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Abstract

We consider time-dependent Maxwell’s equations discretized by variable time steps in time domain and edge elements in spatial
domain. First, the stability and optimal a priori error estimate are proved for both semi and fully discrete schemes. Then a posteriori
error analysis is carried out for both schemes.
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1. Introduction

Wave propagation phenomena happen in a broad range of applications. Examples include sound waves, light waves
and water waves, which arise in acoustics, electromagnetics, and fluid dynamics, respectively. The wave propagation
problem is often described by the second-order hyperbolic equation, also called the wave equation. Upon considering
time-harmonic (steady-state) waves, the wave equation reduces to the Helmholtz equation. Over the last four decades
there has been considerable interest in developing various finite element methods (FEMs) for solving the wave
equation (e.g., [1–6], and references therein). To solve the wave equation more efficiently, adaptive FEMs are often
used. Adaptive FEMs are often based on a posteriori error estimates, i.e., some computable quantities that estimate
the FEM solution error in a suitable norm.

Over the last three decades many a posteriori error estimates have been developed for time-independent problems
such as elliptic equations and Helmholtz equation (e.g., [7–13], and references therein). As for time-dependent prob-
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lems, considerable results on a posteriori error estimates for parabolic problems have also been obtained (e.g., [14–17],
and references therein). However, according to Bernardi and Süli back in 2005 [18, p. 199]: “the a posteriori error
analysis of finite element approximations to second-order hyperbolic problems is in a less complete state”. Indeed,
compared to results on elliptic, parabolic, and first order hyperbolic problems, “hyperbolic problems of second order
have been much less studied” as Picasso mentioned in 2010 [19, p. 2213]. Though some a posteriori error estimates
have been obtained over the years (e.g., [20–22,18,19]), “the design and implementation of adaptive algorithms for the
wave equation based on rigorous a posteriori error estimators is a largely unexplored subject” as Georgoulis, Lakkis
and Makridakis remarked in their 2013 paper [23, p. 1262].

Time-dependent Maxwell’s equations are used in simulating electromagnetic wave propagation problems, and can
be reduced to the second-order wave equation under special circumstances. Since the first a posteriori error estimate
obtained for time-harmonic Maxwell’s equations by Monk in 1998 [24], some excellent estimates have been proved
(e.g., [25–29], [30, Ch. 6] and references therein). However, to the best of our knowledge, there seems no publication
on a posteriori error estimates for time-dependent Maxwell’s equations [31,32], except one paper by Zheng, Chen and
Wang [33] for time-dependent eddy current problems and one very recent work by Creusé, Nicaise and Tittarelli [34]
for the A−ϕ magnetodynamic problem. Note that both problems of [33,34] are described by parabolic type equations,
and many a posteriori error estimates techniques developed for parabolic equations can be applied. At the end of their
2005 paper [18], Bernardi and Süli mentioned that similar estimates for time-dependent Maxwell system can be shown
using their techniques developed for the second-order wave equation, no such a study has ever been published so far.
In this paper, we initiate this task by developing some a posteriori error estimates for time-dependent Maxwell’s
equations.

The outline of the paper is as follows. In Section 2, we present the model problem and a stability result. Following
the technique introduced by Bernardi and Süli [18], Section 3 is devoted to the description of a backward Euler scheme
with variable time steps, and a fully discrete edge element method. Stability and optimal a priori error estimate are
proved for both the semi and fully discrete schemes. Section 4 is devoted to the a posteriori error analysis of both
schemes. We conclude the paper in Section 5.

2. The governing equations and notation

Before we present the governing equations, let us introduce some notation. We assume that Ω is a bounded
Lipschitz polyhedral domain in R3 with connected boundary ∂Ω . For any domain ω ⊂ R3, we let L2(ω) be the Hilbert
space, equipped with inner product (·, ·)0,ω and norm ∥ · ∥L2(ω). When ω = Ω , we simply write ∥ · ∥L2(Ω) = ∥ · ∥.We
let H s(ω) be the standard Sobolev space of order s ≥ 0 equipped with norm ∥ · ∥s,ω and semi-norm | · |s,ω. For vector
functions, we simply denote L2(ω) = (L2(ω))3 and Hs(ω) = (H s(ω))3. To deal with Maxwell’s equations, we need
the spaces

H s(curl;Ω) =

u ∈ H s(Ω); ∇ × u ∈ H s(Ω)


and

H s
0 (curl;Ω) =


u ∈ H s(curl;Ω); n̂ × u = 0 on ∂Ω


,

where n̂ is the unit outward normal to ∂Ω . When s = 1, we simply write H1(curl;Ω) = H(curl;Ω) and
H1

0 (curl;Ω) = H0(curl;Ω). For time T > 0 and any separable Banach space X , we consider the space L1(0, T ; X)
of integrable functions on (0, T ) with values in X . We also need the space Cs(0, T ; X) of continuously differentiable
functions on [0, T ] up to the order s with values in X .

