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Highlights

• We investigate different non-linear solvers for density driven flow.
• Iterative solvers of decoupling and fully coupled type are compared.
• For the fully coupled Newton iteration, we develop a transformation mimicking a local decoupling of the unknowns (pressure/salt

mass fraction).
• Based on this transformation, we tailor an algebraic multigrid method for density driven flow.

Abstract

This study investigates properties of different solvers for density driven flow problems. The focus is on both non-linear and
linear solvers. For the non-linear part, we compare fully coupled method using a Newton linearization and iteratively coupled
versions of Jacobi and Gauss–Seidel type. Fully coupled methods require effective preconditioners for the Jacobian. To that end we
present a transformation eliminating some couplings and present a strategy for employing algebraic multigrid to the transformed
system as well. The work covers theoretical aspects, and provides numerical experiments. Although the primary focus is on density
driven flow, we believe that the analysis may well be extended beyond to similar equations with coupled phenomena, such as
geomechanics.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In many problems from porous media flow effects induced by a variable density play an important role. If water
is flowing through a rock matrix containing salt, the salt is dissolved, and turns fresh water turn into brine. Since this
newly formed brine has a higher density than the water in its environment, it tends to sink down, inducing a so called
density-driven-flow. Processes belonging to same category are thermal flows, flows of fluids containing gases, like
CO2, or, as a combination of effects, thermohaline flows.
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The demand for fast solvers for this time-dependent, non-linear process is obvious: In each single time step, a non-
linear equation must be solved. This is typically achieved by some fixed-point iteration. Since a fully coupled Newton
iteration is often regarded being very demanding with respect to both discretization and solvers, often variants of
Picard or Newton iterations are preferred.

Early works, e.g., [1], highlighted the benefits of a partial Newton method. These approximate the Jacobian and
consider only the self couplings for each unknown component. This strategy is also employed, e.g., in [2,3]. These
works describe a predictor–corrector with an explicit predictor and an implicit corrector. The scheme is also suitable
for thermohaline flow and features a time stepping strategy and error estimates.

A related class of solvers are iterative coupling strategies. These provide a natural way to couple different modules
and can be considered as variants of operator splitting technique. This class has widely been applied, e.g., to multi-
phase flow [4,5], or geomechanics [6–9]. Based on a Picard iteration a similar (partially explicit) strategy is pursued
in [10,11].

However, fully coupled Newton iterations have also been applied successfully to both density driven [12,13] and
thermohaline flow [14] based on the d3f software [15,16].

One key component is (adaptive) multilevel preconditioners for a fully coupled linear systems. Multi-grid methods
belong to the class of domain-decomposition solvers that effectively use smoothing properties of a simple relaxation
process, such as Gauss–Seidel, on different levels of a (geometric) finite element hierarchy [17,18]. As a result, all
frequencies of the error are reduced equally well, resulting in a method that provides optimal (linear) for many elliptic
problems. When geometric information about the hierarchy is not accessible to the user, so called algebraic multigrid
(AMG) methods provide an interesting alternative [19,20].

For scalar problems emerging in the partial Newton method, the SAMG algorithm has successfully been ap-
plied [3]. However, designing an AMG algorithm for a fully coupled Newton is a more involved task. We address
this challenge based on the Filtering Algebraic Multigrid (FAMG) algorithm [21]. The key step will be a special
transformation eliminating negative entries from the diagonal.

This work is organized as follows: In Section 2 we set the stage by presenting the governing equations. In Section 3,
we define various solvers and preconditioners. These are then analyzed in the numerical experiments presented in
Section 4. Conclusions are found in Section 5.

2. Preliminaries

2.1. Governing equations

In brine solutions density effects play an important role, which gives rise to the problem of density driven flow.
The full equations state conservations of the fluid and the salt mass respectively, and are typically formulated in terms
of pressure p and salt mass fraction ω, e.g., [22–24]:

∂t (Φρω) + ∇ · [ρωq − ρD∇ω] = ρωqV (1a)

∂t (Φρ) + ∇ · [ρq] = ρqV . (1b)

We assume that the fluid is moving with the Darcy velocity

q = −
K

µ
(∇ p − ρg), (2)

diffusion and dispersion is due to a Scheidegger-type tensor

D = Dmol + Dmec(q). (3)

Here, the density ρ = ρ(ω) and viscosity µ = µ(ω) are given by non-linear material laws. The porosity Φ, perme-
ability K , gravity g, sources qV are constant or depend on space only.

