
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. ( ) –
www.elsevier.com/locate/cma

Multi-physics modeling of non-isothermal compositional flow on
adaptive grids

Benjamin Faiglea,∗, Mohamed Ahmed Elfeelb, Rainer Helmiga, Beatrix Beckera,
Bernd Flemischa, Sebastian Geigerb

a IWS, Department of Hydromechanics and Modelling of Hydrosystems, University of Stuttgart, Germany
b Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, United Kingdom

Abstract

A multi-physics framework for compositional and non-isothermal two-phase flow in a porous medium is presented which adapts
locally the model complexity depending on the physical state. It is based on a sequential (IMPET) solution scheme. As a second
adaptive strategy, the simulation grid can be refined locally. This may lead to a mesh with hanging nodes, which is treated by a
multi-point flux approximation (MPFA) for improved flux representation. The two adaptivity concepts are employed to simulate a
combined subsurface CO2 injection and geothermal application in an existing reservoir, the Tensleep formation.
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1. Introduction

Numerical models for subsurface flow and transport often have to cover long time periods and large spatial do-
mains. If, for example, CO2 is to be injected into the subsurface to mitigate its effect as a greenhouse gas, it is of
interest whether the CO2 could leak back in the atmosphere or whether the displaced brine might encroach upon
valuable freshwater resources. In such a case, the simulation domain has to cover more than only the vicinity of
the injection well, and the simulation tool needs to be able to mimic the relevant physical processes. Such detailed
modeling on field scales requires the development of efficient modeling tools.

In this example and also in many other interesting applications of multi-phase flow in porous media, the local level
of complexity is highly variable. Complex flow regimes that need to be resolved in great detail may occur only in
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Fig. 1. Schematic of the multi-physics framework: different models are applied locally to model the combined problem. The simulation grid is
adaptively refined around the red plume to capture the complex physical processes occurring here. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

a small region of the whole modeling domain, which means that a fine grid is required only in that region while a
coarse grid might be sufficient in the rest of the domain. Likewise, the physical processes may require a more detailed
conceptual approximation of the model locally, while a simpler conceptual model might be sufficient in other model
regions. Over long periods of time, some driving forces may become more significant and others less. At best, the
level of numerical detail should be adapted to the underlying processes and not be decided a priori by the modeler.

The multi-physics concept adapts the complexity of the numerical model locally according to the underlying
physical processes. Complicated physics are approached with complex abstractions that differ from those applied
in flow regimes that remain simple (Fig. 1). More specifically, a model with a simplified treatment of non-isothermal
behavior is used if the temperature variation is sufficiently small, and two-phase conditions are only considered in
simulation cells if more than a single phase can be present. The regions in which a particular model is applied need to
be updated in each time steps, requiring the development of corresponding indicators for the allocation of each model.
In addition to the model adaptivity, an adaptive refinement of the computational grid gains detail and accuracy in
regions of interest while the global system remains coarse enough to be solved with reasonable effort. These dynamic
or adaptive simulation frameworks attempt to find a balance between accuracy and detail, reason and efficiency. They
allow us to use locally the appropriate and best numerical method and grid resolution available.

In the remainder of this introduction, our developments are put in the appropriate literature context. Section 2
presents the full numerical model for non-isothermal compositional two-phase flow including a multi-point flux
approximation that is applicable to adaptive grids with hanging nodes. In Section 3, a multi-physics concept is
introduced that divides the computational domain in four possibly time-dependent sub-domains according to the
underlying local physical processes. Section 4 first provides a simple example that illustrates the efficiency gain for
using this multi-physics model compared to the full model, and then presents an application to a realistic field-case
scenario. Finally, some conclusions are given in 5.

1.1. Literature context

This study employs the numerical models for compositional two-phase flow and the multi-physics framework
to combine individual models of different complexity that were developed in [1,2]. The bonding of the models is
simplified by formulating them mathematically by means of one pressure equation based on [3] and sequentially
solved transport equations; this circumvents coupling by domain decomposition techniques [4,5] because the math-
ematical structure of the equations and number of primary variables remains the same for all models. Decompo-
sition techniques, however, would also allow the use of different numerical solution schemes for the individual
models [6]. A good overview of different coupling schemes and multi-physics models can be found in Wheeler
and Peszyńska [7].

The second branch of adaptivity considered here involves a dynamic adjustment of the simulation grid, with focus
on regular grids. Adaptive mesh refinement increases the resolution of the simulation mesh in regions of high interest
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while maintaining a coarse grid everywhere else. The technique is widely used in research into porous media flow
and is being developed further [8–10]; many authors nest the refined areas in the coarse grid in a multi-grid or do-
main decomposition framework [11–16], allowing for parallel computations and an individual temporal resolution
of patches of coarse and fine grid. In the former approach on an integrated adaptive grid, the flux stencil has to be
increased locally to avoid erroneous fluxes over interfaces between fine to coarse cells. A class of methods capable
of doing this, the so-called Multi-Point Flux Approximation (MPFA), was initiated by [17,18]. One particular MPFA,
the L-method [19,20], is perfectly suited for irregular grids that develop if regular grids are refined or coarsened.