To model electromagnetic wave propagation, we usually have to solve the famous Maxwell’s equations:

ϵ
∂E
∂t

− ∇ × M = −Js, in Ω × (0, T ), (1)

µ
∂M
∂t

+ ∇ × E = 0, in Ω × (0, T ), (2)

where ϵ and µ denote the permittivity and permeability, respectively, E(x, t) and M(x, t) are the electric and magnetic
fields, respectively, and Js(x, t) is a given source. To make the problem well-posed, we further assume that the system
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(1)–(2) is subject to the perfectly conducting boundary condition:

n̂ × E = 0 on ∂Ω , (3)

and the initial conditions:

E(x, 0) = E0(x), M(x, 0) = M0(x), (4)

where E0 and M0 are some given functions.
Differentiating (1) with respect to t and replacing M by using (2), we obtain

ϵ
∂2E
∂t2 + ∇ × (µ−1

∇ × E) = −
∂Js

∂t
:= f . (5)

To make the problem (5) complete, we assume that (5) is supplemented with the boundary condition (3) and initial
conditions:

E(x, 0) = E0(x), Et (x, 0) = E1(x), (6)

here and below we denote the derivative Etk =
∂k E
∂tk for k = 1, 2, 3. For the second derivative, sometimes we write

Et2 = Et t = ∂t t E.
A popular way to deal with the second order hyperbolic wave equation is to introduce a new variable and reduce

the original problem into a system of differential equations with one becoming parabolic type equation, which can be
easily dealt with. Without confusion, let us introduce the new variable H = ϵEt and rewrite (5) in the system form:

∂

∂t


E
H


+


0 −ϵ−1

∇ × (µ−1
∇×) 0


E
H


=


0
f


. (7)

To obtain more general results below, we consider the right hand side of (7) to be more general, i.e., the problem
becomes as

∂

∂t


E
H


+


0 −ϵ−1

∇ × (µ−1
∇×) 0


E
H


=


g
f


(8)

supplemented with boundary condition (3) and initial conditions (4).

Theorem 2.1. For any f ∈ L1(0, T ; L2(Ω)), g ∈ L1(0, T ; H0(curl;Ω)), and t ∈ [0, T ], the solution (E,H)
of (8) satisfies the following stability

(∥ϵ−
1
2 H∥

2
+ ∥µ−

1
2 ∇ × E∥

2)1/2(t) ≤ (∥ϵ−
1
2 H0∥

2
+ ∥µ−

1
2 ∇ × E0∥

2)1/2

+

 t

0
(∥ϵ−

1
2 f∥ + ∥µ−

1
2 ∇ × g∥)(s)ds.

Proof. Taking the inner product of (8) with vector W = (∇ × (µ−1
∇ × E), ϵ−1H)′, here and below the prime ′

denotes the transpose, we have

(Et ,∇ × (µ−1
∇ × E))+ (Ht , ϵ

−1H) = (g,∇ × (µ−1
∇ × E))+ (f , ϵ−1H),

which, after integration by parts and using (3), leads to

1
2

d

dt
[(µ−1

∇ × E,∇ × E)+ (ϵ−1H,H)] = (∇ × g, µ−1
∇ × E)+ (f , ϵ−1H)

≤ (∥ϵ−
1
2 f∥2

+ ∥µ−
1
2 ∇ × g∥

2)1/2(∥ϵ−
1
2 H∥

2
+ ∥µ−

1
2 ∇ × E∥

2)1/2, (9)

from which we obtain
d

dt
(∥ϵ−

1
2 H∥

2
+ ∥µ−

1
2 ∇ × E∥

2)1/2 ≤ (∥ϵ−
1
2 f∥2

+ ∥µ−
1
2 ∇ × g∥

2)1/2 ≤ ∥ϵ−
1
2 f∥ + ∥µ−

1
2 ∇ × g∥,

which completes the proof by integrating both sides from 0 to t . �
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To simplify the notation and reduce the technicality, below we just assume that ϵ = µ = 1, since similar results
can be obtained for variable coefficients ϵ and µ under the assumption that they are bounded below and above in Ω .

3. The a priori error analysis

3.1. A semi-discrete scheme

First, let us consider a time discretization scheme for (8). To construct the scheme, we partition the time interval
[0, T ] into non-uniform subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < · · · < tN = T . Furthermore, we
denote the length τn = tn+1 − tn and τ = max0≤n≤N−1 τn .

We construct a backward Euler scheme for (8): For any 0 ≤ n ≤ N − 1,

U n+1
− U n

τn
+


0 −1

∇ × ∇× 0


U n+1

=


gn+1

f n+1


, (10)

supplemented with boundary condition

n̂ × En
= 0 on ∂Ω , (11)

and initial conditions

U 0
= (E0,H0)′ = (E0(x),H0(x))′. (12)

In the above, we denote gn+1
= g(tn+1), f n+1

= f (tn+1) and U n
= (En,Hn)′.