It is important to note that although (1) is written as a time dependent problem, it is essentially a differential
algebraic equation of index 1: For any given salt mass fraction ω = ω(t, x) (1b) serves as a constraint providing a
solution ∇ p that guarantees the conservation of fluid mass. Engaging some algebra, one observes that (1b) may be
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replaced by

∇ · q = qV +
∂

∂ω


1
ρ


∇ · [−ρD∇ω].

Thus, only the salt mass fraction ω is transported in (1a).

2.2. Boussinesq approximation

A simplified and frequently used version of (1) is the Oberbeck–Boussinesq approximation [25,26]. In this case
the dependence of ρ = ρ(ω) on ω is only considered for the velocity q:

∇ · [q] = qV (4a)

∂t (Φω) + ∇ · [ωq − D∇ω] = ωqV . (4b)

Although this formulation is known to be less accurate, e.g., [27], we consider it in Section 2.3 from a theoretical
point of view.

2.3. Model problem

Our goal is to introduce solvers for problems (1) and (4) in the next section. These are based on fixed-point itera-
tions. In an abstract setting, we seek a solution u = (p, ω)T for

F p(p, ω) = 0, (5)

Fω(p, ω) = 0. (6)

For the purpose of illustration and motivation, e.g., [28], consider F given by (4). Linearizing at u0 = (p0, ω0)
T the

Newton method determines a search direction (δp, δω)T as the solution of

∇ ·


−

K

µ
∇δp + q′

0δω


= −F p,0 (7a)

∂t (Φδω) + ∇ ·


−ω0

K

µ0
∇δp +


ω0q′

0 + q0

δω − D0∇δω


= −Fω,0. (7b)

Here, all quantities with the subscript 0 are evaluated at the linearization point u0. In particular

q0 := −
K

µ
(∇ p0 − ρ0g), q′

0 :=
K

µ
ρ′

0g, ρ′

0 = ρ′(ω0)

are the Darcy velocity, its derivative w.r.t. ω, and the derivative of ρ in the linearization point respectively. For the
sake of simplicity, derivatives of the dispersion tensor D0 and the viscosity µ0 have been neglected.

Eq. (7) allows deducing the following facts for this system: First, the problem is elliptic w.r.t. p and parabolic
w.r.t. ω. Second, if ω0 = const, the variables decouple, since the dependence on δp in (7b) may be eliminated by
means of (7a). In this case, one can first solve for δω and then, in a next step for δp. Note that although this assumption
is unrealistic, it may be fulfilled in parts of the computational domain. We will come back to this observation in
Section 3.2.2.

2.4. Discrete formulation

The aforementioned system is discretized in space and time. For times tn let u(n)
h = (p(n)

h , ω
(n)
h )T denote the vector

with coefficients w.r.t. the space discretization. Given u(n)
h assume that we perform the step tn → tn+1 := tn + τ using

an implicit Euler method. This yields a non-linear equation for u(n+1)
h at time tn+1:

Fh(u(n+1)
h ) = Lh(u(n+1)

h ) + Eh(u(n)
h ) = 0. (8)
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The term Eh(u(n)
h ) summarizes all explicit dependences on the solution u(n)

h at the old time, whereas Lh(u(n+1)
h )

summarizes the implicit, non-linear dependences on the solution u(n+1)
h . As a result of the time discretization, we may

write Lh = Mh + τAh .

3. Methods

3.1. Nonlinear solvers

Rewriting (8) componentwise as in (5) and (6) yields

Fp,h(p(n+1)
h , ω

(n+1)
h ) = 0, (9a)

Fω,h(p(n+1)
h , ω

(n+1)
h ) = 0. (9b)

This must be solved by some fixed-point iteration. Various strategies exist; in this study, we focus on three iterative
approaches. Since we are interested in the solution at a fixed time tn+1, let us drop the time superscript index n + 1.
Instead we introduce the iteration index as a subscript k, i.e., uh,k = (ph,k, ωh,k)

T .

