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Abstract

In this study, a numerical model based on the non-oscillatory and non-free parameter dissipation (NND) finite difference scheme
for shallow water wave equations including sediment concentration is established in order to simulate the phenomena for dam-break
flow and the development of alluvial plain in an estuary. Some numerical experiments show that the numerical model is feasible
and efficient for simulating the phenomena for dam-break flow and the development of alluvial plain in an estuary.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

A system of shallow water equations (SWEs) can be used to describe the propagation and transformation of short
waves in shallow waters, which is also referred to as the Saint-Venant system for one-dimensional case (see [1]). It has
extensive applications in ocean, environmental and hydraulic engineering, and coastal engineering, such as the open-
channel flows in rivers and reservoirs, the tidal flows in estuary and coastal water regions, the bore wave propagation,
the stationary hydraulic jump and river, as mentioned in [2]. Because it is a system of nonlinear partial differential
equations, it has no usually analytical solution. One has to rely on numerical solutions.

Many previous studies had explored the numerical solutions for two-dimensional (2D) SWEs that only include
the water depth and the velocity of fluid, such as the finite volume (FV) method on unstructured triangular meshes
presented by Anatasiou and Chan in [3], the upwind methods established by Bermudez and Vazquez in [4], the parallel
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block preconditioning techniques proposed by Cai and Navon in [5], the optimal control technique of finite element
(FE) limited-area addressed by Chen and Navon in [6], the least-squares FE method described by Liang and Hsu
in [7], the finite difference (FD) Lax–Wendroff weighted essentially non-oscillatory (WENO) schemes posed by Lu
and Qiu in [8], the FE simulation technique of Navon in [9], the FD WENO schemes proposed by Qiu and Shu in [10],
the Roes approximate Riemann solver technique of Rogers et al. in [11], the essentially non-oscillatory and WENO
schemes with the exact conservation property presented by Vukovic and Sopta in [12], the explicit multi-conservation
FD scheme established by Wang in [13], the composite FV method on unstructured meshes proposed by Wang and
Liu in [14], the high order FD WENO schemes proposed by Xing and Shu in [15], the high order well-balanced FV
WENO schemes and discontinuous Galerkin (DG) methods also proposed by Xing and Shu in [16], the positivity-
preserving high order well-balanced DG methods of Xing et al. in [17], the dispersion-correction FD scheme of Yoon
et al. in [18], the non-oscillatory FV method given by Yuan and Song in [19], the surface gradient method presented by
Zhou et al. in [20], the total variation diminishing FD scheme proposed by Wang et al. in [21], and the high-resolution
FVE method established by Vosoughifar et al. in [22].

Compared with the 2D SWEs including only the water depth and the velocity of fluid, the 2D SWEs including
sediment concentration have a wider range of applications, which not only can be used to describe the transport
and sedimentation of silt and sand in water, the formation and evolution of delta, the expansion of alluvial plain,
the migration of rivers, etc., but also can be applied in many real-life applied fields, such as the irrigation systems,
the transportation channels, the hydroelectric stations, the ports, and other coastal engineering works. A model for
2D SWES including sediment concentration was established in [23] and has been used more than twenty years
in Atmospheric Science and State Key Laboratory of Earth Fluid Dynamics Numerical Simulations at Institute of
Atmospheric Physics of Chinese Academy of Sciences. A numerical method based on optimal control approach
(see [24]) and a mixed FE formulation (see [25,26]) for the 2D SWEs including sediment concentration are presented.
Recently, some numerical simulations was developed (see [27] and here references).

In order to simulate the phenomena for the dam-break flood and the development of the alluvial plain in an estuary,
we employ the non-oscillatory and non-free parameter dissipation (NND) technique (see [28]) to establish a numerical
model based on the NND FD scheme (NNDFDS) for SWEs including sediment concentration in this study. To the
best of our knowledge, there is not any report that the NNDFDS for 2D shallow water equations including sediment
concentration has been established, thereby our NNDFDS should be a new method.

