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Abstract

Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major
immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical
simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical
challenges include that the system of the Euler–Lagrange equations is solved on the infinite interval and the coefficient matrix
is not positive definite. We construct a linear transformation to reduce the Euler–Lagrange equations, and naturally introduce a path
function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the
path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior
compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the
differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify
the efficiency of the proposed methods.
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1. Introduction

Subsurface flow and transport often involve multiple fluid phases; that is, subsurface phenomena often come with
mixture of immiscible and partially miscible fluids. Subsurface oil and gas reservoirs typically contain oil phase, gas
phase and water phase, together with the solid phase (rock or soil) [1]. Modeling and simulation of multiphase fluid
systems have been a major effort in reservoir engineering [2]. In addition to oil reservoir management, understanding
and modeling of multiphase systems are also crucial to many environment issues [3,4]. For example, one of the most
attractive and practical solutions to reduce the CO2 emission problem is to inject and store CO2 in the subsurface
geological formations [5], such as depleted reservoirs and deep saline aquifers. The large capacity of subsurface
storage provides several advantages over other possible alternatives of carbon sequestration. For subsurface carbon
sequestration, there are four well-accepted major mechanisms to trap the injected CO2 for long-term storage, namely,
structural (stratigraphic) trapping, residual fluid trapping, solubility trapping and mineral trapping; all of the four
major mechanisms are directly or indirectly related to phase behaviors of fluid systems.

At a pore scale, a surface or an interface exists between any two immiscible or partially miscible fluids and between
a fluid and a solid. It is well known that at the molecular level of a liquid and gas interface for instance, the interior
molecules of the liquid phase experience zero (or negligible) net attractive forces from the surrounding molecules be-
cause the molecules are all similar with approximately equal spacing and equal attraction in all directions. However,
on the interface, the molecules experience a stronger attractive pull towards the interior of the liquid body, since fluid
molecules do not surround the interface molecule equally in all directions. This anisotropic attractive force yields in-
terfacial tension and impacts the shape of the liquid–gas interface. At the Darcy scale, we do not model the liquid–gas
interfaces explicitly [6,7], but the existence of these liquid–gas interfaces manifests themselves by many Darcy-scale
phenomena.

Capillary effect (or capillarity) is perhaps one of the most important Darcy-scale phenomena arising from the pore-
scale liquid–gas interfaces. Capillary effect and its resultant capillary pressure are caused by surface tension between
immiscible (or partially miscible) fluids, and it is one of major forces in fluid (oil, gas and water) flow and transport
in subsurface [2]. In fact, the capillary effect is frequently the leading mechanism of oil recovery in fractured oil
reservoirs. In addition to capillary pressure, surface tension also significantly influences other important parameters
of porous medium processes including relative permeability and residual saturations, thus substantially impacts the
flow and the transport of the vapor and liquid phases in a porous medium; consequently, it plays important roles in a
number of chemical and reservoir engineering problems [8–10].

To simulate the subsurface multiphase flow and transport accurately and efficiently, it is important to model and
compute the surface tension of the multiphase mixture properly. There are a few models in the literature for simulating
the multicomponent surface, for example, the gradient theory of fluid interfaces [11] and inhomogeneous molecular
modeling simulation of multicomponent surface [12–14]. In this paper, we focus on the gradient theory of fluid
interfaces, which has been a frequently-used method to model and predict the surface tension [8–11]. In our previous
work [15], we have developed an efficient computational scheme to model and calculate the surface tension of single-
species two-phase fluid systems based on our rigorous mathematical re-formulation of the gradient theory. In the work
presented in this paper, we propose a few efficient computational methods to calculate the surface tension of multiple-
species two-phase fluid systems. We note that the work presented here is not a simple extension of our previous work;
instead, new computational treatment is proposed to address the challenges of multiple-species systems.