2. Model for non-isothermal compositional two-phase flow

In the following, the full numerical model for the simulation of non-isothermal compositional two-phase flow
is presented. Section 2.1 presents the mathematical model that consists of one mass balance for each component
and one energy balance. The time discretization in form of a sequential solution scheme is provided in Section 2.2.
Particular emphasis if paid to the calculation of the appropriate time step size in Section 2.3, where a new way of
incorporating the conduction term is given. Section 2.4 presents the spatial discretization in form of a multi-point
flux approximation method that allows hanging nodes on adaptively refined grids. The required flash calculations are
explained in Section 2.5.

2.1. Mathematical model

The conservation of mass valid for compositional two-phase flow in porous media can be formulated for each
component κ in the phases α as


α

∂(φSαϱα Xκ
α)

∂t
+ ∇ ·


α

Xκ
αϱαvα + Jκ

α


+ qκ

= 0. (1)

We denote the porosity φ, Sα is the phase saturation, t represents the time, and qκ are sources or sinks. Supplementary
thermodynamic constraints specify the density ϱα and the solubility limits to calculate mass fractions Xκ

α . The details
of the thermodynamic relations used in this study can be found in [21]. The diffusive flux J plays a minor role
for the length scales considered here and will thus be neglected in the following. We express the phase velocity
vα by

vα = −λαK(∇ pα − ϱαg), (2)

where λα is the phase mobility, K the intrinsic permeability of the porous medium, and g the gravity vector. The phase
pressures pα are related via a macro-scale capillary pressure–saturation relationship pc(S) in the parameterization of
BROOKS–COREY

pc(Sw) = pd


Sw − Swr

1 − Swr

−
1
λ

for pc ≥ pd . (3)

On the assumption of local thermodynamic equilibrium, energy is conserved if

∂


φ

α

Sαϱαuα + (1 − φ)ϱscs T


∂t

+ ∇ ·


α

(hαϱαvα − λ̄E∇T )


+ q E

= 0. (4)

The storage term in the energy balance comprises both the energy stored in all fluids, where uα expresses the mass-
specific internal energy of phase α, as well as the energy of the solid phase by means of its heat capacity cs . The
temperature is denoted T , and the phase enthalpy hα . It is again noted that diffusive fluxes are neglected. Therefore,
thermal convection comprises the heat transport through advective fluxes, supplemented by the conductive heat flux
of the porous medium. Conduction is expressed in terms of the combined heat conductivity λ̄E of the fluids and the
porous medium.
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2.2. Time discretization

We employ an “IMPET” (Implicit Pressure, Explicit Transport) scheme, where the conservation equations of the
last section are reformulated into one pressure equation to obtain a flow field for the transport equations. This specific
approach was proposed by [3] and analyzed in [22,23]. We follow the derivation in [24].

Porosity is defined as the void space in the porous media that can be accessed by and is filled by a specific volume
of fluids, v̂ =


α vα (m3/m3), which yields

v̂ = φ. (5)

We now approximate the changes in time by a Taylor series. On the assumption of a rigid porous medium, the right
hand side of the volume balance remains unchanged,

v̂ (t) + 1t
∂v̂

∂t
+ O


1t2


= φ. (6)

Under non-isothermal conditions, the fluid volume changes in time if there are variations of pressure, a change of
mass or of energy,

∂v̂

∂t
=

∂v̂

∂p

∂p

∂t
+


κ

∂v̂

∂Cκ

∂Cκ

∂t
+

∂v̂

∂ û

∂ û

∂t
, (7)

where Cκ
= φ


α ϱα Sα Xκ

α represents the total concentration, which accounts for the total mass of a component in a
specific volume, so it is not a phase density.

Inserting (7) in (6), neglecting the higher-order terms, and reordering yields

∂v̂

∂p

∂p

∂t
+


κ

∂v̂

∂Cκ

∂Cκ

∂t
+

∂v̂

∂ û

∂ û

∂t
=

φ − v̂

1t
. (8)

The first term in this pressure equation accounts for changes in the fluid volume caused by variations in pressure. It
can be rewritten in terms of the total compressibility ĉ = ∂v̂/∂p of the fluid mixture. The second summand expresses
the variation of total fluid volume with a change of mass (for details, see [25]). It contains a partial derivative of
fluid volume over mass, ∂v̂/∂Cκ

= ∂v̂/∂mκ , multiplied by the local changes in mass due to fluxes through the cell
interfaces, ∂Cκ/∂t . These changes in mass are quantified by the traditional transport equation for the components,
derived from mass conservation (see [25]),

∂Cκ

∂t
= −∇ ·


α

ϱαvα Xκ
α


− qκ . (9)

The successive term captures the feedback from changes of the total internal energy û = φ


α Sαϱαuα + (1 −

φ)ϱscs T , which is accordingly given by the transport equation for energy,

∂ û

∂t
= −∇ ·


α

hαϱαvα − λ̄E∇T


− q E . (10)

The term on the right-hand side of (8) vanishes if the volume constraint in (5) is fulfilled. However, if the fluids
involved are partially miscible and compressible and the changes in fluid density are not implicitly incorporated, a
residual ϵ =

φ−v̂
1t remains which will be discussed in more detail in Section 2.4.