The remainder of this article is organized as follows. In Section 2, we establish the numerical model based on
NNDFDS for 2D SWEs including sediment concentration. In Section 3, we provide some numerical experiments to
show that the numerical model based on NNDFDS is feasible and efficient for simulating the dam-break flood and the
development of alluvial plain in an estuary. In Section 4, we provide main conclusions and discussions.

2. Numerical model based on NNDFDS as well as its stability and convergence

2.1. Numerical model based on NNDFDS

Let Ω ⊂ R2 be a bounded and connected domain. The governing equations for 2D SWEs including sediment
concentration are denoted by the following system of equations (see [23–25])

∂ Z
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Fig. 1. Water profile.

∂S

∂t
+

∂(uS)

∂x
+

∂(vS)

∂y
= ε


∂2S

∂x2 +
∂2S

∂y2


+

αω(S − S∗)

Z
, (x, y, t) ∈ Ω × (0, T ), (4)

∂zb

∂t
+ gb


∂u

∂x
+

∂v

∂y


=

αω(S − S∗)

ρ
, (x, y, t) ∈ Ω × (0, T ), (5)

where γ (m2/s) and A (m2/s) are two coefficients of viscosity, (u, v) (m/s) is the vector of velocity, Z = z − zb (m)
is the water depth, z (m) is the surface height, zb (m) is the height of bed (see Fig. 1), f (1/s) is Coriolis constant, g
(m/s2) is the gravitational constant, CD (non-dimension) is the coefficient of bottom drag, ε (m2/s) is the diffusion
coefficient of sand, ω (m/s) is the falling speed of suspended sediment particles, S (kg/m3) is the concentration of
sediment in water, ρ (kg/m3) is the density of dry sand (can be taken as a constant), α (non-dimension) is the constant
of variety of sediment, S∗

= K [(u2
+ v2)3/2/(gωZ)]l is the capability of sediment transport in bottom bed (is a given

empirical function), gb = Γ (u2
+ v2)3/2 Z pdq

[1 − vc/(u2
+ v2)1/2

] is also a given empirical function, vc (m/s) is
the velocity of sediment mass transport (is a given function too), d (m) is the diameter of sediment, and K (kg/m3), l
(non-dimension), Γ (s3/m2), p (non-dimension), and q = −p are all some empirical constants.

The boundary conditions are supposed to be as follows.

Z(x, y, t) = Z0(x, y, t), u(x, y, t) = u0(x, y, t), v(x, y, t) = v0(x, y, t),
S(x, y, t) = S0(x, y, t), zb(x, y, t) = zb0(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ),

(6)

where Z0(x, y, t), u0(x, y, t), v0(x, y, t), S0(x, y, t), and zb0(x, y, t) are all given functions. The initial conditions
are supposed to be as follows.

Z(x, y, 0) = Z0(x, y), u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y),

S(x, y, 0) = S0(x, y), zb(x, y, 0) = z0
b(x, y), (x, y) ∈ ∂Ω ,

(7)

where Z0(x, y), u0(x, y), v0(x, y), S0(x, y), and z0
b(x, y) are also given functions.

Let △t be the time step increment, △x and △y denote the spatial step increments, N = [T/△t], Fr
= ru,

Gr
= rv (r = Z , u, v, S). By using the NND technique in [28] to discretize (1)–(5), we obtain the numerical model

based on NNDFDS for 2D SWEs including sediment concentration as follows:
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a−(x, y, t) = −


a(x, y, t), a(x, y, t) 6 0,

0, a(x, y, t) > 0.

2.2. Stability and convergence of sequence of solutions for NNDFDS

In order to prove the local stability and convergence of sequence of solutions for NNDFDS (8)–(12), it is necessary
to introduce the following discrete Gronwall Lemma (see [26]).

