I = 1, 2, . . . , Px and K = 1, 2, . . . , Pz . We have
constructed this problem so that it can be used as a weak scalability test, wherein the local problem size is held fixed
as both the number of processors and global problem size are increased. It is important to recognize that our method
is in no way restricted to such idealized arrays of fibers, but rather we have employed this arrangement here in order
to clearly illustrate the parallel scalability of our algorithm.

Initially, each subdomain ΩI,K contains a single intrinsically-curved fiber located at its centroid, with a randomly-
chosen orientation angle and whose initial shape is defined in the same manner as described earlier for Configuration 3.
The numerical and physical parameters are as in Table 2 with the following modifications: Hx = 0.421875, Hy =

1
2 , Hz = 0.3125, 1t = 5e−5, r0 = 0.45, αb = 0.4, αe = 0.6, E I = 3.0e−3, 1s ≈ 1.25e−3, L ≈ 0.282, Utop = 8.5
and Ubot = 7.5. Another difference from our earlier simulations is that the top and bottom boundaries that induce the
shear flow now move at different speeds (that is, Utop ≠ Ubot); consequently, fibers are transported across subdomain
boundaries which provides a nontrivial test of our algorithm’s ability to handle inter-process communication as well
as changes to the IB data stored on each processor over time.

Fig. 8 presents three snapshots of the dynamics of a 16 × 16 array of fibers at the initial and two later times.
The image at time t = 0.25 emphasizes the fact that all fibers spend the majority of their time aligned horizontally
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Fig. 7. Snapshots of snake turn for an intrinsically curved fiber with parameters in Tables 2 and 6.

with the shear flow (i.e., along the x-axis) and that only a small proportion of the fibers at any time instant are
rotated out of the shear plane. As the suspension evolves over time, the fibers are prone to drift and cluster together,
leading to development of more complex behavior such as is shown in the image at time t = 1.80. This last snapshot
suggests that our algorithm is capable of simulating at least the initial phases of fiber flocculation involving close-range
hydrodynamic interactions for a suspension with a reasonably high concentration of fibers. We note that a complete
model of flocculation would require including fiber–fiber contact forces, which would be an interesting subject for
future study.

The next set of results attempts to quantify the importance of including the full two-way fluid–structure interaction
between fluid and fibers, relative to other more common numerical approaches that simplify or eliminate this
interaction. For this purpose, we define a quantity we call the local deviation as

Erel(x, t) =
|u(x, t) − u(x, 0)|

max
x

(|u(x, 0)|)
,

which is a local measure of the relative difference between the computed fluid velocity and the corresponding linear
shear flow that would arise in the absence of any fibers. We also define a related global deviation from linear shear
using either the ℓ∞-norm

∥Erel(x, t)∥∞ = max
i, j,k

|Erel(xi, j,k, tn)|,

or ℓ1-norm

∥Erel(x, t)∥1 =
h3

V


i, j,k

|Erel(xi, j,k, tn)|,

where V is the fluid volume. For a 25-fiber simulation computed with (Px , Py, Pz) = (5, 1, 5) processors, we provide
plots in Fig. 9 of the local deviation Erel at time t = 1.80 and along two different horizontal slices. The figures have
truncated the values of Erel above the threshold 0.025 so that smaller deviations can be visualized. From these plots we
observe that the local deviation is largest adjacent to the individual fibers where the no-slip condition forces the fluid
to follow the deforming and rotating fibers, but that the deviation decays rapidly away from the fibers. Nonetheless,
there are still significant fluid disturbances spread throughout the entire fluid domain that influence fiber motion and
are related to hydrodynamic interactions between individual fibers. The corresponding global deviation values are
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Fig. 8. A suspension of 256 intrinsically-curved fibers (Px = Pz = 16) in Configuration 3. Parameters are described in Section 5.3.

Fig. 9. Fluid deviation Erel on two horizontal planes for the 25 fiber simulation computed in Table 7. Plotted values are truncated at the threshold
Erel = 0.025.

∥Erel∥1 = 0.0159 and ∥Erel∥∞ = 0.135 which show that relative deviations in the flow are as high as 13.5% near the
fibers but that the average over the entire flow field is only about 1.6%. Other simulations using different parameters
and initial conditions yield similar results (see [49]) with the average relative deviation hovering around 2% and the
maximum ranging up to 40%. These results suggest that incorporating the full fluid–structure interaction into models
for non-dilute suspensions is important in terms of properly capturing the dynamics of the flexible fibers. We also note
that these simulations are performed at relative low values of Reynolds number and fiber concentration, and that the
deviation measure will only get larger as the Reynolds number and concentration increase.

Finally, we close by investigating the parallel performance of our IB algorithm by considering simulations of
different-sized suspensions of fibers on multiple processors. Based on our problem setup, the execution time would
ideally stay constant as the global problem size and number of processors increase. Indeed, Table 7 shows that as
the size of the fiber array (Px , Pz) is increased, there is only a slight increase in execution time and hence our al-
gorithm is said to be weakly scalable. We remark that our code is still not fully optimized and that the algorithm



J.K. Wiens, J.M. Stockie / Comput. Methods Appl. Mech. Engrg. 290 (2015) 1–18 17

Table 7
Weak scaling results showing the average execution time per time step (in seconds) for the multiple
fiber problem. The local problem size is held fixed as the number of processors P (and global problem
size) is increased. Simulations are run on the Bugaboo cluster managed by WestGrid [56].

P (Px , Py , Pz ) Wall time

25 (5, 1, 5) 0.57
64 (8, 1, 8) 0.58

144 (12, 1, 12) 0.58
225 (15, 1, 15) 0.62
256 (16, 1, 16) 0.61

performance could be further improved by making enhancements such as enforcing the top/bottom wall boundary
conditions directly instead of our approach of treating the walls using IB tether points.

6. Conclusions

In this paper, we have presented a parallel immersed boundary algorithm for simulating suspensions of flexible
fibers, where individual fibers are modeled as Kirchhoff rods. The novelty of this work derives from its application
to multi-fiber suspension flows with non-zero Reynolds number and the inclusion of the full two-way interaction
between the fluid and suspended fibers. In our numerical simulations, we reproduce the full range of orbital dynamics
observed experimentally by Mason and co-workers for isolated fibers immersed in a linear shear flow. When extending
the results to multi-fiber suspensions, we demonstrate through a weak scalability test that the parallel scaling of
our algorithm is near optimal and hence shows promise for simulating more complex scenarios such as semi-dilute
suspensions and fiber flocculation.

In the future, we plan to improve on the underlying model, which will allow us to simulate more realistic fiber
suspensions. First, we plan on incorporating the contact forces between fibers such as the frictional forces modeled
by Schmid et al. [57]. Second, we will incorporate the effect of added fiber mass using the penalty IB method [58].
After incorporating these extensions, a more extensive comparison to experimental data would be required, comparing
quantities such as the specific viscosity of the suspension [4].
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