Theorem 3.1. For 0 ≤ n ≤ N − 1, the solution (En+1,Hn+1) satisfies the following estimate

(∥∇ × En+1
∥

2
+ ∥Hn+1

∥
2)1/2 ≤ (∥∇ × E0

∥
2
+ ∥H0

∥
2)1/2 +

n
m=0

τm(∥∇ × gm+1
∥ + ∥f m+1

∥).

Proof. Taking the inner product of (10) with W = (∇ × ∇ × En+1,Hn+1)′ and using integration by parts, we have

(∇ × (En+1
− En),∇ × En+1)+ (Hn+1

− Hn,Hn+1)

= τn(∇ × gn+1,∇ × En+1)+ τn(f n+1,Hn+1)

≤ τn(∥∇ × gn+1
∥

2
+ ∥f n+1

∥
2)1/2(∥∇ × En+1

∥
2
+ ∥Hn+1

∥
2)1/2. (13)

Denote Sn+1
= (∥∇ × En+1

∥
2
+ ∥Hn+1

∥
2)1/2. From (13), we have

(Sn+1)2 ≤ (∇ × En,∇ × En+1)+ (Hn,Hn+1)+ τn(∥∇ × gn+1
∥

2
+ ∥f n+1

∥
2)1/2Sn+1

≤ Sn
· Sn+1

+ τn(∥∇ × gn+1
∥ + ∥f n+1

∥)Sn+1,

which leads to

Sn+1
≤ Sn

+ τn(∥∇ × gn+1
∥ + ∥f n+1

∥),

which concludes the proof by summing up both sides from 0 to n. �

Below let us consider the error estimate for the scheme (10). Denote the errors

en
E = E(tn)− En, en

H = H(tn)− Hn, V n
=


en

E
en

H


.

Theorem 3.2. For 0 ≤ n ≤ N − 1, the solution (En+1,Hn+1) of (10) and the solution (E,H) of (8) at t = tn+1
satisfy the following error estimate

(∥∇ × (E(tn+1)− En+1)∥2
+ ∥H(tn+1)− Hn+1

∥
2)1/2 ≤ τ

 tn+1

0
(∥∂t t∇ × E∥ + ∥∂t t H∥)ds. (14)
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Proof. Subtracting (10) from (8) evaluated at tn+1, we obtain the error equation

V n+1
− V n

τn
+


0 −1

∇ × ∇× 0


V n+1

=


γ n+1

E
γ n+1

H


, (15)

where we denote

γ n+1
E =

E(tn+1)− E(tn)
τn

− ∂t E(tn+1), γ n+1
H =

H(tn+1)− H(tn)
τn

− ∂t H(tn+1).

Applying Theorem 3.1 to the error equation (15) and using the fact that e0
E = e0

H = 0, we obtain

(∥∇ × en+1
E ∥

2
+ ∥en+1

H ∥
2)1/2 ≤

n
m=0

τm(∥∇ × γm+1
E ∥ + ∥γm+1

H ∥). (16)

Note that

∥γm+1
H ∥ =

H(tm+1)− H(tm)
τm

− ∂t H(tm+1)


=

− 1
τm

 tm+1

tm
(s − tm)∂t t H(s)ds

 ≤

 tm+1

tm
∥∂t t H∥ds. (17)

Similarly, we have

∥∇ × γm+1
E ∥ ≤

 tm+1

tm
∥∂t t∇ × E∥ds. (18)

Substitution of (17) and (18) into (16) concludes the proof. �

3.2. A fully-discrete scheme

To design a finite element method for solving (5), we partition Ω by a family of regular cubic or tetrahedral meshes
Th with maximum mesh size h. An arbitrary order curl conforming finite element space Vh can be defined as follows
(cf. [35]): For any k ≥ 1, on tetrahedral elements,

Vh = {vh ∈ H(curl;Ω) : vh |K ∈ (pk−1)
3
⊕ Sk, ∀ K ∈ Th},

where the subspace Sk = { p⃗ ∈ ( p̃k)
3

: x · p⃗ = 0}; while on cubic elements,

Vh = {vh ∈ H(curl;Ω) : vh |K ∈ Qk−1,k,k × Qk,k−1,k × Qk,k,k−1, ∀ K ∈ Th}.