2.3. Time-step constraint

The explicit treatment in the transport step restricts the size of the time-step [26],

1t = a


Si

Fi


, a ≤ 1. (11)
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Fig. 2. Schematic one-dimensional description of the time-step limitation for the conduction term.

This CFL-like criterion requires that the representative flux Fi may not exceed the available storage Si , which needs
to be valid for all conservation equations, for mass and energy. For the transport of mass, we employ Si =


κ Cκ ,

and the maximum of the observed out- or in-flux of cell i as proposed in [27],

Fi = max
γ∈Ni


α

nT
γ vα,γ Aγ

 . (12)

Above, Ni denotes the set of interfaces of cell i to neighboring cells, γ one such interface with area Aγ , nγ the normal
vector pointing outward of i and vα,γ the α-phase velocity associated with γ .

We now proceed with the derivation of an appropriate CFL-like criterion for the transport of energy and will define
quantities SE

i and F E
i corresponding to (11). Wherever no ambiguity arises, the subscripts i and γ are dropped for the

sake of brevity. For thermal systems, Geiger et al. [28] propose a criterion derived from the linearized form of (10)
with respect to temperature,

ĉp
∂T

∂t
= −∇ ·


α

cp,αϱαvαT − λ̄E∇T


− q E , (13)

where ĉp = (1 − φ)ϱscp,s + φ


α ϱαcp,α Sα abbreviates the combined heat capacity of all fluids and the solid.
This equation can be reformulated in terms of SE and F E of (11), if internal sources of energy and conduction are
neglected, and by dropping the mixed term −T ∇ · F E , yielding

SE ∂T

∂t
= −F E

∇ · T . (14)

It provides the energy equivalent of the storage SE
i = Vi ĉp. Geiger et al. [28] relate the energy flux function F E to a

“heat transfer velocity” vth ,

vth :=


α

cp,αϱαvα

ĉp
. (15)

The conduction term in (13), however, can only be cast into the form of (14), if the temperature T can be factored out
of the gradient ∇T in (13). This can be achieved by defining a specific interpolation of ∇T that is described in the
following for one dimension and uniform grid spacing.

Given a regular grid, cell i lies between its neighbors ℓ and r (Fig. 2). The normal components of the temperature
gradients at both interfaces γℓ and γr are given by

Θℓ = nT
γℓ

∇T (γℓ) =
Tℓ − Ti

1x
, (16)

Θr = nT
γr

∇T (γr ) =
Tr − Ti

1x
. (17)
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Let Θ(x) be the interpolation function for the gradient ∇T that satisfies

∂Θ(x)

∂x
= ξΘ(x), (18)

for a constant value of ξ on cell i , i.e. x ∈ (γℓ, γr ). The requirement (18) allows us to factor out the temperature T
in (13) if the value of ξ can be determined by the discrete values Θℓ and Θr at the boundary of cell i . From (17) and
(18), it follows that

Θ(x) = Θr eξ(x−γr ). (19)

Inserting (16) for x at the position of γℓ gives

eξ(1x)
=

Θℓ

Θr
, (20)

with ξ = (1x)−1
· ln

Θℓ

Θr
. (21)

In one dimension, the heat transfer velocity is therefore bounded by

vth :=


α

cp,αϱαvα + λ̄Eξ

ĉp
, (22)

which enhances the formulation for convective fluxes, (15).
In the notation of (11), integral measures of F E

i per cell are desired. For each cell i in a regular grid, every principal
direction yields an approximate value for the constant ξ based on two opposing interfaces. The maximum value over
each principal direction gives the cell quantity ξi that enters the calculation of F E

i . The largest convective flux per
interface, cf. (12), is considered. Combined, this yields

F E
i = max

γ∈Ni


α

nT
γ vα,γ ϱαcp,α Aγ

+ λ̄Eξi . (23)

The advantage of this CFL criterion is that it only reuses quantities that have to be calculated anyway in the transport
scheme, thus requiring negligible additional computational efforts. An alternative mapping of the gradients at the
cell’s interfaces to its center has to be found if irregular grids are used. Likewise, the method presented here implicitly
assumes that the temperature gradient is always in the direction of convection.

The size of the time-step is then finally determined by combining the transport of mass and energy along Eq. (11),

1t = a


min


Si

Fi
,

SE
i

F E
i


, a ≤ 1. (24)

2.4. Discretization in space

The governing equations (8)–(10) are discretized in space with a cell-centered finite volume method (CCFV, [29]).
This requires an approximation of the flux f through the interface γ of each cell i . Traditionally, the “Two-Point Flux
Approximation” (TPFA) is employed, using information from the two neighboring cells, denoted by i and j :

fγ = −Aγ


α

ϱαnT
γ vα = −Aγ nT

γ Kγ di j


α

ϱαλα


pα, j − pα,i

1x
− ϱαgT di j


. (25)

Here, xi is the position vector of the center of cell i and 1x = |x j − xi | is the distance to the neighboring cell j ; the
vector di j = (x j − xi )/1x connects these centers scaled by the unit length. Moreover, Kγ denotes an appropriately
averaged permeability at the interface γ . Although the TPFA is very robust, there are limits to its applicability, for
example in the case of anisotropic permeability [30,31]. If a regular grid is locally refined and closure is omitted,
which is done in our study, the TPFA fails to reproduce fluxes correctly around the hanging nodes [32].
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Several approaches exist that overcome these shortcomings, e.g. [10,32,33]. In this work, the stencil for the
gradients on irregular faces is extended using a “multi-point flux approximation” (MPFA L-method, for details and
derivation see [34]). In order to derive formulae that are valid for both approaches, TPFA and MPFA, Eq. (25) is
transformed into a common form for both methods.