In the gradient theory, the Helmholtz energy density of an inhomogeneous fluid, in the absence of an external
potential, is the sum of two contributions: the Helmholtz energy of homogeneous fluid at local composition, and a
corrective term, which is function of the local density gradients. By applying the minimum free energy criterion, the
compositions in the interface must satisfy the following Euler–Lagrange equations [8,9,15]

N
j=1

ci j
d2n j

dx2 = µ0
i − µi , i = 1, . . . , N , (1.1)

where N is the component number of a mixture, n = [n1, n2, . . . , nN ]
T denotes the molar densities, and the co-

efficients ci j denote the influence parameters. To describe the definitions of µ0
i and µi , we first need to define the

Helmholtz energy of homogeneous fluid by f0(n), and its expression is given in Appendix A. From this, the chemical
potential of component i is defined by
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µ0
i =


∂ f0(n; T )

∂ni


T,n1,...,ni−1,ni+1,...,nN

, (1.2)

where T is the temperature. In addition, µi is the chemical potential in the equilibrium bulk phases.
Let ci be the pure component influence parameters. The computation of ci is described in Appendix B. The crossed

influence parameters ci j are expressed as the modified geometric mean of the pure component influence parameters
ci and c j by

ci j = (1 − βi j )
√

ci c j , (1.3)

where the parameters βi j are binary interaction coefficients for the influence parameters. Stability of the interface
requires βi j to be included between 0 and 1; if taking βi j = 0, the mixing rule becomes the simple geometric mean.
It has been shown in [8,9] that the different choices of βi j have little effect on the surface tension computation. The
usual choice strategy is to take βi j = 0, and thus, we pay attention to the case βi j = 0 in this paper. We assume
that the influence parameters are independent of spatial positions and the dependence of the influence parameters on
density is also neglected [8,9].

The Euler–Lagrange equations are closed with the boundary condition, which is given by

n → nG , as x → −∞, and n → nL , as x → +∞. (1.4)

Here, nG and nL denote the mixture compositions of the equilibrium bulk gas and liquid phases, respectively, which
can be calculated by the Peng–Robinson equation of state. We assume that there exists a sufficiently smooth solution
n satisfying the Euler–Lagrange equations (1.1) with the boundary condition (1.4).

By solving the Euler–Lagrange equations, we calculate the molar densities of components at the liquid–gas
interface, and based on the density distributions, we can further calculate the magnitude of surface tension at the
interface [8,9]. The surface tension, denoted by σ , is expressed as

σ =


+∞

−∞


Φ(n) − ΦB +

N
i, j=1

1
2

ci j
dni

dx

dn j

dx


dx, (1.5)

where Φ(n) is the grand thermodynamic potential defined as

Φ(n) = f0(n) −

N
i=1

µi ni , (1.6)

and ΦB is the value of Φ(n) in the equilibrium bulk phases. In (1.6), µi is the chemical potential of component i in
the equilibrium bulk phases; that is, µi = µ0

i (n
G) = µ0

i (n
L).

In the surface tension computation stated above, there exist two key problems, which are different from the classical
phase-field models [16–27] and the gradient theory model [15]. The first problem is to solve a boundary value
problem on the infinite interval (−∞, +∞). Moreover, the computation of the surface tension mainly depends on
the compositions within the two-phase interface, so it is necessary to design the efficient methods for computing both
the interface and its interior compositions. The key difficulty is to accurately capture the interface between two phases.
The second problem is that the influence parameter matrix, denoted by C =


ci j
N

i, j=1, is not positive definite, and
thus, the Euler–Lagrange equations cannot be solved by the standard approaches.

In order to resolve these two problems, the path function methods have been developed in the references [28–30].
The most popular one is the method of selecting the reference component as the path function [8–11]. By the selection
of the reference component, the Euler–Lagrange equations can be reduced with the transformations to a solvable
system of nonlinear equations, and then the expressions of the surface tension and density distributions are derived.
Its principal difficulty is the selection of the reference component, which requires the monotonicity of the reference
component in the two-phase interface. The selection strategy is usually based on the experiences, but without any
mathematical justification.