3.1.1. Full coupling: Newton method
The standard approach is to employ a Newton method to the fully coupled system. Defining

uh,k+1 = uh,k + δuh

one aims to find a root of the linearized defect equation Fh(uh,k+1) ≈ Fh(uh,k) + Jh(uh,k)δuh,k = 0, i.e.,

Jhδuh,k =


J pp

h J pw
h

Jwp
h Jww

h

 
δph
δωh


= −Fh(uh,k). (10)

Here, Fh(uh,k) from (8) is the nonlinear defect of the current iterate, and Jh = Jh(uh,k) is the Jacobian. The vector
δuh is the resulting correction and search direction respectively. Typically, a line search strategy is employed for a
globalization of the method.

3.1.2. Approximate coupling: partial Newton
Modifying (10) slightly one can approximate Jh by its diagonal [1,2]:

J̃hδuh,k =


J pp

h 0
0 Jww

h

 
δph
δωh


= −Fh(uh,k). (11)

This strategy is also referred to as partial Newton method [1,3]. Note that solving (11) is much easier than solving
fully coupled system (10): Since the matrices J pp

h and J pp
h correspond to discretizations of a Poisson-type problem

and convection–diffusion equation respectively, good preconditioners are available. As a downside the method will,
in general, only provide linear convergence.

One should stress that (11) can be viewed as a single Newton step applied to the system

Fp,h(pk+1, ωk) = 0, (12a)

Fω,h(pk, ωk+1) = 0. (12b)

This corresponds to an inexact nonlinear Jacobi iteration, where a potential line-search strategy provides a suitable
damping factor.

3.1.3. Iterative coupling: nonlinear Gauss–Seidel
As a last alternative, we study a strategy also referred to as iterative coupling in the context of different equations

[4–6,8]. Starting from (12), we state it as a non-linear Gauss–Seidel type iteration [29] here:

Fω,h(pk, ωk+1) = 0, (13a)

Fp,h(pk+1, ωk+1) = 0. (13b)



A. Nägel et al. / Comput. Methods Appl. Mech. Engrg. 292 (2015) 3–15 7

Again, both equations treated and solved independently. In contrast to (12), each substep employs the latest update
that is available. Following [30], we solve for ω first and then for p. In this (ω, p)-ordering, a new distribution of salt
is computed as a results of an unmodified pressure distribution first. Then, in the next step, a suitable pressure is de-
termined. This can be viewed as a projection of the solution into the space where the conservation of fluid mass holds.

Like the partial Newton method from the previous subsection, this approach will at best provide linear convergence.
The method is in particular attractive, when flow and transport equation are discretized and solved in different code
modules. By adding an additional outer loop, the problem can be solved without any changes to the algorithmic
design.

3.2. Preconditioners for the fully coupled Jacobian

The time for the solution process is often to a great extent governed by the computational time required for the
solution of the linearized system (10). As multigrid methods feature an optimal computational complexity for a variety
of problem, they provide an attractive solver and have frequently been used in this context. In some cases the classical
geometric approaches are however not applicable: In some cases geometric methods are not robust (or may even fail)
due to the choice of parameters and/or geometric anisotropies. In other cases, the mesh provided initially as a coarse
grid may have a substantial size already. This is the case, e.g., fractures or known singularities are resolved on the
coarsest mesh.

In these situations the class of algebraic multigrid (AMG) methods provides an attractive alternative. This does not
rely on a grid hierarchy, which is provided initially. The key idea is instead to extract all information from the linear
system to solve, e.g., from the matrix graph and the matrix entries.

One of the most popular, not to say classic, version of this class has been described in [19,31]. Other approaches
include smoothed aggregation, cf. [32–34], or AMG based on element interpolation, cf. [35]. We focus on the filtering
algebraic multigrid method (FAMG), previously described in [36,37]. The essential results are however likely to be
applicable to different AMG approaches as well. Since the linear systems of equations arising from the decoupling
approaches (12) and (13) can be treated by scalar solvers, e.g. [38], we concentrate on solvers for the fully coupled
system (10) in this subsection only.

3.2.1. Smoothing analysis and algebraically smooth error
Multigrid is based on the assumption that the relaxation method produces an error that is smooth locally. Analo-

gously, the proper choice of AMG components depends on the character of the so-called algebraically smooth error,
i.e., those error components which are not treated efficiently by the smoother.

We study this further for the modified Elder problem, cf. [39]. This problem induces density driven fingers and
is thus, at least for long simulation times, rich in convection. At the same time, the problem features only a milder
complexity, since the terms µ and D are constant and the only non-linearity is in ρ = ρ(ω). The density function here
is selected to be linear:

ρ(ω) := ρ0 + (ρ1 − ρ0)ω.