Here p̃k denotes the space of homogeneous polynomials of degree k, and Qi, j,k denotes the space of polynomials
whose degrees are less than or equal to i, j, k in variables x, y, z, respectively. To accommodate the boundary
condition (3), we define a subspace of Vh :

V0
h = {vh ∈ Vh : n̂ × vh = 0}. (19)

We need to define the H0(curl;Ω) orthogonal projection operator Πhu : H0(curl;Ω) → V 0
h , which satisfies

[35, p. 171]

(∇ × (Πh − I )u,∇ × φh)+ ((Πh − I )u, φh) = 0, ∀ φh ∈ V 0
h . (20)

Moreover, Πh satisfies the interpolation error estimate [35]: If u ∈ Hs(Ω) and ∇ × u ∈ Hs(Ω) for 1
2 + δ ≤ s ≤ k for

δ > 0 then

∥u − Πhu∥ + ∥∇ × (u − Πhu)∥ ≤ Chs(∥u∥Hs (Ω) + ∥∇ × u∥Hs (Ω)). (21)
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We consider the following fully-discrete scheme: Given appropriate approximations E0
h and E1

h in V 0
h , for

1 ≤ n ≤ N − 1 find En+1
h ∈ V 0

h such that
En+1

h − En
h

τn
−

En
h − En−1

h

τn−1
, φh


+ τn(∇ × En+1

h ,∇ × φh) = τn(f n+1, φh), ∀ φh ∈ V 0
h . (22)

Theorem 3.3. For any 1 ≤ n ≤ N − 1, the solution En+1
h of (22) satisfies the following stability:En+1

h − En
h

τn


2

+ ∥∇ × En+1
h ∥

2

1/2

≤

E1
h − E0

h

τ0


2

+ ∥∇ × E1
h∥

2

1/2

+

n
m=1

τm∥f m+1
∥.

Proof. Denote Sn+1
= (∥

En+1
h −En

h
τn

∥
2
+ ∥∇ × En+1

h ∥
2)1/2. Choosing φh =

En+1
h −En

h
τn

in (22) and following the proof of
Theorem 3.1, we easily obtain

Sn+1
≤ Sn

+ τn∥f n+1
∥,

summing up which from n = 1 to n concludes the proof. �

To prove the error estimate for scheme (22), we need the following result.

Lemma 3.1. The following estimates hold for any 0 ≤ n ≤ N − 1:

(i)

u(tn+1)− u(tn)

τn
−

u(tn)− u(tn−1)

τn

 ≤

 tn+1

tn−1

|ut t (s)|ds, ∀ ut t ∈ L1(tn−1, tn+1), (23)

(ii)

ut (tn+1)−
u(tn+1)− u(tn)

τn


−


ut (tn)−

u(tn)− u(tn−1)

τn


≤ τn

 tn+1

tn−1

|ut3(s)|ds, ∀ ut3 ∈ L1(tn−1, tn+1). (24)

Proof. (i) Using identity

ut (tn+1)−
u(tn+1)− u(tn)

τn
=

1
τn

 tn+1

tn
(s − tn)ut t (s)ds, (25)

we obtain
u(tn+1)− u(tn)

τn
−

u(tn)− u(tn−1)

τn−1

= ut (tn+1)− ut (tn)+
1
τn

 tn+1

tn
(tn − s)ut t (s)ds −

1
τn−1

 tn

tn−1

(tn−1 − s)ut t (s)ds

=

 tn+1

tn
ut t (s)ds +

1
τn

 tn+1

tn
(tn − s)ut t (s)ds +

1
τn−1

 tn

tn−1

(s − tn−1)ut t (s)ds

=
1
τn

 tn+1

tn
(tn+1 − s)ut t (s)ds +

1
τn−1

 tn

tn−1

(s − tn−1)ut t (s)ds

≤

 tn+1

tn
|ut t (s)|ds +

 tn

tn−1

|ut t (s)|ds,

which completes the proof.
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(ii) From (25), we have
ut (tn+1)−

u(tn+1)− u(tn)

τn


−


ut (tn)−

u(tn)− u(tn−1)

τn−1


=

 tn+1

tn


s − tn
τn


ut t (s)ds −

 tn

tn−1


ŝ − tn−1

τn−1


ut t (ŝ)dŝ. (26)

Introducing the transformation s − tn =
τn
τn−1

(ŝ − tn−1) for the second integral, we can reduce the right hand side
of (26) to tn+1

tn


s − tn
τn


ut t (s)ds −

 tn+1

tn


s − tn
τn


ut t


tn−1 +

τn−1

τn
(s − tn)


·
τn−1

τn
ds

=

 tn+1

tn

s − tn
τn

 s

tn−1+
τn−1
τn

(s−tn)
ut3(µ)dµ


ds

≤ τn

 tn+1

tn−1

|ut3(s)|ds, (27)

which, along with (26), concludes the proof. �

Theorem 3.4. Let k ≥ 1 be the order of the finite element space Vh . Then under the assumptions

ft ,Et3 ∈ L1(0, T ; L2(Ω)), Et2 ∈ L1(0, T ; H k(curl;Ω)), E ∈ C1(0, T ; H k(curl;Ω)), (28)

and  (E1
h − ΠhE(t1))− (E0

h − ΠhE(t0))
τ0


2

+ ∥∇ × (E1
h − ΠhE(t1))∥2

1/2

≤ C(τ + hk), (29)

the following error estimateen+1
h − en

h

τn


2

+ ∥∇ × en+1
h ∥

2

1/2

≤ C(τ + hk),

holds true, where en
h = En

h − E(tn) denotes the error between the exact solution E of (5) at tn and the solution En
h of

scheme (22).