In this paper, we will firstly construct a linear transformation to reduce the Euler–Lagrange equations such that they
are convenient to be solved, and naturally derive a path function, which is different from the reference component.
This path function is similar to the one mentioned in [30], but which is not used since its monotonicity has never been
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established. Based on the new formulation of this path function, we will prove its monotonicity, which allows us not
only to develop two efficient methods for calculating the two-phase interface, but also to reduce the computation of
the surface tension. From this, we will propose the efficient and accurate methods for computing the surface tension,
along with the interface and its interior compositions. Compared to the known methods, the proposed methods are
easier to be implemented in practical applications. Three numerical examples are also given to verify the efficiency of
the proposed methods.

2. Reduced mathematical model

2.1. Linear transformation

Let c = [
√

c1, . . . ,
√

cN ]
T , then the influence matrix is expressed as C =


ci j
N

i, j=1 = ccT . It is easy to find that
C possesses a unique nonzero eigenvalue, denoted by λ, i.e.

λ = cT c =

N
i=1

ci ,

and its corresponding eigenvector

v1 =
c

√
λ

=
1
N

i=1
ci

[
√

c1, . . . ,
√

cN ]
T .

As C is a symmetrical matrix, there exist N − 1 zero eigenvalues of C, and the corresponding eigenvectors, denoted
by vi , 2 ≤ i ≤ N , such that

Cvi = 0, 2 ≤ i ≤ N . (2.1)

The vector set {vi }
N
i=2 is a basis of the null subspace of v1; that is, vi ∈ N (v1) = {v ∈ RN

: vT v1 = 0}. One choice
strategy of vi is to take

vi (1) =

√
ci

√
λ

, vi (i) = −

√
c1

√
λ

, 2 ≤ i ≤ N ,

vi ( j) = 0, 2 ≤ i ≤ N , 2 ≤ j ≤ N , j ≠ i.

It is easy to check Cvi = ccT vi = 0 for 2 ≤ i ≤ N . By a simple deduction, we find that vi ∈ N (v1), 2 ≤ i ≤ N , and
the vector group {vi }

N
i=1 is linearly independent.

Define a transformation matrix Q = [v1, . . . , vN ]. It follows from the definitions of vi that Q is invertible. From
this, we define a vector u = [u, u2, . . . , uN ]

T as

u = Q−1n, n = Qu. (2.2)

With simple calculation, it is obtained from (2.2) that

u = vT
1 n =

1
√

λ

N
i=1

√
ci ni . (2.3)

Here, we call u as the weighted molar density of a mixture, and u will be used as the path function. Note that n and
u are the vector functions varying with the spatial location, but Q is independent of spatial positions. The following
relations are obtained from the definitions:

∂n1

∂u
=

√
c1

√
λ

,
∂n1

∂ui
=

√
ci

√
λ

, 2 ≤ i ≤ N , (2.4)

∂ni

∂u
=

√
ci

√
λ

,
∂ni

∂ui
= −

√
c1

√
λ

, 2 ≤ i ≤ N , (2.5)
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∂ni

∂u j
= 0, 2 ≤ i, j ≤ N , i ≠ j. (2.6)

2.2. Reduced Euler–Lagrange equations

By the above linear transformation, we now reduce the Euler–Lagrange equations (1.1). Denote µ = [µ1, . . . ,

µN ]
T , µ0

= [µ0
1, . . . , µ

0
N ]

T and δµ = µ0
− µ. The matrix–vector form of (1.1) is expressed as

C
d2n
dx2 = δµ. (2.7)

Multiplying the Eq. (2.7) by v1, we find that the left-hand side of (2.7) becomes

vT
1 C

d2n
dx2 = vT

1 CQ
d2u
dx2 = [λ, 0, . . . , 0]

d2u
dx2 = λ

d2u

dx2 . (2.8)

As a result, we obtain the first equation as

λ
d2u

dx2 = vT
1 δµ. (2.9)

Similarly, the property of vi gives us

vT
i C

d2n
dx2 = 0, 2 ≤ i ≤ N , (2.10)

which yields

vT
i δµ = −λ−1/2 √c1δµi −

√
ciδµ1


= 0, 2 ≤ i ≤ N . (2.11)