The index set Iγ is introduced containing all cells k that contribute to the flux stencil for the interface γ . Eq. (25)
is generalized to

fγ = −


α

ϱαλα


k∈Iγ

τk(pα,k − ϱαgT xk). (26)

In (26), the geometry and rock properties are combined to the “transmissivity coefficients” τk . Compared to the TPFA
(|Iγ | = 2), the MPFA computes τk by solving a local problem that includes cells in the surroundings of the interface
of interest, i.e. |Iγ | > 2 in general. As this is a costly operation, it is only performed where necessary, around the
hanging nodes caused by grid adaptivity. If both neighboring cells lie on the same grid level, the faster TPFA is used.

The transport equation calculates the change in mass 1Cκ
i over the next time-step for each cell i of volume Vi as

1Cκ
i

1t
=


γ

Aγ

Vi


α

ϱαλα


k

τk


pα,k − ϱαgT xk


Xκ

α − qκ
i . (27)

The energy transport is formulated analogously as

1ûi

1t
=


γ

Aγ

Vi


α

ϱαλα


k

τk


pα,k − ϱαgT xk


hα − nT

γ di j λ̄E
T j − Ti

1x


− q E

i . (28)

The discretization of the pressure equation is more involved because of the derivatives in the fluid volume, which
can only be assumed to be piecewise constant in each cell if slightly compressible systems are considered [10]. For
other cases, a volume integral appears. To calculate it, Fritz et al. [1] propose subdividing each discrete cell i into one
sub-volume per interface γ that is scaled by the face area Aγ and the cell’s surface area Ui =


γ Aγ . The volume

integral over the gradient in volume derivatives is then calculated by a summation of these sub-volumes


γ
Aγ

Ui
· Vi .

In each of these sub-volumes, the gradient of each volume derivative is approximated linearly between the discrete
values in cell i and j , and the remaining flux expressions in the volume integral equal those in the boundary integral.

This gives the discretized pressure equation for compositional non-isothermal flow,

Vi ct,i
pt

i − pt−1t
i

1t

−


γi j

Aγi j


α

ϱαλα


k

τk


pα,k − ϱαgT xk


κ

Xκ
α

∂v̂

∂Cκ
+ hα

∂v̂

∂ û



− nT
γ di j λ̄E

T j − Ti

1x

∂v̂

∂ û



+


γi j

Vi
Aγi j

Ui


α

ϱαλα


k

τk


pα,k − ϱαgT xk



×


κ

Xκ
α

∂v̂ j
∂Cκ

j
−

∂v̂i
∂Cκ

i

1x
+ hα

∂v̂ j
∂ û j

−
∂v̂i
∂ ûi

1x

− nT
γ di j λ̄E

T j − Ti

1x

∂v̂ j
∂ û j

−
∂v̂i
∂ ûi

1x


= Vi


κ

∂v̂

∂Cκ
qκ

i + Vi
∂v̂

∂ û
q E

i + Viαr
v̂ − φ

1t
. (29)

The derivatives of fluid volume are computed numerically using a secant method. Its increment, meaning the expected
changes in mass or energy inside each cell, is determined by a prediction step using the pressure field of the old
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time-step t − 1t . This estimate also determines the upwind direction in the pressure equation. For both the pressure
and the transport equation, first-order upwinding is employed.

As this formulation requires all phase pressures, and only one pressure is a primary variable, the other phase
pressure is determined by the capillary pressure of the last time-step. So, if pn is chosen to be the primary variable,
the corresponding phase pressure of the wetting phase pw is related via pt

w = pt
n − pt−1t

c , which induces a “capillary
flux” driven by . . .


k τk pc,k . The pressure field at time t is calculated with the secondary variables at time t − 1t .

Hence, the volume balance in (5) is not necessarily fulfilled, and a residual,

ϵ = φ − v̂, (30)

remains. An iterative solution is avoided for reasons of efficiency. To prevent the volume error ϵ from building up,
the error of the last time-step is introduced as an artificial source- or sink-term in the pressure calculation of the
following time-step (last term of Eq. (29)). The error is dampened by a heuristic factor αr , mostly in the range
0.2 ≤ αr ≤ 0.7 [10]. This term can be crucial for the stability of the method, as it strongly depends on the size of the
time-step. In this study, high flow velocities lead to very small but also very stable time-step sizes, which also keep
the volumetric discrepancy low.