Lemma 2.1. If {an}, {bn}, and {cn} are three positive sequences, and {cn} is monotone, that satisfy a0 + b0 6 c0 and
an + bn 6 cn + λ̄

n−1
i=0 ai (λ̄ > 0, n = 1, 2, . . .), then an + bn 6 cn exp(nλ̄) (n = 0, 1, 2, . . .).

In the following, by using the stability analysis technique of FD schemes (see [29] or [30]), we provide the proof
of local stability and convergence for NNDFDS (8)–(12).

Theorem 2.2. Under the conditions △t · (|u|+ |v|) 6 min{4γ, 4ε, 4A} and 4△t max{γ, A, ε} 6 min{△x2, △y2
}, the

NNDFDS (8)–(12) is locally stable. Further, the sequence of solutions for the NNDFDS (8)–(12) is convergent and
has the following error estimates

|r(x j , yk, tn) − rn
j,k | = O(∆t,∆x2,∆y2), 1 6 n 6 N , 1 6 j 6 J, 1 6 k 6 K , r = Z , u, v, S, zb, (13)

where J = max(x1,y),(x2,y)∈Ω |x1 − x2|, and K = max(x,y1),(x,y2)∈Ω |y1 − y2|.

Proof. If 4△t max{γ, A, ε} 6 min{△x2, △y2
} and △t ·(|u|+|v|) 6 min{4γ, 4ε, 4A}, which implies γ△t/△x2 6 1/4

and γ△t/△y2 6 1/4 as well as 4△t (∥u∥∞ + ∥v∥∞) 6 min{γ, ε, A}, by (8), we have
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where ∥ · ∥∞ is the norm in L∞(Ω). Thus, from (14), we obtain
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Summing (15) from 0 to n yields

∥Zn+1
∥∞ 6 ∥Z0

∥∞ +


γ

2△x
+

γ

2△y

 n
j=0

∥Zn
∥∞, n = 0, 1, 2, . . . , N − 1. (16)

By applying Discrete Gronwall Lemma 2.1 to (16), we obtain
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which shows that the series


Zn+1


is local stable when the time interval [0, T ] is finite. Further, it is convergent from
Lax’s theorem of stability (see [29] or [30]). The water depth is positive, so there are two positive constants β1 and β2
such that

β1 6 ∥Zn
∥∞ 6 β2, n = 0, 1, 2, . . . , N . (18)
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Fig. 2. The status of dam-break flow and sediment concentration at t = 2.4 s, respectively.

Fig. 3. The status of dam-break flow and sediment concentration at t = 4.8 s, respectively.

If △t · (|u| + |v|) 6 min{4γ, 4ε, 4A} and 4△t max{γ, A, ε} 6 min{△x2, △y2
}, then by using the same approach

used to prove (15), by (18) and from (9)–(12), we obtain
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Fig. 4. The status of dam-break flow and sediment concentration at t = 7.2 s, respectively.

Fig. 5. The status of velocity in x- and y-directions at t = 7.2 s, respectively.

Fig. 6. The left and right charts are the FVE solutions of the dam-break flow in [19] and [23] at t = 7.2 s, respectively.
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Fig. 7. The changes of relative errors of NNDFDS solutions of velocity, sediment concentration, and water depth of the dam-break flow on
[0, 7.2] s.

Fig. 8. The status of velocity, sediment concentration, and water depth in the delta of an estuary in the third month.
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Fig. 9. The status of velocity, sediment concentration, and water depth in the delta of an estuary in the first year.

Put ϖ = max{K [(A/△t)2l/(gωβ1)
l
]αω△t/(β1 + ρ) + A/(2△x + 2△y) + △t | f | + 2CD A/(4β1) +
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Summing (23) from 0 to n and using Lemma 2.1 yield that
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When the time interval [0, T ] is finite, the right hand side of (24) is bounded. Thus, we conclude that the sequence
un, vn, Sn, zn

b


is locally stable. Further, with Lax’s theorem of stability (see [30] or [22]), we conclude that the

sequence of solutions for the NNDFDS (8)–(12) is convergent. By means of Taylor’s formula to expand (8)–(12)
at reference point (x j , yk, tn), we could easily obtain the error estimates (13), which completes the proof of
Theorem 2.2. �
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Fig. 10. The status of velocity, sediment concentration, and water depth in the delta of an estuary in the third year.