Thus, the Euler–Lagrange equations can be reduced as

λ
d2u

dx2 =

N
i=1


ci/λ(µ0

i − µi ), (2.12)

√
c1(µ

0
i − µi ) =

√
ci (µ

0
1 − µ1), 2 ≤ i ≤ N . (2.13)

It is also obtained from (2.12) and (2.13) that
λc1

d2u

dx2 = µ0
1 − µ1, (2.14)

√
c j (µ

0
i − µi ) =

√
ci (µ

0
j − µ j ), 1 ≤ i, j ≤ N . (2.15)

2.3. Monotonicity of u(x)

To select u as the path function, its monotonicity is a necessary condition, so we now prove this key property. The
composition in each bulk phase region is homogeneous, i.e., dni

dx = 0 and thus, du
dx = 0 within the bulk phase regions.

The Euler–Lagrange equations given by (2.12) and (2.13) hold not only in the interface region but also in the bulk
phase regions. The above two facts allow us to determine the interface and its interior compositions. Then we know
that as x → ±∞, dni

dx → 0 and thus, du
dx → 0. Multiplying (2.12) by du

dx and integrating it over (−∞, x), we get x

−∞

λ
d2u

dx2

du

dx
dx =

 x

−∞

N
i=1


ci/λ(µ0

i − µi )
du

dx
dx . (2.16)

Integrating by parts, x

−∞

d2u

dx2

du

dx
dx =


du

dx

2 x
−∞

−

 x

−∞

du

dx

d2u

dx2 dx, (2.17)
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we reach that at the point x
du

dx
(x)

2

= 2
 x

−∞

d2u

dx2

du

dx
dx . (2.18)

We now turn to consider the right-hand side of (2.16). From the relation given by (2.15), we find that

N
i=1


ci/λ(µ0

i − µi )
du

dx
=


N

i=1


ci/λ(µ0

i − µi )


N

j=1


c j/λ

dn j

dx



=
1
λ

N
i=1

N
j=1

√
ci c j (µ

0
i − µi )

dn j

dx

=
1
λ

N
i=1

N
j=1

ci (µ
0
j − µ j )

dn j

dx

=

N
j=1

(µ0
j − µ j )

dn j

dx
. (2.19)

By the definition of the function Φ, the right-hand side of (2.16) is expressed as x

−∞

N
i=1


ci/λ(µ0

i − µi )
du

dx
dx =

 x

−∞

N
i=1

(µ0
i − µi )dni

=

 x

−∞

dΦ = Φ(n) − ΦB . (2.20)

It is followed from (2.16), (2.18) and (2.20) that

λ


du

dx

2

= 2 (Φ(n) − ΦB) . (2.21)

The grand thermodynamic potential Φ attains its minimum only when a mixture system is in the equilibrium bulk
phases, so the relation Φ(n) > ΦB always holds within the two-phase interface region. As the mixture system tends
towards to the equilibrium bulk phases, i.e. x → ±∞, we get Φ(n) → ΦB . These two physical facts are also verified
in the numerical tests, and thus, they are assumed to hold in this paper; that is, Φ(n) > ΦB for x ∈ (−∞, +∞) and
Φ(n) → ΦB as x → ±∞.

The monotonicity of u(x) is a direct result of the above physical facts and the Eq. (2.21). In fact, suppose that the
monotonicity of u(x) is not true, then we deduce that there exists one interval in which du

dx > 0, and moreover, there
exists another interval in which du

dx < 0. By the intermediate value theorem, we obtain that there exists at least one
pointx within the interface such that du

dx (x) = 0, and as a result, Φ(n) = ΦB atx . This is in contradiction to the above
physical property of the grand thermodynamic potential.

According to the boundary condition given in (1.4), we take the bulk gas phase as the left-hand end, and the
right-hand end is the bulk liquid phase. As shown in the numerical results, we assume uG < uL , and thus, with the
monotonicity of u(x), we claims that du

dx > 0 and in this case, u(x) is an increasing function within the two-phase
interface region. It is obtained from (2.21) that

du

dx
=


2
λ

(Φ(n) − ΦB). (2.22)

By the inverse function rule, the spatial coordinate variable x can be viewed as a function of u, and thus, from (2.22),
we get

dx

du
=


λ

2 (Φ(n) − ΦB)
. (2.23)
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The boundary values uG and uL can be calculated from the compositions nG and nL of the bulk equilibrium phases.
So in what follows, the main problem is to design the models and numerical methods for calculating the spatial
coordinate variable x .