2.5. Isoenergetic and isobaric flash calculation

Isoenergetic and isobaric flash calculations performed in porous media simulations compute the composition Xκ
α ,

phase distribution Sα and temperature T for a given pressure, feed fraction (Zκ
= Cκ/(


κ Cκ)) and energy. If the

temperature was known, a classical isothermal isobaric flash calculation could be performed (see, e.g., [35]): given
temperature, pressure and composition, the equilibrium factors K κ are calculated using an appropriate thermodynamic
model. The RACHFORD–RICE equation for two phases,

κ

Zκ(K κ
α − 1)

1 + νβ(K κ
α − 1)

= 0, (31)

can then be solved to get the phase fraction να , and thus also the saturation by means of the density,

Sα =
να/ϱα

α

(να/ϱα)
. (32)

In the non-isothermal case, however, the temperature is unknown and only an internal energy ugiven is provided.
We follow the approach by Agarwal et al. [36], depicted in Fig. 3. A p, T -flash at an intermediate temperature, as
discussed above, is nested in an outer loop to calculate a temperature that matches the specified energy ugiven. An
objective function is defined that relates the internal energy um at iteration step m to the specified internal energy from
the transport solution,

gE,m = um − ugiven =


κ

Cκ


α

uανα + (1 − φ)ϱscs Tm


− ugiven. (33)

To avoid computing costly derivatives of thermodynamic functions, a secant method is applied to update the temper-
ature and minimize the residual (33), yielding

Tm+1 = Tm − gE,m
Tm − Tm−1

gE,m − gE,m−1
. (34)

If the fluid system remains far away from the boiling temperature, the iteration can be started with an arbitrary initial-
ization point such as Tm−1 = T t−1t

− 10 ◦C and the temperature of the last time-step Tm = T t−1t . The according
internal energies um−1 and um are determined by a p, T -flash at those temperatures. The newly found temperature
enters the regular p, T -flash, which yields the necessary quantities ϱα, να, Sα and hence also the new capillary pres-
sure pc to update the internal energy and determine the new residual gE . Iteration is stopped as soon as the fraction
gE/ugiven lies below a given tolerance.
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Fig. 3. NI flash for non-boiling fluids “p” abbreviates phase, “c” abbreviates component.

3. Multi-physics

In many subsurface applications, simulations are performed to estimate the effect of a local activity on the far-field:
if a second fluid is injected in a well, for example, what are the effects on background flow in the reservoir, and to
what extent will there be a significant increase in pressure? Can injected CO2 displace formation brine into freshwater
aquifers? In these situations, large parts of the modeling domain remain saturated by the reservoir fluid. Only in a
small region of great interest, around the injection well and the plume of the injected fluid, complex physics prevail,
which requires a complex model such as the one described in Section 2.

Using such involved models for simpler systems exhibits excess computational work. Multi-physics models seek
to apply the least complex model locally that still captures the relevant processes to assemble the global solution
system efficiently. To do so, the modeling domain is divided into non-overlapping sub-domains with different model
complexity. In this work, a two-phase sub-domain distinguishes between cells where a single- or a two-phase model
is applied (as is done in [2,1]), and a further NI-sub-domain indicates where the full non-isothermal functionality is
employed.

Faigle et al. [2] show for isothermal systems that the pressure equation can be simplified significantly for single-
phase situations: the phase compressibility cα rather than ĉ is sufficient; the derivative in the fluid volume then equals
the phase density, and its gradients (the term over lines 4 and 5 of Eq. (29)) vanish,

Vi cα

pt
i − pt−1t

i

1t
+


γi j

Aγi j λα


k

τk


pα,k − ϱαgT xk


= Vi


κ

qκ
i

ϱα

+ Viαr
vα − φ

1t
. (35)

Under non-isothermal conditions, the fluid volume can change drastically in single-phase regions as well. Hence, the
volume derivatives and their gradients cannot be fully neglected. The pressure equation can nevertheless be simplified
to

Vi cα

pt
α,i − pt−1t

α,i

1t
−


γi j

Aγi j


λα


k

τk


pα,k − ϱαgT xk


1 + ϱαhα

∂vα

∂uα


+ di j λ̄E

T j − Ti

1x

∂vα

∂uα



+


γi j

Vi
Aγi j

Ui


hαλα


k

τk


pα,k − ϱαgT xk


+ di j λ̄E

T j − Ti

1x

∂vα

∂uα

 ∂vα, j
∂uα

−
∂vα,i
∂uα

1x

= Vi


κ

qκ
i

ϱα

+ Viαr
vα − φ

1t
. (36)

In principle, the temperature in simulations with the non-isothermal model is the result of the iterative u, p-flash
(Section 2.5). A linear approximation of the temperature is sufficient if the system is single-phase and changes in
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Table 1
Multi-physics summary.

Sub-domain Pressure equation Volume derivatives Flash

1p2c Eq. (35) No No
1p2c-NI Eq. (36) ∂vw/∂uw with 1vw u, p-flash

via new T from (37)
2p2c Eq. (21) in [2] All but ∂v̂/∂ û p, T -flash, T via (37)
2p2c-NI Eq. (29) All u, p-flash

Fig. 4. Simulation domain and boundary conditions. Red cuboid marks the injection area.

temperature are marginal,

T = Tinit +
1
ĉv


û − û(Tinit)


, (37)

ĉv = (1 − φ)ϱscs + φϱαcv,α. (38)

Outside the NI-sub-domain, (37) provides a temperature that is directly used in a p, T -flash to obtain the secondary
variables. This linear approximation can also provide an approximation for the estimated change in temperature, which
allows a direct calculation of volume derivatives in (36) by means of one additional p, T -flash with T + (1T )est.