Proof. Integrating the continuous equation (5) from tn to tn+1, then multiplying the resultant by a test function
φ ∈ H0(curl;Ω), we obtain

(Et (tn+1)− Et (tn), φ)+

 tn+1

tn
∇ × E(s)ds,∇ × φ


=

 tn+1

tn
f (s)ds, φ


. (30)

From (22) and (30), we obtain the error equation: For any φh ∈ V 0
h ,

en+1
h − en

h

τn
−

en
h − en−1

h

τn−1
, φh


+ τn(∇ × en+1

h ,∇ × φh)

= τn(f n+1, φh)−


E(tn+1)− E(tn)

τn
−

E(tn)− E(tn−1)

τn−1
, φh


− τn(∇ × E(tn+1),∇ × φh)

=


τnf n+1

−

 tn+1

tn
f (s)ds, φh


+

 tn+1

tn
∇ × E(s)ds − τn∇ × E(tn+1),∇ × φh


+


Et (tn+1)−

E(tn+1)− E(tn)
τn


−


Et (tn)−

E(tn)− E(tn−1)

τn−1


, φh


. (31)
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Let us decompose the error en
h as

en
h = ρn

h + ξn
h =


En

h − ΠhE(tn)

+ (ΠhE(tn)− E(tn)) .

Furthermore, we denote Sn+1
= (∥

ρn+1
h −ρn

h
τn

∥
2
+ ∥∇ × ρn+1

h ∥
2)1/2.

Choosing φh =
ρn+1

h −ρn
h

τn
in (31) and using the following identity

ρn+1
h − ρn

h

τn
−
ρn

h − ρn−1
h

τn−1
, φh


+ τn(∇ × ρn+1

h ,∇ × φh)

=


en+1

h − en
h

τn
−

en
h − en−1

h

τn−1
, φh


+ τn(∇ × en+1

h ,∇ × φh)

−


ξn+1

h − ξn
h

τn
−
ξn

h − ξn−1
h

τn−1
, φh


− τn(∇ × ξn+1

h ,∇ × φh),

we have

(Sn+1)2 =


ρn

h − ρn−1
h

τn−1
,
ρn+1

h − ρn
h

τn


+ (∇ × ρn+1

h ,∇ × ρn
h )

+


τnf n+1

−

 tn+1

tn
f (s)ds,

ρn+1
h − ρn

h

τn



+


Et (tn+1)−

E(tn+1)− E(tn)
τn


−


Et (tn)−

E(tn)− E(tn−1)

τn−1


,
ρn+1

h − ρn
h

τn



+

 tn+1

tn
∇ × E(s)ds − τn∇ × E(tn+1),∇ ×

ρn+1
h − ρn

h

τn



−


(Πh − I )


E(tn+1)− E(tn)

τn
−

E(tn)− E(tn−1)

τn−1


,
ρn+1

h − ρn
h

τn



+ τn


(Πh − I )E(tn+1),

ρn+1
h − ρn

h

τn


=

7
i=1

Erri , (32)

where we used the projection property of Πh and the fact that

ξn+1
h − ξn

h = (Πh − I )(E(tn+1)− E(tn)).

Below we need to estimate each term Erri . It is easy to see that

Err1 + Err2 ≤ Sn+1
· Sn .

Note thatτnf n+1
−

 tn+1

tn
f (s)ds

 =

 tn+1

tn
(f (tn+1)− f (s))ds


=

 tn+1

tn

 tn+1

s
ft (µ)dµds

 ≤ τn

 tn+1

tn
|ft (s)|ds, (33)

from which we have

Err3 ≤ τn

 tn+1

tn
∥ft (s)∥ds ·

ρn+1
h − ρn

h

τn

 .
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By Lemma 3.1, we obtain

Err4 ≤ τn

 tn+1

tn
∥Et3(s)∥ds ·

ρn+1
h − ρn

h

τn

 .
Using integration by parts and (33) with f = ∇ × ∇ × E, we have

Err5 =

 tn+1

tn
∇ × ∇ × E(s)ds − τn∇ × ∇ × E(tn+1),

ρn+1
h − ρn

h

τn



≤ τn

 tn+1

tn
∥∂t∇ × ∇ × E(s)∥ds ·

ρn+1
h − ρn

h

τn


≤ τn

 tn+1

tn
(∥Et3∥ + ∥ft∥)ds ·

ρn+1
h − ρn

h

τn

 ,
where in the last step we used Eq. (5).

