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a Centre Internacional de Métodes Numérics en Enginyeria (CIMNE), Gran Capitán s/n, 08034 Barcelona, Spain
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Abstract

The simulation of immiscible two-phase flows on Eulerian meshes requires the use of special techniques to guarantee a sharp
definition of the evolving fluid interface. This work describes the combination of two distinct technologies with the goal of
improving the accuracy of the target simulations. First of all, a spatial enrichment is employed to improve the approximation
properties of the Eulerian mesh. This is done by injecting into the solution space new features to make it able to correctly resolve
the solution in the vicinity of the moving interface. Then, the Lagrangian Particle Level Set (PLS) method is employed to keep
trace of the evolving solution and to improve the mass conservation properties of the resulting method. While the local enrichment
can be understood in the general context of the XFEM, we employ an element-local variant, which allows preserving the matrix
graph, and hence highly improving the computational efficiency.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The simulation of multi-fluid problems faces two main challenges. The first one is related to the difficulty in
approximating kinks and jumps in the simulated field, and the second one is connected to the difficulty in accurately
capturing or tracking the interface between different fluids [1].

If the interface-tracking approach is used, the computational domain adapts itself to the shape and position of the
interface. The mixed Lagrangian–Eulerian approach in [2], the space–time approach in [3] or the pure Lagrangian
particle finite element (PFEM) approach in [4] are among this family. The way the interface is tracked is on itself
a parameter of paramount importance in the treatment of the jump/kink in unknown fields. The main drawback
of interface-tracking methods is the need for regenerating the computational mesh at the distorted zones. Recent
developments in the PFEM seem to circumvent this problem by convecting particles and then projecting and solving
on the fixed mesh [5].
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The alternative approach to the treatment of the interface, called interface-capturing method, is based on the idea of
capturing the position of the interface by keeping trace of some marker field. Typical examples of this approach are the
Volume of Fluid method (VOF) and the Level Set method. Interface-capturing methods have gained more popularity
as they easily deal with merging and breaking-up of the interface. In the Level Set method, the interface is represented
implicitly as the zero-level of a smooth function and typically the signed distance function is the candidate. Since the
values of the level-set function are needed exclusively in the vicinity of the interface, it is often observed that this
equation is only solved there [6,7]. Despite many efforts in using high order spatial and temporal schemes to evolve
the distance function, it needs to be reinitialized frequently as it soon ceases to be a distance function. Unfortunately, it
appears to be difficult to conserve the interface during the reinitialization process which often leads to the breakdown
of the mass conservation. Various solutions have been proposed to overcome this problem. In [8,9] the volume-of-fluid
(VOF) method is coupled with the Level Set method to obtain a second-order technique which is generally superior
to either method alone. The Particle Level Set (PLS) method introduced in [10] uses Lagrangian marker particles
to rebuild the level set in regions which are under-resolved. This is often the case for flows undergoing stretching
and tearing. Particles are seeded near the interface and contain a local measure of the interface position that is used
to correct the level set function error due to convection or reinitialization. Geometric mass-preserving redistance
method proposed in [11,12] and developed for unstructured meshes, avoid a uniform mass-conserving correction.
This method computes a node-wise correction on a narrow band close to the interface considering that mass loss/gain
concentrates on the interface zones with higher curvature. The Discontinuous Galerkin (DG) method has also been
applied to improve mass conservation of the level set method. The quadrature-free DG method developed in [13] for
the conservative form of the level set equation remains stable even if the level set diverges from a signed distance
function.

Unfortunately, as we anticipated before, even when the position of the interface in space is known, a second
challenge arises: accurately approximating the fields of interest within the cut elements close to the interface. Sharp
definition of the interface results in cut elements. If jumps in material properties are large or interface forces are
involved, the conventional FEM cannot capture the possible jump/kink in the pressure/velocity fields. One solution
is to assign a numerical thickness to the interface that provides a smooth transition in the material properties at both
sides of the interface [14]. This type of methods requires constant interface thickness during time. However, if a sharp
interface is desired, cut elements need to be enriched. In [15] pressure is locally enriched at the interface to capture a
kink in the pressure field. In [16] two enrichment functions, one for each side of the cut, are introduced at the elements
crossed by the interface. These functions are local to each element, linear on each side of the interface, discontinuous
along the interface and zero at the element nodes. Similar to [15], these enrichments are condensed before assembly.
Beside local enrichment, global one, and in particular the XFEM have been also widely used to model multi-fluid
flow [17–20]. Except for the intrinsic XFEM [21], all versions of the XFEM add enrichments to the global system and
therefore the graph of the system needs to be updated as the interface moves.