Table 1 summarizes the four different levels of model complexity that are incorporated in our multi-physics
approach. The assignment of a cell to one of the sub-domains is updated in each time step. By respectively adding
one element layer around the NI-sub-domain and the 2p2c-sub-domain, the CFL condition guarantees that those
sub-domains are large enough such that the model complexity associated with one cell will not increase during one
time step. For more details on the selection of the sub-domains, we refer to the isothermal case treated in [2,1].

4. Numerical examples

The numerical model described in the previous sections has been implemented in the open-source porous-media
simulator DuMux [37], which is based on the Distributed and Unified Numerics Environment DUNE [38]. As grid
manager, ALUGrid is employed [39], which provides the necessary capabilities for local grid adaptivity. The model
will be tested by means of two numerical examples. In Section 4.1, a simple problem setup is chosen to analyze the
efficiency gain for using the multi-physics model compared to the full model and to investigate the influence of the
injection rate on the size of the sub-domains. Section 4.2 is devoted to a more demanding problem setup that involves
parameters taken from a real reservoir.
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Fig. 5. 2-phase sub-domain (left) and non-isothermal sub-domain (right) in one half of the domain (white color). Saturation distribution is shown
in the other half of the domain.

Fig. 6. Vertical slice through the center of the domain. Total concentration of CO2 (top row) and plume extent (bottom row) after 42 h for the full
non-isothermal compositional two-phase model (left column) and the multi-physics model (right column).

4.1. Efficiency analysis and influence of the injection rate

A three-dimensional simulation domain has been chosen to compare the multi-physics model with a full non-
isothermal compositional two-phase model in terms of computational efficiency. The bottom and top as well as two
opposing sides of the domain are confined by no-flow boundaries, with constant pressure conditions on the remaining
side boundaries at 1 MPa (see Fig. 4). The domain is a cuboid with equal side lengths of 10 m. CO2 at 423.15 K
is injected in the middle of the domain in a cuboid with equal side lengths of 1 m at an injection rate of 117 kg/h.
The domain is initially saturated with brine at 288.15 K. To analyze the efficiency of the multi-physics algorithm the
simulation is run on a non-adaptive grid with 40×40×40 cells (64,000 cells in total). Table 2 lists the soil parameters
and Table 3 lists the parameters used in the simulation.

The multi-physics model and the full non-isothermal compositional two-phase model show perfectly agreeing
results (Fig. 6). During the simulation time of 42 h the CO2 phase rises fast to the top of the domain where it
accumulates and starts to spread. Some of the CO2 dissolves in brine and slowly moves towards the bottom of the
domain. Results from the multi-physics model (Fig. 5) show that the two-phase sub-domain tracks the evolution of the
CO2 plume, that means the part of the domain where two phases are present. The non-isothermal sub-domain evolves
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Fig. 7. Percentage of cells in 2-phase (top) and non-isothermal sub-domain (bottom) with varying injection rate.

Table 2
Soil parameters for the efficiency analysis.

Porosity Permeability Thermal conductivity
φ K λs

0.005 1e−11 m2 2 W/(m K)

Table 3
Simulation parameters for the efficiency analysis.

Residual saturations BC-parameter CFL Error
Sw,r Sn,r pd λ factor a factor ae

0.1 0.0 10,000 Pa 2 0.7 0.7

near the injection area of CO2, and partly spreads downwards. Near the injection area the non-isothermal sub-domain
is overlapping with the two-phase sub-domain. Full non-isothermal two-phase effects are considered here. Full non-



B. Faigle et al. / Comput. Methods Appl. Mech. Engrg. ( ) – 13

Fig. 8. Porosity distribution in the Tensleep formation. The vertical model dimension is scaled by a factor four. The yellow arrow marks the
injection well.

isothermal effects under single-phase conditions are modeled below the injection area. In this part of the domain flow
processes are slower, resulting in less convection and thus a higher change in temperature due to the CO2 injection.

The multi-physics model considers two-phase effects during the whole simulation time for this specific problem
only for a maximum of 2.2 % of the cells. Full non-isothermal effects are only considered for a maximum of 0.6 %
of the cells. As a result, the multi-physics model requires only 20 % of the CPU time that is needed for the full
non-isothermal compositional two-phase model. For this simple problem setup, this shows the efficiency gain due
to the multi-physics framework which allows the solution of a simpler and computationally less demanding model
abstraction in most parts of the domain without losing accuracy of the solution.

Similar simulations are carried out to determine how the relation of advection to diffusion influences the evolution
of the multi-physics sub-domains. For this purpose the injection rate of CO2 is varied between 25, 71, 117, 183 and
229 kg/h to enhance advection in the system by a larger influx of CO2. The same simulation setup and parameters
as above are chosen. The percentage of cells belonging to the sub-domains are shown in Fig. 7. An increase of the
injection rate leads to an increase in the size of the plume and thus to a larger two-phase sub-domain. The size of the
non-isothermal sub-domain depends on the number of cells where the temperature compared to the initial temperature
exceeds a certain value. The non-isothermal sub-domain increases with a larger injection rate because along with the
mass injected also the energy in the system increases.