For this analysis we use the Boussinesq approximation (4) as implemented in the corresponding modules in the ug4
software toolbox [40] with partial upwinding for the velocity.

Fig. 1 shows the solution uh,0 = (ph,0, ωh,0)
T at time t = 5a. Only the salt mass fraction ω and the velocity field

q are shown. The distribution of the pressure p is less important and thus omitted. The solution uh,0 serves as the
linearization point for the first Newton iteration. The time is selected arbitrarily, but it is important to note that several
fingers have evolved.

Our goal is to identify error components being smooth after several relaxation sweeps. To that end, we relax on the
test equation Jh(uh,0)δuh = 0 with a random initial guess δu(0)

h = (0, δrω)T . The coefficients of δrω are uniformly

distributed in (−1, 1). Fig. 2 shows the error δu(3)
h = (δp(3)

h , δω
(3)
h )T after three steps of point-block symmetric

Gauss–Seidel. The picture is for τ = 0.1a; step lengths τ = 0.01, 0.001a yield similar results, with a smaller error in
the ω component.

In addition to the error, we can also study the residuals

r(k)
h = Jh(u0

h)δu(k)
h = (r(k)

p , r(k)
ω )T
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Fig. 1. Solution at time t = 5a. In this point, the problem is linearized and then solved with varying time steps (τ = 0.1, 0.01, 0.001a).

Fig. 2. Components δω
(3)
h (top) and δp(3)

h (bottom) of a smooth error δu(3)
h after 3 relaxation sweeps of a symmetric point-block Gauss–Seidel.

The random initial guess was a vector δu(0)
h = (0, δrω)T with coefficients uniformly distributed in (−1, 1).

for both components independently. Fig. 3 provides data for the reduction of the defects

dp,k := ∥r(k)
p ∥, dω,k := ∥r(k)

ω ∥

for different time steps τ ∈ {0.1a, 0.01a, 0.001a}. One observes that the smaller the time step τ , the smaller the
defects. This is in agreement with the discretization where all time dependent terms are multiplied by τ . The large
initial defects dω,0 are rapidly reduced. For increasing numbers of iterations k, the ratio dp,k/dω,k approaches a
constant. Moreover, the asymptotic convergence rate is independent of τ , which reflects the elliptic contribution of
the pressure equation.

3.2.2. Left transformation
One problem for FAMG preconditioner described in the next subsection, arises from potentially large negative

diagonal entries in the Jωω
h block of (10). This is due the derivative q′

0 in the equations for the salt mass fraction (7b).
As a remedy, the following strategy is used [41]:

Instead solving Ju = f one can alternatively consider a (left-)transformed system

L Ju = Lf. (14)

As motivated by analysis for the model problem (7) it is desirable to imitate a decoupling of p and ω locally. This
can be achieved by a multiplication with a block-diagonal matrix L = Diag(L i i ) which transforms the diagonal
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Fig. 3. Reduction of the defects dp,k and dω,k as a function of the iteration count k for various time steps (τ = 0.1, 0.01, 0.001a).

entries

Ji i =


j pp j pω

jωp j (ωω)


(15a)

into

(L J )i i =

 j pp j pω

0 jωω
−

jωp

j pp j pω

 . (15b)

This transformation is inspired by previous works for two-phase flow where it is used for eliminating j pω. These
transformations are combined with both combinative (two-stage) preconditioners [42–46] as well as with fully coupled
monolithic schemes [47,48]. Since (14) does not affect the convergence properties of standard point-block smoothers,
it is attractive for a combination with FAMG for systems as proposed in the next section.

3.2.3. Algebraic multigrid
This section describes an algebraic multigrid (AMG) solver for the transformed system (14). We begin with an

outline of the Filtering Algebraic Multigrid (FAMG) for scalar problems [36,37] and then turn to a specialized version
for systems of PDEs and density driven flow respectively [21,41]. For the sake of brevity, some algorithmic details
are omitted. An extended description is provided in the aforementioned references.

Outline of the setup phase. Most AMG solvers are preceded by a setup phase generating the coarse grids in the
grid hierarchy automatically. For a matrix A ∈ RV ×V with variables defined on a set of indices V , this is typically
accomplished as follows:

1. Splitting the indices V into two disjoint sets V = F
.
∪ C . The indices C define the coarse variables on the next

coarser level. The indices belonging to F correspond to fine variables that can be interpolated.
2. Computing an interpolation operator P : RC

→ RV for a grid transfer of a solution from the coarse to the fine
grid.