Remark 2.3. The NNDFDS (8)–(12) is only first-order approximate accuracy in time. If one wants to achieve higher
order time approximate accuracy, it is necessary to change the time difference quotients on the left hand sides in
(8)–(12) into higher order ones (e.g., time central difference quotients or time second-order difference quotients).
Because the numerical model (8)–(12) adopts NND technique, it can capture shock wave very well (see the numerical
experiments in Section 3).

3. Numerical experiments

In this section, we present two numerical experiments that demonstrate the feasibility and efficiency of the
numerical model (8)–(12) based on NNDFDS for 2D SWEs including sediment concentration.

3.1. Example for simulating dam-break flow

A dam-break flow is an uncontrolled release of water when a vertical barrier is suddenly removed and it is the
simplest available model for a lot of important phenomena, such as break-out floods, sheet flow events and the
formative stages of lahars or debris flows.

An idealized model of the dam-break flow may show that the barrier at x = 100 and 0 6 y 6 200 divides fluids
of different depths 10 m and 5 m, until time t = 0, when a gate of width 75 m (i.e., on x = 100 and 95 6 y 6 170)
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Fig. 11. The status of velocity, sediment concentration, and water depth in the delta of an estuary in the fifth year.

in the barrier is instantaneously removed and fluid (depth 10 m) floods into the shallower region (depth 5 m). Thus,
the computational domain for dam-break flow is a square of area 200 × 200 m2, i.e., Ω̄ = [0, 200] × [0, 200], which
holds the water depths 10 m on sub-domain [0, 100] × [0, 200] and 5 m on sub-domain [100, 200] × [0, 200],
respectively. Since zb = 0, thus, zn

b, j,k = 0 in (8)–(12).
In order to simulate the dam-break flow by means of the NNDFDS (8)–(12) of 2D SWEs including sediment

concentration, it is necessary to take the time step ∆t = 0.01 s and the spatial step ∆x = ∆y = 0.02 m and to
designate all of parameters: f = 1.1×10−4, γ = 0.001, A = 7.5×10−3, CD = 0.01, ω = 0.01, α = 0.3, K = 0.35,
l = 0.92, and ρ = 1.5 × 103 (see [19,23]).

By means of the NNDFDS (8)–(12), we obtain the NNDFD solutions of dam-break flow and sediment
concentration (zb = 0, so it is not described) when n = 240, 480, and 720 (i.e., at 2.4 s, 4.8 s, and 7.2 s), as
shown in the left and right columns in Figs. 2–4, respectively. We also obtained the NNDFD solutions of velocity u
and v in x- and y-directions at t = 7.2 s, as shown in left and right charts in Fig. 5, respectively.

We compared the NNDFDS solution at t = 7.2 s of dam-break flow in the left chart in Fig. 4 with the FVE solution
in [19] in the left chart and the high-resolution FVE solution in [22] in the right chart in Fig. 6, respectively, where
we found that the FVE solution in [19] had obvious oscillatory and dispersion, and the high-resolution FVE solution
in [22] has also obvious oscillatory and dissipation, whereas the current NNDFDS solution of dam-break flow in the
left chart in Fig. 4 had no oscillatory, dispersion, and dissipation. Especially, our NNDFDS could simultaneously
simulate the status of dam-break flow and sediment concentration. Therefore, we showed that the current NNDFDS
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Fig. 12. The status of velocity, sediment concentration, and water depth in the delta of an estuary in the ninth year.

was far better than those in [9] and [22]. We also showed that the NNDFDS (8)–(12) was really one of the existing
best numerical methods and was very feasible and efficient for simulating the dam-break flow.