4.2. Modeling of the Tensleep formation

In the following, the multi-physics model is applied to a realistic field test case. The background is described
in Section 4.2.1, while the problem setup is presented in Section 4.2.2. Section 4.2.3 is devoted to the numerical
challenges that result from this complex setup, and Section 4.2.4 finally presents the simulation results.

4.2.1. Background
A large-scale example of a real subsurface reservoir has been selected to show the applicability of the concepts

presented in this work to a very challenging physical problem. We use a model of the Tensleep formation [40,41]
in Wyoming, USA. This formation comprises mainly clastic sediments (sandstones) as well as some dolomites. It
contains the only federally owned and operated oil field in the USA and has the advantage that the reservoir data are
in the public domain. In the course of field operation, strategies such as gas injection were introduced in the field for
enhanced oil recovery purposes. For simplicity, we assume that all accessible flow paths are already fully filled with
brine, because water has been produced for decades [42].
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Fig. 9. Simulation domain for adaptive simulations without degenerated elements (i.e. only the cells of the main reservoir region bounded by the
sealing fault), showing the vertical permeability Kz in (m2). The vertical model dimension is scaled by a factor four. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Due to its dome-shaped structure (Fig. 8), being one interval within the “teapot dome” oil field, and the availability
of detailed data, this formation is perfectly suited for scientific studies on CO2 injection. The outer regions of the
Tensleep formation are also being considered for geothermal energy extraction. Possibly, CO2 storage and geothermal
energy extraction can be combined (e.g. Randolph et al. [43], Salimi and Wolf [44], Buscheck et al. [45]), but this
requires re-injection of the produced cold brine.

After decades of production, the Tensleep formation still remains at approximately 88 ◦C and a multitude of wells
are available as well. Thus, a concurrent geothermal usage of extracted formation fluid may be possible in principle.
Such a scenario provides an excellent opportunity to apply the concepts presented in this work to a real-world subsur-
face problem: using the Tensleep formation for concurrent CO2 storage and geothermal extraction requires a numerical
framework that can handle the complex physical processes pertinent to both applications. Considering the large sim-
ulation domain, both types of physical complexity occur in only restricted model sub-regions. Hence, this modeling
problem is well-suited for the multi-physics framework. In particular, the initial grid resolution of 30 m × 30 m needs
to be refined to properly resolve the flow between the wells, which are spaced approximately 450 m apart.

This section shows a simulation using the multi-physics framework with adaptive grid refinement for a real reser-
voir under challenging operating conditions, highlighting its advantages and weaknesses. This proof-of-concept study
is intended neither to investigate the feasibility of such an operation nor to evaluate the injection strategy.

4.2.2. Description of the formation and simulation setup
The full simulation domain is depicted in Fig. 8, featuring a dome-shaped structure that is intersected by a large

sealing fault. The simulation grid follows the geological model, which was set up using seismic data and data from
15 well logs. Porosity and permeability distributions in the field were modeled using geostatistic methods that were
conditioned to the well data. In addition, the original geological model contained a stochastically generated discrete
fracture network, which was set up using well and outcrop data [46]. Although such a fractured reservoir should
be modeled using a dual-continua formulation, this is beyond the scope of this study. As the matrix permeability is
very low and the fracture network highly connected, we use the fracture permeability and the matrix porosity, fully
acknowledging that the exchange processes between the fracture and matrix are not properly modeled.

The bottom and top of the domain are confined by a no-flow boundary, with hydrostatic pressure conditions on the
side boundaries at 2370 psi (≈16 MPa) on the reference level of 60 m below sea level [47]. Well “44-1-TpX-10” is the
injection well. It is assumed that 104 tons/day of CO2 [47] are injected at 35 ◦C into the sandstone layer which has
the highest storage capacity. For coupled geothermal usage (see Fig. 9), brine is injected at 40 ◦C into well “56-TpX”
(blue arrow). Hot reservoir fluids are produced from well “54-TpX” (red arrow). The available grid managers that
provide grid adaptivity are not able to manage the non-conforming cell interfaces along faults. In order to apply grid
refinement, all cells behind the faults have been excluded from the simulation. Only the main reservoir area where
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Table 4
Simulation parameters for the Tensleep formation.

Residual saturations BC-parameter CFL Error
Sw,r Sn,r pd λ factor a factor ae

0.1 0.1 2000 Pa 2 0.7 0.3

Fig. 10. Twisted faces may lead to skewed face normals and require a modified flux term.

the wells are located remains in the simulation domain (Fig. 9) if an adaptive grid is used. Chiaramonte et al. [48]
consider the main fault in the Tensleep formation to be sealing, so this is not an unreasonable simplification of the
model domain. Table 4 lists the parameters used in the simulation.

The multi-physics framework employed in our study considers four different levels of complexity; all include
compositional and compressible effects (Table 1):

• A full non-isothermal two-phase region evolves near the CO2 injection well. This is the most complex model and
is also applied in all cells containing wells.

• A two-phase model with a linear approximation of temperature is applied in regions where the CO2 plume has
already reached reservoir temperature.

• Full non-isothermal effects under single-phase conditions are modeled near the cold brine injection well, and below
the CO2 injection well where gravitational forces prevent the CO2 phase from reaching deeper parts of the reservoir,
but where the reservoir temperature has been altered by the injection.

• A single-phase model with a linear approximation of the temperature is applied in the far-field region of the reser-
voir.