3. Computing a coarse grid operator. This is typically achieved using the Galerkin product, e.g. AC = PT AP ∈

RC×C . It is thus sufficient to restrict the following presentation to a two-grid method.

Proceeding with V ≡ C , this process can be iterated recursively until |V | is small enough.

FAMG for scalar problems. We begin with a description for a matrix A being symmetric positive definite arising,
e.g., from a scalar PDE of Poisson-type [36,37]. The key idea of FAMG is to minimize the norm of the coarse grid
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operator approximately, while an additional constraint guarantees that certain test vectors are interpolated exactly.
Thus, we construct an interpolation operator P as the solution of the following global minimization problem:

min
P

X1/2(I − P R′)S′ X−1/2
2

2
, (16a)

s.t. (I − P R′)t̃ = 0. (16b)

The triple bar norm |||·|||2 refers to the Frobenius norm. X = Diag(xi i ) > 0 is positive diagonal matrix providing a
scaling, frequently chosen as X = Diag(A). Moreover S′ is the error propagator of a smoother (or an approximation).
The operator P = (W T

FC , I )T is the interpolation and R′
= (0, I ) is the injection to the coarse grid. The vector t̃ is a

representation of the near null space of the operator, e.g., the constant for a Poisson-type problem.
Let the vector qi denote the i th row of (I − P R′), i.e.,

(qi )
T

:= εT
i (I − P R′),

where εi is the i th canonical unit vector for i ∈ V . Given a (possible) fine grid node i with a set of interpolatory parent
nodes Pi , we have

⟨qi , εk⟩ =

1, i = k,

−wik, i ∈ Pi ,

0, k ∉ Pi ,

(17)

for i ∈ F , and qi = 0 for i ∈ C respectively. With this definition, (16) is equivalent to the following local minimization
problem:

min
qi

xi i ∥(S′)T qi∥
2
X−1 , (18a)

s.t.

qi , t̃


= 0 (18b)

for each i ∈ V . This formulation can be used to (i) compute an interpolation operator P , and (ii) to determine a suitable
set of parent nodes Pi locally. Assigning all indices i with sufficiently small objective to F , and all interpolating parents
Pi to C yields an aforementioned splitting of indices.

FAMG for density driven flow. Along the lines of the previous subsection, let us now specify FAMG for density driven
flow. The matrix A = L J of the transformed operator will, in general, be non-symmetric. From Section 3.2.1, we
can expect that a point-block-smoother is suitable for multigrid, as well as for defining S′. Moreover, Section 3.2.2
provided evidence that the scalar entries aαα

i i are also positive for i ∈ V, α ∈ {ω, p}. Thus, it is reasonable to define a
diagonal scaling X > 0 by

X = Diag(xαα
i i ), xαα

i i := |aαα
i i |, α ∈ {p, ω}, i ∈ V . (19)

For systems of equations, we select a block-diagonal interpolation, i.e. the interpolation weights wik from above are
given by small 2 × 2 matrices

wik =


w

pp
ik 0
0 wωω

ik


for fine grid nodes i ∈ F and parent nodes k ∈ C . Interpolation for any i ∈ V is then defined in terms of the block
rows Qi := (qα

i )α , analogous to (18):

min
Qi


α

xαα
i i ∥S′T qα

i ∥
2
X−1 , (20a)

s.t. ⟨qα
i , t̃α⟩ = 0, ∀α. (20b)

The test vectors t̃α are the constants for each component α ∈ {p, ω}. The smoother S′ is a damped Jacobi, followed
by a full Jacobi step that is only applied at node i . The objective (20a) provides a measure, how valuable i ∈ V is as a
fine grid node. Since the smoother may diverge, we only select those nodes with −0.1 ≤ ⟨S′ϵα

i , ϵα
i ⟩ ≤ 0.5, i ∈ p, ω.
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Fig. 4. Reduction of the defects dnl
p,k and dnl

ω,k for partial Newton (diamond) and iterative coupling (triangle) for computing t = τ = 0.025a in the
first time step.