By Lemma 3.1 and the interpolation error estimate (21), we have

Err6 ≤

 tn+1

tn−1

∥(Πh − I )Et2(s)∥ds ·

ρn+1
h − ρn

h

τn


≤ Chk

 tn+1

tn−1

∥Et2(s)∥H k (curl;Ω)ds ·

ρn+1
h − ρn

h

τn

 .
Finally, by the interpolation error estimate (21), we have

Err7 ≤ τn · Chk
∥Et2(tn+1)∥H k (curl;Ω) ·

ρn+1
h − ρn

h

τn

 .
Substituting the above estimates of Erri into (32), we have

Sn+1
≤ Sn

+ τn

 tn+1

tn
(∥ft (s)∥ + ∥Et3(s)∥)ds + τn

 tn+1

tn−1

(∥ft (s)∥ + ∥Et3(s)∥)ds

+ Chk
 tn+1

tn−1

∥Et2(s)∥H k (curl;Ω)ds + τn · Chk
∥E(tn+1)∥H k (curl;Ω). (34)

Summing up (34) from n = 1 to n, we obtain

Sn+1
≤ S1

+ τ

 tn+1

0
(∥ft (s)∥ + ∥Et3(s)∥)ds

+ Chk
 tn+1

0
∥Et2(s)∥H k (curl;Ω)ds + tn+1 · ∥E(tn+1)∥H k (curl;Ω)


, (35)

which, along with the assumption (29), triangle inequality and the interpolation error estimate (21), concludes the
proof. �

4. The a posteriori error analysis

In this section, we develop some a posteriori error estimates for the problem (5).
Denote the linear interpolation Eτ on each interval [tn, tn+1] for the time discretization solution of (5), i.e., the

solution of (10) with gn+1
= 0:

Eτ (·, t) =
t − tn
τn

En+1
+

tn+1 − t

τn
En, t ∈ [tn, tn+1]. (36)

An interesting property ∂t Eτ =
En+1

−En

τn
will be used later.
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Let us consider the error equation

∂t


E − Eτ
H − Hτ


+


0 −1

∇ × ∇× 0


E − Eτ
H − Hτ


=


RE
RH


. (37)

The right hand side residuals of (37) can be obtained as follows:

RE = ∂t (E − Eτ )− (H − Hτ ) = Hτ − ∂t Eτ = Hτ − Hn+1,

and

RH = ∂t (H − Hτ )+ ∇ × ∇ × (E − Eτ ) = Et t − ∂t Hτ + ∇ × ∇ × E − ∇ × ∇ × Eτ

= f −
Hn+1

− Hn

τn
− ∇ × ∇ × Eτ = f − f n+1

+ ∇ × ∇ × (En+1
− Eτ ).

We can now prove our first a posteriori error estimates.

Theorem 4.1. For any 0 ≤ n ≤ N − 1, we have

∥∇ × (E(tn+1)− En+1)∥ + ∥H(tn+1)− Hn+1
∥

≤

n
m=0


τm
√

2
(∥∇ × (Hm+1

− Hm)∥ + 2∥∇ × ∇ × (Em+1
− Em)∥)+ 2

 tm+1

tm
∥f − f m+1

∥ds


.

Proof. Denote S(t) = (∥∇ × (E − Eτ )∥2
+ ∥H − Hτ∥

2)1/2. Taking the inner product of (37) with


∇ × ∇ × (E − Eτ )
H − Hτ


,

we obtain

1
2

d S2

dt
= (∇ × (Hτ − Hn+1),∇ × (E − Eτ ))+ (f − f n+1,H − Hτ )

+ (∇ × ∇ × (En+1
− Eτ ),H − Hτ )

≤ (∥∇ × (Hτ − Hn+1)∥2
+ 2∥f − f n+1

∥
2
+ 2∥∇ × ∇ × (En+1

− Eτ )∥2)1/2 · S,

integrating which with respect to t from tn to tn+1 leads to

S(tn+1)− S(tn) ≤

 tn+1

tn


∥∇ × (Hτ − Hn+1)∥2

+ 2∥f − f n+1
∥

2
+ 2∥∇ × ∇ × (En+1

− Eτ )∥2
1/2

ds. (38)

Summing up (38) from n = 0 to n, and using the fact that S(0) = 0 and tm+1

tm
∥∇ × (Hτ − Hm+1)∥(s)ds = ∥∇ × (Hm+1

− Hm)∥

 tm+1

tm

tm+1 − s

τm
ds =

τm

2
∥∇ × (Hm+1

− Hm)∥,

we have

1
√

2
(∥∇ × (E(tn+1)− En+1)∥ + ∥H(tn+1)− Hn+1

∥) ≤ S(tn+1)

≤

n
m=0

 tm+1

tm


∥∇ × (Hτ − Hm+1)∥ +

√
2∥f − f m+1

∥ +
√

2∥∇ × ∇ × (Em+1
− Eτ )∥


(s)ds

=

n
m=0


τm

2
(∥∇ × (Hm+1

− Hm)∥ +
√

2∥∇ × ∇ × (Em+1
− Em)∥)+

√
2
 tm+1

tm
∥f − f m+1

∥ds


,

which completes the proof. �

Now let us consider a posteriori error estimates for the fully discrete scheme (22). Let en+1
h = En+1

h − En+1 be the
error between the solution En+1 of (10) and the solution En+1

h of (22).
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From (10) and (22), we obtain the error equation
en+1

h − en
h

τn
−

en
h − en−1

h

τn−1
, φ


+ τn(∇ × en+1

h ,∇ × φ)

=


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1
, φ


+ τn(∇ × En+1

h ,∇ × φ)

−


En+1

− En

τn
−

En
− En−1

τn−1
, φ


− τn(∇ × En+1,∇ × φ)

=


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1
, φ


+ τn(∇ × En+1

h ,∇ × φ)− τn(f n+1, φ) ≡ r(φ), (39)

which holds true for any φ ∈ H0(curl;Ω).
Before we prove the a posteriori error estimates for the fully discrete scheme, some auxiliary tools are needed.