3. Numerical algorithms

The monotonicity of u allows us to develop two efficient methods for calculating the interface, and thus, the
boundary problem on the infinite interval can be translated into that in the finite interval [uG , uL

]. With the definition
of u, we can also reduce the expression of the surface tension. From this, we will propose the efficient and accurate
methods for computing both the interface and its interior compositions.

3.1. Computation of the compositions

As shown in Section 2.3, for a given value of u ∈ (uG , uL), there exists a corresponding spatial coordinate x(u) in
the interface, and as a result of the existence of the solution n of the Euler–Lagrange equations, we have the mixture
composition at x(u); that is, the mixture composition n can be viewed as a function of u, denoted by n(u). Based on
the Euler–Lagrange equations and the relation (2.3) between u and n, we note that for a given u, the corresponding
component composition n can be calculated by solving the following nonlinear system

N
i=1


ci/λ ni = u, (3.1)

√
c1(µ

0
i (n) − µi ) =

√
ci (µ

0
1(n) − µ1), 2 ≤ i ≤ N . (3.2)

This system can be solved by using Newton’s method. For any given approximation nk of n, the linearized approach
is applied for δµi as

δµi = µ0
i (n) − µi ≈ µ0

i (n
k) − µi + ∇µ0

i (n
k) · (n − nk), 1 ≤ i ≤ N (3.3)

where ∇µ0
i (n) =


∂µ0

i (n)

∂n1
, . . . ,

∂µ0
i (n)

∂nN

T

. A new approximation nk+1 of n is obtained by solving

N
i=1


ci/λnk+1

i = u, (3.4)


√

c1∇µ0
i (n

k) −
√

ci∇µ0
1(n

k)


· (nk+1
− nk) =

√
ci (µ

0
1(n

k) − µ1) −
√

c1(µ
0
i (n

k) − µi ), 2 ≤ i ≤ N . (3.5)

Let ai, j (n) =
∂µ0

i (n)

∂n j
=

∂2 f0(n)
∂ni ∂n j

. Define the matrix function H(n) as

H(n) =




c1/λ · · ·


cN /λ
√

c1a2,1 −
√

c2a1,1 · · ·
√

c1a2,N −
√

c2a1,N
· · · · · · · · ·

√
c1aN ,1 −

√
cN a1,1 · · ·

√
c1aN ,N −

√
cN a1,N

 . (3.6)

Furthermore, define the vector function as B(n) = [b1(n), . . . , bN (n)]T , where

bi (n) =


√

c1∇µ0
i (n) −

√
ci∇µ0

1(n)


· n +
√

ci (µ
0
1(n) − µ1) −

√
c1(µ

0
i (n) − µi ).

Denote a special N -dimensional vector by e1 = [1, 0, . . . , 0]
T . For any given u ∈ (uG , uL), the corresponding

mixture composition n can be computed by the following iterative method

nk+1
= H(nk)−1(B(nk) + ue1). (3.7)
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3.2. Direct method for capturing the interface

We now derive the numerical methods for calculating the spatial coordinate variable x based on the Eq. (2.22). Let
x0 be the approximate gas-phase end of the two-phase interface. Furthermore, define a finite sequence of different
spatial points x i , , i = 1, . . . , M and denote hi = x i+1

− x i . We now consider to solve the Eq. (2.22), associated with
the boundary conditions u(x0) = uG and u(x M ) = uL . Integrating (2.22) over the interval (x i , x i+1) yields

u(x i+1) = u(x i ) +

 x i+1

x i


2
λ

(Φ(n) − ΦB) dx . (3.8)