4.2.3. Numerical challenges for simulating the field
The flux expressions (25) require some modification to avoid errors in the flux calculations with the TPFA. There

are strongly deformed (“twisted”) cell faces in the field, see Fig. 10, which arise due to the combined constraints
on the geometrical dome structure and the underlying rock properties. The gray cell i resides above the black-edged
cell j , thus the vector connecting the cell’s centers di j points downwards. The figure also depicts the normals nγi

on the center points of all interfaces γi . In the case of the interface γi j between the gray and black-edged cell, nγi j

points upwards because this interface γi j is strongly twisted. In this case, nT
γ di j becomes negative, and (25) would

yield a flux in the wrong direction. To avoid this mistake, the absolute value of the term |nT
γ Kdi j | is used to calculate

the fluxes. Such “corrections” would not be necessary if the MPFA method was employed on all cell faces, so this
deficiency arises because of the combination of MPFA and TPFA in this study.

Any coarsening or refinement of a grid cell is triggered by appropriate indicators. In [2], refinement at the injection
front is realized by an indicator based on the differences in phase saturation. In this study, differences in temperature
act as an additional indicator to refine thermal fronts as well. If only these two indicators are combined, a non-
physical pressure field is eventually computed on an adaptive grid, even if a direct solver is employed (Fig. 11(a)). An
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(a) Non-physical pressure field if no flux indicator is
applied.

(b) Reasonable pressure field because the flux indicator
refines two more coarse cells (red arrows).

Fig. 11. Grid and a pile of cells cut out near the CO2 injection well.

Fig. 12. Simulation after 290 days of CO2 injection (yellow arrow) and geothermal production (red arrow) with cold injection (blue arrow) seen
from below the formation. The cells of the NI-sub-domain are cornered white, those of the two-phase sub-domain blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

additional flux indicator is hence added that investigates the fluxes Fi calculated for the CFL-criterion (12) and refines
cells where large fluxes are observed. To prevent oscillating refinement and coarsening, each cell that became refined
by the flux indicator can only be coarsened again if four consecutive adaptation steps do not call for a refinement. In
this way, non-physical pressure fields and the subsequent termination of the simulation can be avoided (Fig. 11(b)).

4.2.4. Simulation results

Preliminary runs on the full coarse domain show that the injected CO2 rises rapidly through the fracture network
and accumulates below the cap-rock (see also [47]). The plume spreads above the target interval whose large porosity
would provide the desired storage capacity.

Within one year of injection, the cold CO2 does not lead to a substantial decrease in temperature in the vicinity
of the CO2 well. Hence, the major part of the plume can be modeled with simpler and faster model complexity.
The injection of cold water, however, reduces the formation temperature gradually, leading to a zone of significant
temperature differences around the brine injection well.
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(a) View from above the formation.

(b) View on the red extraction and yellow CO2 injection well.

Fig. 13. CO2 plume and NI-sub-domain (red cells) after 2 · 106 s (≈24 days). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

After 290 days, this zone begins to interact with the CO2 plume (Fig. 12). The CO2 rises rapidly upwards and
then spreads above the desired storage formation, while the temperature changes induced by the brine injection are
observable in this layer as well. In that period, the injection of 60 ktons of brine and the production of 75 ktons of
hot brine (and 57 tons of CO2) could not yet significantly affect the subsurface behavior of the injected 30 ktons
of CO2.

The simulation results for an adaptively refined grid are shown in Figs. 13 and 14. All single-phase cells modeled
with a linear temperature approximation are removed to show the grid. Fig. 13(b) provides a more detailed view of
the CO2 injection area. The detailed flow paths of the CO2 start to become visible. Below the extraction well, some
cells are refined by the flow indicator, which is required for stability reasons (Section 4.2.3). In this area, however,
strong non-linearities in the pressure field and thus potentially non-monotone pressure solutions are not expected.
This refinement therefore does not necessarily improve the stability of the pressure solve. On the contrary, due to
their small grid size in the vertical direction, these refined cells influence the size of the time-step negatively. Here, a
further development of the flux indicator would be beneficial to generate just enough refinement to prevent simulation
failure.

The CO2 front already approaches the domain boundary in the refined simulations after approximately 210 days
(Fig. 14). At this time, the full non-isothermal model is only required in 4% of all simulation cells. The two-phase
sub-domain only covers 16% of all cells, which means that the vast majority of the global domain is efficiently solved
by a simpler and computationally more efficient model abstraction.
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Fig. 14. CO2 plume extend and grid after 200 days.

5. Conclusions

This work combines two adaptive modeling strategies for compositional two-phase flow in porous media including
non-isothermal effects: a multi-physics concept selects different numerical models locally depending on the physical
processes at hand; an adaptive modification of the simulation grid is used to track features of interest locally with a
refined grid while allowing a coarser mesh globally. For the latter, a multi-point flux approximation (MPFA) avoids
errors in the flux representation around the hanging nodes that evolve through refinement. A large-scale example
related to CO2 sequestration combined with geothermal application illustrates the potential and applicability of the
presented framework.
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[3] G. Ács, S. Doleschall, E. Farkas, General purpose compositional model, Soc. Pet. Eng. J. (1985) 543–553.
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