In this work we present a local enrichment only for the pressure field and couple it with the PLS method. The
basis for the enrichment are taken from the shifted XFEM [22], or its equivalent [23], and presented for triangular and
tetrahedral elements. Basically inside each element we add one enrichment for each node and then condense them all
at the element level. This enrichment can be seen as an extension to the ones proposed in [15] and [16] that locally
add one or two DOFs, respectively. We then couple this enrichment with the PLS method to capture the interface. The
overall system is presented in the residual-based variational multiscale stabilized form similar to the one proposed
in [15,20].

The content of this paper is presented as follows. In Section 2 the incompressible two-fluid problem is presented.
Our proposal for the local enrichment is introduced in Sections 3 and 4 is devoted to the PLS. Comparison between
the XFEM and our proposal and also the effect of the PLS in the results are presented through different numerical
examples in Section 5.

2. Problem statement

The incompressible Navier–Stokes equations governing the two-phase motion in a domain Ω are written as:

ρ(∂t u + u · ∇u)− ∇ · (2µ∇
su)+ ∇ p = ρb

∇ · u = 0. (1)
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This set of equations is completed by the appropriate Dirichlet and Neumann boundary conditions. The domain Ω is
split into two parts, denoted by + and −, with the following material properties:

(ρ(x), µ(x)) =


(ρ+, µ+) if x ∈ Ω+

(ρ−, µ−) if x ∈ Ω−.

Note that a jump in density at the interface Γ produces a discontinuity in the pressure gradient, and a jump in viscosity
causes a discontinuity in pressure. Surface tension can also produce a jump in the pressure field at the interface.

In this work we do not consider the effect of surface tension and therefore we have the balance of the internal forces
at the interface as:

(σ−
− σ+) · n = 0.

The internal stress σ at each domain has the form σ = −pI + 2µ∇
su.

The variational equivalent of (1) is to find (u, p) ∈ V × Q such that:
Ω
ρ(∂t u + u · ∇u) · v dΩ +


Ω

2µ∇
su : ∇

sv dΩ −


Ω

p∇ · v dΩ =


Ω
ρb · v dΩ

Ω
q∇ · u dΩ = 0,

∀(v, q) ∈ V × Q. A stabilized variational form can be obtained using the Algebraic Sub-grid Scale (ASGS) method
[24] or the Finite Calculus [25] approach. Nonlinearities are best handled in an implicit fashion using a residual-based
Newton–Raphson strategy. Temporal discretization is performed by a second order Bossak scheme [26] (or see page
543 in [27]). The semi-discrete stabilized variational form of this problem is:

Ru =


Ω

Gu · vhdΩ +


Ω

2µ∇
sun+1

h : ∇vh dΩ −


Ω

pn+1
h ∇ · vh dΩ

+


e
τ1


Ωe

un
h · ∇vh · (Gu + ∇ pn+1

h ) dΩe +


e
τ2


Ωe

∇ · un+1
h ∇ · vh dΩe = 0

R p =


Ω

qh∇ · un+1
h dΩ +


e
τ1


Ωe

(Gu + ∇ pn+1
h ) · ∇qh dΩe = 0. (2)

In (2) the term Gu is given by:

Gu = ρ(∂t un+1
h + un+1

h · ∇un+1
h − bn+1),

and the stabilization parameters are,

τ1 =
h2

e

4µ+ 2ρhe|ue|
and τ2 = µ+ 0.5ρhe|ue|,

where he and ue are the characteristic elemental length and the velocity vector, respectively. Accurate solution of (2)
requires a modification in the finite element space, to capture the possible kink or jump expected at the solution.

3. Enrichment

When the interface cut elements on a fixed mesh, the jump in density causes a kink in the pressure field and hence it
induces a jump in its gradient at the interface position (Fig. 1). It is clear that for simple elements, triangles in 2D and
tetrahedra in 3D, the linear approximation of pressure cannot represent the expected kink in pressure. The pressure
field does not belong anymore to the standard one, and therefore one way to capture it is to add enrichments to the
standard field in these elements.

Remark. The method described in this work is mainly applied to physical problems dominated by gravitational
forces, i.e. small errors in the pressure can lead to large errors in the velocity. Therefore, an improvement of the
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a b c

Fig. 1. Two-fluid hydrostatic flow with a jump in density. Linear elements cannot represent a kink in the pressure field inside an element. (a) The
interface passes through the elements, (b) the jump in density in elements cut by the interface, and (c) the exact solution (dotted line) and the FE
solution (solid line).

pressure approximation is more beneficial than modifying the velocity approximation. Numerical studies performed
in [19] suggest that it is not advisable to enrich the velocity approximation space as it does not improve the results
significantly. Severe convergence problems and an increase in the required number of iterations have been also
reported as the consequences of the velocity enrichment.