Fig. 7 shows the relative errors of the velocities in x- and y-directions, the sediment concentration, and the water
depth of the dam-break flow on [0, 7.2] s, which is computed by the formulas (un+1

− un)/un , (vn+1
− vn)/vn ,

(Sn+1
− Sn)/Sn , and (Zn+1

− Zn)/Zn , respectively. We computed from Theorem 2.2 that the theoretical error was
O(∆t,∆x2,∆y2) = O(10−2), whereas the relative errors of the numerical solutions were also O(10−2), so the
relative errors of the numerical solutions were consistent with theoretical error.

3.2. Example for simulating sediment transport and flow in an estuary

The computational domain is Ω̄ = {(x, y) : 23 − 23x/25 6 y 6 27 + 33x/25, 0 6 x 6 25} ∪ {(x, y) : 25 6
x 6 40, 0 6 y 6 50} (the unit of x and y is km). The depth at entrance is 10 m (i.e., Z0|x=0 = 0.01 km). The
sediment thickness at entrance is 2 m (i.e., zb0|x=0 = 0.002 km). The velocity u0 of fluid in x-direction from the
entrance is 2 m/s (i.e., u0|x=0 = 7.2 km/h), but v0 = 0. The sediment concentration in water flow is 1.2 kg/m3

(i.e., S0 = S0
= 1.2 × 10−3 kg/km3). The change in bottom topography every 100 km falls 1 m along the flow

direction (i.e., zb0 = z0
b = 10−5x + 2, 0 6 x 6 40). The bilateral boundaries of the water flow are two solid borders,

i.e., u0 = v0 = 0 on set {(x, y) : y = 23 − 23x/25, 0 6 x 6 25} ∪ {(x, y) : y = 27 + 33x/25, 0 6 x 6
25} ∪ {(x, 0) : 25 6 x 6 40} ∪ {(x, 50) : 25 6 x 6 40}. The time step ∆t = 3600 s = 1 h. The spatial step
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∆x = ∆y = 200 m = 0.2 km. According to [23], we take f = 1.1 × 10−4, γ = 0.001, A = 7.5 × 10−3, CD = 0.01,
d = 0.001, ω = 0.01, vc = 0, α = 0.3, K = 0.35, Γ = 5, r = 0.92, n = 3, p = −0.25, q = 0.25, and ρ = 1.5×103.

By means of the NNDFDS (8)–(12), we obtained the NNDFD solutions un
j+ 1

2 ,k
and vn

j,k+
1
2
, Sn

j,k , and Zn
j,k for the

velocity u in x-direction and v in y-direction, the sediment concentration S, and the water depth Z (the change of zb
was very small, so it is not described) when n = 2160, 8760, 26,280, 43,800, and 78,840 (i.e., in the third month,
first year, third year, fifth year, and ninth year), which are depicted graphically in the charts in Figs. 8, 9, 10, 11, and
12, respectively. We exhibited that these numerical results had really shown the status of sediment transport and the
development of alluvial plain in an estuary. Especially, the numerical solutions on very long time was still convergent
and stable. We also showed that the numerical model (8)–(12) based on NNDFDS for 2D SWEs including sediment
concentration was very feasible and efficient for simulating sediment transport and flow in an estuary.

4. Conclusions and discussions

In the current research, we established the numerical model based on NNDFDS for 2D SWEs including sediment
concentration. We presented two numerical examples to illustrate that the numerical model based on NNDFDS is
very effective for finding the numerical solutions of SWEs including sediment concentration. The numerical model
based on NNDFDS can capture shock wave better than previous methods such as the numerical models in [19,22]
and can also simulate the status of sediment transport and the development of alluvial plain in an estuary. Especially,
the numerical model based on NNDFDS for 2D SWEs including sediment concentration is completely different from
existing numerical models for SWEs (see, e.g., [3–22,27]) and is an improvement and development for these existing
numerical models.

Future research work in this area will aim at extending the NNDFDS, applying it to simulating more real-life
problems such as the tidal flows in an estuary and coastal water regions, the bore wave propagation, and the stationary
hydraulic jump and river.
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