Lemma 4.1 ([36, Lemma 2.1]). The space H0(curl;Ω) has the following orthogonal decomposition

H0(curl;Ω) = H0
0 (curl;Ω)⊕ H⊥

0 (curl;Ω),

where H0
0 (curl;Ω) ≡ {v ∈ H0(curl;Ω) : ∇ × v = 0} and H⊥

0 (curl;Ω) ≡ {v ∈ H0(curl;Ω) : (v, v0) = 0, v0
∈

H0
0 (curl;Ω)}.

The spaces H0
0 (curl;Ω) and H⊥

0 (curl;Ω) have the following characteristics.

Lemma 4.2 ([36, Lemma 2.2]). If the domain Ω is simply connected with connected boundary, then we have
H0

0 (curl;Ω) = ∇ H1
0 (Ω). On the other hand, for any v ∈ H⊥

0 (curl;Ω) we have ∥v∥ ≤ C∥∇ × v∥, where the
constant C only depends on Ω .

Below we shall need the following regular decomposition for space H0(curl;Ω).

Lemma 4.3 ([36, Lemma 2.3]). If the domain Ω is a bounded Lipschitz domain, then for any v ∈ H0(curl;Ω),
there exists some w ∈ H1(Ω) ∩ H0(curl;Ω) and φ ∈ H1

0 (Ω) such that v = w + ∇φ with the estimate
∥w∥1 + ∥φ∥1 ≤ C∥v∥H(curl;Ω).

Moreover, we shall use the following approximation property.

Lemma 4.4 ([36, Lemma 2.4]). Denote Sh for the continuous piecewise linear finite element subspace of H1
0 (Ω)

on Th , the operators Ih : H1
0 (Ω) → Sh from [37] and Πh : H1(Ω) ∩ H0(curl;Ω) → Vh from [38]. Then for any

φ ∈ H1
0 (Ω) and any w ∈ H1(Ω) ∩ H0(curl;Ω), we have

∥φ − Ihφ∥0,K ≤ ChK |φ|1,DK , ∀ K ∈ Th,

∥φ − Ihφ∥0,F ≤ Ch1/2
F |φ|1,DF , ∀ F ∈ Fh,

∥w − Πhw∥0,K ≤ ChK |w|1,DK , ∀ K ∈ Th,

∥w − Πhw∥0,F ≤ Ch1/2
F |w|1,DF , ∀ F ∈ Fh,

where the constant C depends on the shape regularity of the mesh Th , and DK (resp. DF ) denotes the union of
elements in Th with non-empty intersection with K (resp. F).

Denote the error

Sn+1
=

en+1
h − en

h

τn


2

+ ∥∇ × en+1
h ∥

2

1/2

, (40)
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the differential equation residuals on each element K of Th :

RK (Eh) =
1
τn


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1


+ ∇ × ∇ × En+1

h − f n+1,

DK (Eh) = ∇ ·


1
τn


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1


− f n+1


,

and the normal jump

JF (Eh) =


1
τn


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1


− f n+1


· n̂


F

.

Theorem 4.2. Given proper approximations E0
h and E1

h , for any 1 ≤ n ≤ N − 1, we have

Sn+1
≤

 (E1
h − E1)− (E0

h − E0)

τ0


2

+ ∥∇ × (E1
h − E1)∥2

1/2

+ C
n

m=1


K∈Th

hK (∥RK (Eh)∥0,K + ∥DK (Eh)∥0,K )

+


F∈Fh

h1/2
F (∥[n̂ × curlEm+1

h ]F∥0,F + ∥JF (Eh)∥0,F )


.

Proof. Choosing φ =
en+1

h −en
h

τn
in (39), and using the Cauchy–Schwarz inequality, we have

(Sn+1)2 ≤ Sn
· Sn+1

+ r(φ). (41)

Below we shall estimate r(φ). Since φ =
en+1

h −en
h

τn
∈ H0(curl;Ω), by Lemma 4.1 we can decompose φ as

φ = φ⊥
+ φ0,

where φ⊥
∈ H⊥

0 (curl;Ω) and φ0
∈ H0

0 (curl;Ω). By Lemma 4.2, φ0 can be written as φ0
= ∇ξ for some ξ ∈ H1

0 (Ω).
Furthermore, by Lemma 4.3, φ⊥ can be decomposed as

φ⊥
= ϕ + ∇ψ,

where ϕ ∈ H1(Ω) ∩ H0(curl;Ω) and ψ ∈ H1
0 (Ω).