Let ui be the approximation of u(x i ), and further denote ni
= n(ui ). We use the θ -scheme [31] for (3.8) to obtain

ui+1
= ui

+ hi


θ


2
λ


Φ(ni ) − ΦB


+ (1 − θ)


2
λ


Φ(ni+1) − ΦB


(3.9)

where θ ∈ [0, 1]. A class of methods is obtained from (3.9) as

x i+1
= x i

+
ui+1

− ui

θ


2
λ


Φ(ni ) − ΦB


+ (1 − θ)


2
λ


Φ(ni+1) − ΦB

 . (3.10)

Since Φ(nG) = Φ(nL) = ΦB , we choose θ ≠ 1 for i = 0 and choose θ ≠ 0 for i = M − 1 in (3.10).

3.3. Inverse method for capturing the interface

The two-phase interface region can be determined by solving the Eq. (2.23). However, the numerical methods for
solving (2.23) need to be carefully designed since Φ(n(uG)) = Φ(n(uL)) = ΦB .

Divide the interval [uG , uL
] into M sub-intervals [ui , ui+1

], where i = 0, 1, . . . , M − 1. Integrating (2.23) over
the interval [ui , ui+1

] yields

x(ui+1) = x(ui ) +

 ui+1

ui


λ

2 (Φ(n(u)) − ΦB)
du. (3.11)

Denote by x i the approximation of x(ui ). For i = 1, . . . , M − 2, the θ -scheme used for (3.11) gives us

x i+1
= x i

+ (ui+1
− ui )


θ


λ

2

Φ(ni ) − ΦB

 + (1 − θ)


λ

2

Φ(ni+1) − ΦB

 (3.12)

where θ ∈ [0, 1]. Since Φ(nG) = Φ(nL) = ΦB , we choose θ = 0 for i = 0 and choose θ = 1 for i = M − 1 in
(3.12). The initial point x0 is chosen as the approximation of x(uG).

3.4. Computation of the surface tension

Firstly, we note that the expression of surface tension can be reduced as

σ =


+∞

−∞


Φ(n) − ΦB +

1
2
λ


du

dx

2


dx

=


+∞

−∞

λ


du

dx

2

dx

=


+∞

−∞

2 (Φ(n) − ΦB) dx . (3.13)
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We have shown in Section 3.1 that for given u, the corresponding composition n can be computed by solving (3.1)
and (3.2), it is found from (2.23) and (3.13) that the surface tension can be expressed as

σ =

 uL

uG


2λ(Φ(n(u)) − ΦB)du. (3.14)

Using the trapezoid rule to the right-hand side of (3.14), we obtain the approximation of the surface tension as

σ ≃

M−1
i=0

1
2
(ui+1

− ui )


2λ(Φ(ni ) − ΦB) +


2λ(Φ(ni+1) − ΦB)


. (3.15)

3.5. A summary description of numerical algorithms

As shown above, we have developed two methods to capture the interface between two phases, and combining
these two methods with the computation of the surface tension, we propose the following algorithms:

(1) Calculate the components nG and nL in the equilibrium bulk phases by Peng–Robinson equation of state, and then
compute uG and uL ;

(2) Divide the interval [uG , uL
] into M subintervals [ui , ui+1

], where i = 0, . . . , M − 1, and u0
= uG , uM

= uL ,
and then compute the corresponding components ni

= n(ui ) by the iterative method (3.7);

(3) Calculate the approximate surface tension by (3.15) and calculate the spatial points x i by the proposed direct
method or the proposed inverse method.

The main advantage of the proposed methods is that no partial differential equation is needed to be solved, and
compared to the known similar method, not only the proposed methods are supported by the rigorous theoretical
foundation shown in this paper, but also they do not need to choose any reference component. In the well known
method of reference component, one needs to choose a reference component by predicting rough profiles of
component molar densities before simulation.

4. Numerical tests

We now simulate the surface tension by using the proposed methods for three hydrocarbon mixtures composed
of multiple components. The Peng–Robinson equation of state [32] is used to compute the equilibrium properties of
the bulk phases, such as the densities and the chemical potentials. In all tests, a uniform mesh with 500 elements is
applied for the weighted molar density domain [uG , uL

], and we take the parameter θ = 1/2 for both methods given
by (3.10) and (3.12).