We define the enriched pressure field at each cut element as:

pe
h =

Nnode
i

N e
i pe

i +

Nnode
i

Mi (p
e
enr)i . (3)

Here (pe
enr)i are the elemental pressure enrichments associated to the corresponding enrichment basis Mi . These basis

are defined at each node of the cut element as:

Mi (x, t) = Ni (x, t) · [ψ(x, t)− ψ(xi , t)], (4)

with ψ(x, t) being the global enrichment function and Ni (x, t) is the standard FE shape function for node i. This
definition for Mi (x, t) has the property that Mi (x, t) is zero in the mesh nodes and takes its maximum at the interface.
Zero support at the nodes facilitates interpreting the new added DOF as local to the cut element rather than global.
This definition for Mi (x, t) ensures Kronecker-δ property of the overall approximation. It means that at each given
node i, pressure is only interpolated with its own nodal value because any other node j has zero support at node i. The
enrichments do not affect explicitly the nodal approximation of pressure as they are zero at the nodes of the mesh.
These basis are known as the XFEM shifted basis [19] in the literature.

Two definitions are proposed for ψ in the literature. In case of strong discontinuities (jump in pressure) sign
enrichment is defined as:

ψsign(x, t) = sign(φ(x, t)) =

−1 if φ(x, t) < 0
0 if φ(x, t) = 0
1 if φ(x, t) > 0

(5)

where φ(x, t) is the level set function that is defined as the signed distance function whose zero matches the interface
position. Its exact definition is presented in Section 4. Similarly for the weak discontinuities (kink in pressure fields)
Moës et al. [28] and Hansbo & Hansbo [23] separately proposed an abs-enrichment shape function that is defined as:

ψabs(x, t) =

Nnode
i

|φi |Ni (x, t)− |

Nnode
i

φi Ni (x, t)|.

Fig. 2 shows the enrichment shape functions, Mi , for weak and strong discontinuities in a triangular element.

Remark. Numerical results in [19] suggest that even when no surface tension is considered, sign-enrichment
provides better results than abs-enrichment although the latter seems sufficient. Using the sign-enrichment, a larger
approximation space for the pressure is provided which also allows capturing strong discontinuities in pressure. On
the other hand, we know that a discontinuity in pressure not only appears due to the surface tension effect, but also
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Fig. 2. (a) Triangular element cut by the interface. (b) Sub-elements used for the numerical integration. × shows the integration points. (c) ψabs,
(d) ψsign, (e)–(g) sign-enrichment basis to capture a strong discontinuity and (h)–(j) abs-enrichment basis to capture a weak discontinuity.

due to viscosity jumps [29]. Therefore, in this work we only consider the sign-enrichments:

ψ(x, t) = ψsign(x, t).
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As already mentioned, these enrichments have zero support at the nodes and therefore can be interpreted as local to
each cut element. The matrix form of the semi-discrete stabilized form (2), using Eqs. (5), (4) and (3), at each cut
element is written as:

A B
BT D


U

Penr


=


F
0


. (6)

U is the vector of nodal velocities and pressures of the element, U = {u,p}, and Penr contains the elemental enrich-
ments for pressure. Following this arrangement, matrix A contains all terms related to the original DOFs, U, matrix
B contains terms related to the original DOFs and enrichments, and matrix D contains terms related only to the en-
richments, Penr. Note that, to be consistent, the enrichment is also applied to the test function of pressure. Vector F
represents the body force term. Exact computation of the integrals in (2) requires a modification in the quadrature
rule. To this end, each triangular element (tetrahedral in 3D) is split into sub-elements and for each sub-element the
same integration rule as for the non-cut elements is used (see Fig. 2b).

Now we proceed to the condensation by computing first the enriched pressures Penr from the second equation in
(6) as:

Penr = −D−1BT U,

and then plug it into the first equation in (6) to obtain,

(A − BD−1BT )U = F,

at each cut element. The condensation process is valid as long as the matrix D is invertible. Recalling Eq. (2), D is the
Laplacian of the enriched pressures computed as:

D = τ1


Ωe

∇ penr · ∇qenr dΩe.

From the definition of M in (4), it is clear that, no matter where the interface is, the ∇Mi is always bounded and
actually constant in each side of the interface. As the result, D is always invertible unless if for some Mi the support
tends to zero.