With the above decompositions, we see that

r(φ) = r(ϕ)+ r(∇ψ)+ r(∇ξ). (42)

Using integration by parts and Lemma 4.4, we have

r(ϕ) = r(ϕ − Πhϕ)

= τn


K∈Th

(RK (Eh), ϕ − Πhϕ)K + τn


F∈Fh

([n̂ × curlEn+1
h ]F , ϕ − Πhϕ)F

≤ τn


K∈Th

∥RK (Eh)∥0,K · hK +


F∈Fh

h1/2
F ∥[n̂ × curlEn+1

h ]F∥0,F


|ϕ|1. (43)

By Lemmas 4.1–4.3, and definition (40), we obtain

|ϕ|1 ≤ C∥φ⊥
∥H(curl;Ω) ≤ C∥∇ × φ⊥

∥ = C∥∇ × φ∥ ≤
C

τn
(Sn+1

+ Sn). (44)
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Substituting (44) into (43), we have

r(ϕ) ≤ C


K∈Th

hK ∥RK (Eh)∥0,K +


F∈Fh

h1/2
F ∥[n̂ × curlEn+1

h ]F∥0,F


(Sn+1

+ Sn). (45)

Similarly, using integration by parts and Lemma 4.4, we can obtain

r(∇ψ) = r(∇(ψ − Ihψ))

=


En+1

h − En
h

τn
−

En
h − En−1

h

τn−1
− τnf n+1,∇(ψ − Ihψ)


= −τn


K∈Th

(DK (Eh), ψ − Ihψ)K + τn


F∈Fh

(JF (Eh), ψ − Ihψ)F

≤ τn


K∈Th

∥DK (Eh)∥0,K · hK +


F∈Fh

h1/2
F ∥JF (Eh)∥0,F


|ψ |1

≤


K∈Th

hK ∥DK (Eh)∥0,K +


F∈Fh

h1/2
F ∥JF (Eh)∥0,F


(Sn+1

+ Sn), (46)

where in the last step we used the estimate

|ψ |1 ≤ C∥φ⊥
∥H(curl;Ω) ≤ C∥∇ × φ⊥

∥ = C∥∇ × φ∥ ≤
C

τn
(Sn+1

+ Sn).

By the same technique, we can obtain

r(∇ξ) = r(∇(ξ − Ihξ))

≤ τn


K∈Th

∥DK (Eh)∥0,K · hK +


F∈Fh

h1/2
F ∥JF (Eh)∥0,F


|ξ |1

≤ τn


K∈Th

hK ∥DK (Eh)∥0,K +


F∈Fh

h1/2
F ∥JF (Eh)∥0,F


Sn+1, (47)

where in the last step we used the following estimate

|ξ |1 = ∥φ0
∥ ≤ ∥φ∥ ≤ Sn+1. (48)

Substituting the estimates (42)–(47) into (41), we have

(Sn+1)2 ≤ Sn
· Sn+1

+ C


K∈Th

hK (∥RK (Eh)∥0,K + ∥DK (Eh)∥0,K )

+


F∈Fh

h1/2
F (∥[n̂ × curlEn+1

h ]F∥0,F + ∥JF (Eh)∥0,F )


(Sn+1

+ Sn). (49)

Adding (Sn)2 to both sides of (49), we obtain

1
2
(Sn+1

+ Sn)2 ≤ (Sn+1)2 + (Sn)2 ≤ Sn(Sn+1
+ Sn)+ C


K∈Th

hK (∥RK (Eh)∥0,K + ∥DK (Eh)∥0,K )

+


F∈Fh

h1/2
F (∥[n̂ × curlEn+1

h ]F∥0,F + ∥JF (Eh)∥0,F )


(Sn+1

+ Sn), (50)
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which can be reduced to

Sn+1
≤ Sn

+ 2C


K∈Th

hK (∥RK (Eh)∥0,K + ∥DK (Eh)∥0,K )

+


F∈Fh

h1/2
F (∥[n̂ × curlEn+1

h ]F∥0,F + ∥JF (Eh)∥0,F )


. (51)

Summing up both sides of (51) with respect to n concludes the proof. �

5. Conclusions

In this paper, we initiate the study of a posteriori error estimates for time-dependent Maxwell’s equations.
Estimators are obtained for both semi and fully discrete schemes. Though our proofs are given for ϵ = µ = 1, we
believe that similar results can be directly proved for variable parameters ϵ and µ if they are bounded below and above
in Ω . Further derivation of other error estimators for more general cases (including other type boundary conditions)
will be explored. The numerical implementation of the a posteriori error estimators for time-dependent Maxwell’s
equations will be considered in the future, since our past works on wave propagation simulation in metamaterials [30]
showed that the adaptive finite element method seems necessary for 3D time-domain cloaking simulation [39].
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