4.1. Binary mixture

We simulate the surface tension of a binary mixture, which is composed of methane (CH4) and decane (nC10).
Surface tensions of the mixture computed by the two methods at 310 K and different pressures are illustrated in

Fig. 4.1. We observe the drop of the calculated the surface tension as the pressures increase within a certain range,
which are in agreement with the ones presented in [9].

The graphics of function Φ(n(u)) − ΦB , denoted by δΦ, are drawn in Fig. 4.2 at different pressures. It can be
observed that δΦ are larger than zero except for the bulk phase ends, and δΦ attains its maximum at about the middle
of the interface region.

Fig. 4.3 illustrate the density profiles calculated by the direct method at 310 K and different pressures. From these
figures, we can observe that the proposed methods not only accurately compute the surface tension of the tested binary
mixture, but also efficiently capture the interfaces and calculate their interior compositions.

Fig. 4.4 depict the calculated weighted molar density (u) profiles at 310 K and different pressures. It is shown
that the weighted molar density of the tested binary mixture is always increasing monotonically across the interface
thickness at different pressures. This verifies the theoretical result about the monotonicity property of u.

It can be seen that the methane molar densities do not vary monotonically with the spatial coordinate and their
maximum values in the interface increase with pressures. Although the decane molar density is monotonically
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Fig. 4.1. Surface tension of CH4 and nC10 mixture computed by two methods at 310 K: Direct method (left), Inverse method (right).

Fig. 4.2. The graphics of function δΦ for the binary mixture.

Fig. 4.3. CH4 and nC10 molar density profiles computed by the direct method at 310 K and different pressures: 50 bar (left), 100 bar (center),
200 bar (right).

increasing, the weighted molar density differences between gas and liquid phases are all less than those of the decane;
that is, the weighted molar densities vary slower than any component molar density. This means that the method of
using the weighted molar density may be more stable than the selection of the reference component.

4.2. Ternary mixture

We calculate the surface tension of a ternary mixture, which is composed of 75% methane (CH4), 15% pentane
(C5) and 10% decane (nC10) at the temperature 313 K.

Surface tensions of the mixture computed by the two methods at 313 K and different pressures are illustrated in
Fig. 4.5. The graphics of function δΦ(u) are drawn in Fig. 4.6 at different pressures. Fig. 4.7 depict the component
molar density profiles calculated by the direct method at 313 K and different pressures. Fig. 4.8 show the calculated
weighted molar density profiles at 313 K and different pressures, which also verify the monotonicity of u in the space.
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Fig. 4.4. CH4 and nC10 weighted molar density profiles computed by the direct method at 310 K and different pressures: 50 bar (left), 100 bar
(center), 200 bar (right).

Fig. 4.5. Surface tension of CH4, C5 and nC10 mixture computed by two methods at 313 K: Direct method (left), Inverse method (right).

Fig. 4.6. The graphics of function δΦ for the ternary mixture.

Fig. 4.7. CH4, C5 and nC10 molar density profiles computed by the direct method at 313 K and different pressures: 200 bar (left), 220 bar (center),
240 bar (right).
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Fig. 4.8. CH4, C5 and nC10 weighted molar density profiles computed by the direct method at 313 K and different pressures: 200 bar (left), 220 bar
(center), 240 bar (right).

Fig. 4.9. Surface tension of five-component mixture computed by two methods at 313 K: Direct method (left), Inverse method (right).

Fig. 4.10. The graphics of function δΦ for the five-component mixture.

4.3. Five-component mixture

The hydrocarbon mixture is composed of 80% of methane (CH4), 14% n-butane (nC4), 4% n-heptane (nC7), 1.4%
decane (nC10) and 0.6% n-tetradecane (nC14).

Fig. 4.9 illustrate the surface tensions of the mixture computed by the two methods at 313 K and different pressures.
The graphics of function δΦ(u) are drawn in Fig. 4.10 at different pressures. Fig. 4.11 show the component molar
density profiles calculated by the direct method at 313 K and different pressures. Fig. 4.12 illustrate the calculated
weighted molar density profiles at 313 K and different pressures.