4. Numerical experiments

4.1. Nonlinear solvers

Section 3.1 introduced three different solvers. These are compared and evaluate with respect to performance. As
a benchmark we use the Elder problem. This features a highly dynamic velocity field in the beginning, which then
stabilizes for larger times. Since effects of the linear solver should be avoided, we use a coarse spatial mesh with 4420
degrees of freedom (1024 elements). The tests are conducted for the full non-linear equations (1) using ug4 [40].

The first test investigates the convergence of the two decoupling nonlinear solvers. In the first time step, the partial
Newton and the iterative coupling achieve a reduction of the residual by 0.5 × 10−6 in 26 and 21 steps respectively.
Fig. 4 visualizes details about the reduction of the nonlinear defects

dnl
p,k := ∥Fp,h,k∥2, dnl

ω,k = ∥Fω,h,k∥2

of the k-th iterate. The vectors Fα,h,k are defined by (9) for both components α ∈ {p, ω}. Both methods converge
linearly with similar rates of convergence. However, one observes that dnl

p,k and dnl
ω,k behave differently: While they

resemble each other in the order of magnitude for the iterative coupling, they differ substantially for the partial Newton.
In the latter case, an oscillating behavior can be observed.

Fig. 5 provides a history of the nonlinear iteration steps required for each single time step over a complete
simulation run of 5 years. As expected, the full Newton method performs best. Large time steps are permitted
(τ = 0.1a), at the same time, only a constant number of 4 iterations per time step, i.e., a total of 80 iterations
is required. Both decoupling iterations require a smaller time step τ = 0.025a. In the comparison for a full
simulation run, however, they behave differently: The partial Newton requires 25–30 iterations per time step, resulting
in a total of 6384 iterations. Although the iterative coupling also starts with ∼25 iterations in the first steps, the
number of required iterations gradually decreases to 8–10 iterations per time step. This leads to a total of 1925
iterations.

According to this data, the iterative coupling should be preferred over a partial Newton. In particular, if the
alterations in the velocity field are small, i.e., the corresponding initial guess for the nonlinear scheme is sufficiently
good, the Gauss–Seidel-style arrangement of the iterative coupling seems to be more appropriate. However, as
one can expect, the full Newton method outperforms both previously mentioned methods. The reason is that
decoupling iterations produce iterates that oscillate around the fixed point: For the iterative coupling, for example,
an erroneous velocity in the transport equation (13a) tends to overshoot the concentration, which is then corrected
in the next step (13b) by the flow equation. Similar results have previously been reported, e.g., for fluid structure
interactions [49,50].
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Fig. 5. Iterations per time step for a full simulation run: Newton (time step τ = 0.1a), partial Newton (τ = 0.025a), and iterative coupling
(τ = 0.025a).

4.2. Algebraic multigrid preconditioners for the Jacobian

After underlining the advantages of a fully coupled Newton in the previous subsection, we now evaluate the
algebraic multigrid preconditioners developed for these kind of systems in Section 3.2.3.

We compare three different solvers: The first is a standard geometric multigrid solver (GMG). The second is a
(ω, p)-Block–Gauss–Seidel scheme (BGS). Blocks are formed by unknowns according to (15b), and one solves for
ω first, and then for p. This provides an exact solver for problems with Aωp

= 0. Finally, we consider a monolithic
FAMG solver. In this case both unknowns are solved simultaneously. All methods serve as a preconditioner in a
Bi-CGSTAB method. We use a V(1, 1)-cycle with a point-block symmetric Gauss–Seidel smoother [16]. Note that
the presented comparisons must be understood as a proof of concept: As the AMG method requires an additional
setup, they are usually less efficient than their geometric counter parts. The performance of the method is studied for
two different test cases. In both cases, the fully coupled non-linear system (1) is solved using the software package
d3 f [15].

4.2.1. Test 1: saltpool problem
The first model problem is derived from the saltpool benchmark, e.g.,. [12]. The domain is a box(0,

√
2a) × (0, 1)

which is resolved by a structured quadrilateral grid (2 × 66 049 dof). The parameter a characterizes the anisotropy
in x-direction. Initially, the box is filled with a 10% salt mass fraction in the lower 30% of the box. In the course of
the experiment, fresh water is injected in the upper left corner, and removed in the upper right corner. The walls are
treated as impermeable boundaries. Since we only have few Dirichlet nodes, we use an iterative coarse grid solver for
FAMG, which can deal with matrices that are close to singular.