From the last two examples, we also observe that the proposed methods not only accurately compute the surface
tension, but also efficiently capture the interfaces and calculate their interior compositions. We also get the similar
analytic conclusions to those presented in Section 4.1. These numerical results demonstrate the proposed method is
an ideal instrument to simulate the surface tension problems.
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Fig. 4.11. Five-component molar density profiles computed by the direct method at 313 K and different pressures: 150 bar (left), 180 bar (center),
200 bar (right).

Fig. 4.12. Five-component weighted molar density profiles computed by the direct method at 313 K and different pressures: 150 bar (left), 180 bar
(center), 200 bar (right).

Finally, we must note that the numerical results of molar densities and weighted molar densities computed by the
inverse method are very similar to those of the direct method, so we omit their illustrations for sake of simplicity.

5. Conclusions

A well-defined path function has been constructed based on a linear transformation, and then the expressions of
the Euler–Lagrange equations are reduced. Furthermore, we have proven the monotonicity of the path function, and
from this, we develop two efficient methods for calculating the two-phase fluid interface and computing the surface
tension. Compared to the known methods, the proposed methods not only eliminate the need of solving a differential
equation system, but also are easier to be implemented in practical applications. The numerical examples are also
given to verify the proposed theory and demonstrate the efficiency of the proposed methods.

Appendix A. Computations of f0

The Helmholtz energy f0(n) of a homogeneous fluid is given by

f0(n) = f ideal
0 (n) + f excess

0 (n). (A.1)

The ideal gas contribution is

f ideal
0 (n) = RT

N
i=1

ni (ln ni − 1) . (A.2)

The excess (non-ideal) contribution, for Peng–Robinson fluids, is

f excess
0 (n) = −n RT ln (1 − bn) +

a(T )n

2
√

2b
ln


1 + (1 −

√
2)bn

1 + (1 +
√

2)bn


, (A.3)
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where T is the temperature of the mixture and R is the universal gas constant. Here, b is the covolume and a(T ) is the
energy parameter.

The parameters a(T ) and b in (A.3) are computed as below. Let P be the pressure of the mixture and let Tci and
Pci be critical temperature and critical pressure, respectively, of component i . For the i th component, we define the
reduced pressure as Pri = P/Pci and the reduced temperature as Tri = T/Tci , and furthermore, we define the mole
fraction zi = ni/n, where n =

N
i=1 ni . Then a(T ) and b are calculated by

a(T ) =

N
i=1

N
j=1

zi z j

ai a j

1/2
(1 − ki j ), b =

N
i=1

zi bi , (A.4)

where ki j is the given binary interaction coefficients for the energy parameters and

ai = 0.45724
R2T 2

ci

Pci


1 + mi (1 −


Tri )

2
, bi = 0.07780

RTci

Pci

. (A.5)

The coefficients mi are calculated by the following formulations

mi = 0.37464 + 1.54226ωi − 0.26992ω2
i , ωi ≤ 0.49, (A.6)

mi = 0.379642 + 1.485030ωi − 0.164423ω2
i + 0.016666ω3

i , ωi > 0.49, (A.7)

where ωi is the acentric factor.
Denote N = [N1, . . . , NN ]

T . We note that (1.2) is equivalent to the following more standard definition of chemical
potential:

µ0
i =


∂ F0(N, T, V )

∂ Ni


T,V,N1,...,Ni−1,Ni+1,...,NN

, (A.8)

which can be proved by recalling the definition of F0 = f0V and applying some calculus manipulation.

Appendix B. Influence parameters

The pure component influence parameters ci are given by

ci = ai b
2/3
i


αi (1 − Tri ) + βi


, (B.1)

where αi and βi are the coefficients correlated merely with the acentric factor ωi of the component i by the following
relations

αi = −
10−16

1.2326 + 1.3757ωi
, βi =

10−16

0.9051 + 1.5410ωi
. (B.2)
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