Numerical results are provided in Table 1: As expected geometric multigrid deteriorates slightly with an increasing
anisotropy a. The performance of BGS and FAMG is robust w.r.t. a. The convergence good convergence of BGS
however is an indicator that we essentially observe a non-linear decoupling: Provided that we have large difference
in the density, salt and fresh water phases essentially decouple. In the mixing region, the flow actually follows the
boundary layer, and mixing is primarily due to diffusion.

4.2.2. Test 2: layered aquifer
The second problem serves as a test how well the method treat problems with variable and discontinuous

permeabilities and variable velocity profile. Fig. 6 shows the coarse grid for a computational domain of an aquifer over
a salt dome. The triangular, unstructured grid has 2 × 24 257 degrees of freedom. The hydro-geological properties,
in particular the permeabilities vary in space and follow a log-normal distribution. Two models are considered: The
Mixed Model includes sand, fine sand and silt, whereas the Sand model has only one hydro-geological unit.
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Fig. 6. (A) Coarse grid and (B) different hydro-geological areas and boundary conditions for the layered aquifer. On the red surface on the bottom
the fluid is in contact with a salt dome. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Convergence results for the salt pool problem. Given are the number of
time steps, the total number of Newton iterations (#nl), the total number
of linear iterations (#lin) as well as the maximum and average number of
linear iterations per Newton iteration(#lin/#nl).

Anisotropy Method Steps #nl #lin #lin/#nl #lin/#nl
a (max) (ave)

1
GMG 49 132 1183 53 8.96
BGS 44 117 2603 100 22.25
FAMG 43 113 839 13 7.42

2
GMG 46 113 1356 65 12.00
BGS 43 109 2295 63 21.06
FAMG 43 109 826 14 7.58

4
GMG 43 99 1529 43 12.72
BGS 43 101 2213 74 21.91
FAMG 43 101 660 11 6.53

8
GMG 43 113 2239 51 19.8
BGS 43 111 2231 70 20.01
FAMG 43 111 705 13 6.35

Table 2
Convergence results for the aquifer problem, with column data as in
Table 1. The BGS scheme does not converge.

Medium Method Steps #nl #lin #lin/#nl #lin/#nl
(max) (ave)

Mixed GMG 18 157 4 186 99 26.66
FAMG 15 127 2 048 87 16.13

Sand GMG 40 326 15 297 119 46.92
FAMG 30 260 7 125 97 27.40

Numerical results for this model are provided in Table 2. We first note that the BGS method does not converge
any more which indicates that problems are now completely coupled. The FAMG method tends to be a little bit more
robust than geometric multigrid. In particular, it requires less time steps.
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5. Conclusion

This study elucidated on two important aspects for solvers for density driven flow problems: First, we investigated
different nonlinear solvers and compared their convergence properties in numerical experiments. Here, a fully coupled
scheme proved being superior to decoupling schemes. Second, we tailored an multigrid solver for a fully coupled
Newton method. The essential ingredient is a left transformation that eliminates possible negative entries arising from
the self couplings for the salt mass fraction.
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[31] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (1–2) (2001) 281–309. http://dx.doi.org/10.1016/S0377-0427(00)

00516-1.
[32] P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing 56

(1996) 179–196. http://dx.doi.org/10.1007/BF02238511.
[33] J. Mandel, M. Brezina, P. Vanek, Energy optimization of algebraic multigrid bases, Computing 62 (1999) 205–228. http://dx.doi.org/10.1007/

s006070050022.
[34] P. Vanek, M. Brezina, J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation, Numer. Math. 88 (3) (2001) 559–579.
[35] M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F. McCormick, J.W. Ruge, Algebraic multigrid based on

element interpolation (AMGe), SIAM J. Sci. Comput. 22 (5) (2001) 1570–1592.
[36] C. Wagner, On the algebraic construction of multilevel transfer operators, Computing 65 (2000) 73–95.
[37] A. Naegel, R. Falgout, G. Wittum, Filtering algebraic multigrid and adaptive strategies, Comput. Vis. Sci. 11 (3) (2008) 159–167. http://dx.

doi.org/10.1007/s00791-007-0066-9.
[38] H.-J.G. Diersch, Using and testing the algebraic multigrid solver samg in FEFLOW, in: FEFLOW c⃝White Paper Volume III, DHI-WASY

GmbH, Berlin, 2009.
[39] C. Voss, W. Souza, Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater–saltwater

transition zone, Water Resour. Res. 26 (1987) 2097–2106.
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