Remark. The enrichment shape functions with small support typically occur when the interface is close to a node or
edge and lead to an ill-conditioned system matrix. Two approaches to treat this problem are given in [30–32]. In this
work we use the blocking criteria proposed in [30] in which for each cut element enrichment is considered if the ratio
between the minimum and maximum sub-volumes is bounded by a user-defined constant C ≪ 1, i.e.

min(V e
1 , V e

2 )

max(V e
1 , V e

2 )
< C. (7)

Note that doing condensation, the cut element ends up having the same DOFs, U, as the rest of the elements and
therefore the graph of the matrix remains unchanged as the interface evolves. This is not the case for the conventional
XFEM where the enrichments are global.

Fig. 3 compares our proposed local enrichment and the XFEM. In local case, Fig. 3a, only the cut elements
are engaged and the additional DOFs are represented with black circles inside each element. On the other hand in
the XFEM enrichment scheme, Fig. 3b, three types of subdomains are usually distinguished. The first one, Ωenr,
is composed of elements cut by the interface which have all nodes enriched. The second subdomain, Ωpenr, has all
elements that have at least one node enriched, and the last subdomain is the collection of elements with standard DOFs
and without enrichment. In XFEM, as the interface moves, new elements are cut and so new global DOFs need to be
considered. This means that the graph of the matrix assembly need to be recomputed, which is quite costly for large
problems.

Remark. Note that the XFEM provides a continuous pressure field at the nodes and at the inter-element boundaries,
while the local enrichments are only continuous at the nodes (they are zero at the nodes) and not at the inter-element
boundaries. This irregularity in pressure is still acceptable because pressure, as appears in (2), belongs to the L2(Ω)
space and does not require control over the derivatives.
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(a) Elemental enrichment. (b) XFEM.

Fig. 3. Schematic view of the condensed elemental enrichment and the XFEM. (a) local enrichment. Solid points represent the condensed pressure
DOFs at each cut element. (b) Subdomains containing enriched, partially enriched and standard (non-enriched) elements as well as the enriched
nodes (solid nodes) in the XFEM terminology.

Remark. Similar local enrichments that add one enrichment for the cut element or two, one at each side of the
interface, already exist in the literature. One of such modifications [15] suggested to interpolate the pressure as:

pe
h =

Nnode
i

N e
i pe

i + N e
enr pe

enr,

where Nnode is the number of nodes per element and Nenr is the new enrichment function added just for the elements
cut by the interface. This function has the constant gradient at each side of the interface and has zero support at the
nodes. Nenr is defined by the level set values φ at the element nodes as:

Nenr = 0.5


−

Nnode
i

N e
i φi

+ Nnode
i

N e
i |φi |


.

This definition for Nenr is quite similar to the definition for ψabs shown in Fig. 2c. Note that here this function is
directly used as the enrichment shape function while in XFEM it is used to define Mi .

The enrichment proposed in [15] suffers from instabilities. The idea proposed here of capturing the kink in the
pressure field with just one added DOF perfectly works for 1D problems. However, for 2D and 3D situations one
enrichment is not sufficient to capture the correct pressure field and actually one enrichment per cut edge seems more
appropriate. Intuitively, as long as the edges are cut at the same height, one enrichment is sufficient but when deviation
occurs and therefore each edge is cut at a different height, more than one enrichment is needed. As for 3D problems
the number of cut edges can reach up to four in each tetrahedra, a generic enrichment that covers all cases would
be an enrichment at each node. Our proposed local XFEM satisfies this requirement as all nodes are enriched, and
at the same time takes advantage of the condensation to avoid change in the graph of the matrix as is common in
conventional XFEM.

In the following section we review an interface capturing technique based on the Level Set method. No iteration
is considered between the multi-fluid solver and the interface capturing one. At each time step, first the interface is
moved and then one step of the predictor multi-corrector fluid solver is performed. This is in contrast to some more
sophisticated coupling strategies such as those presented in [33] and [19].

4. Particle Level Set (PLS) method

The underlying idea behind the Level Set method is to represent an interface as the zero-level set of a higher
dimensional function φ(x, t). This function is scalar and substantially reduces the complexity of describing the
interface, especially when undergoing topological changes such as pinching and merging. The level set function
φ(x, t) is defined to be a smooth function that is positive in one region and negative in the other.
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a b c

Fig. 4. Particle Level Set (PLS) method [10]. (a) The mass gain/loss of the standard level set solution after one revolution. (b) Placement of massless
positive (blue) and negative (red) particles around the interface for the Zalesak test. (c) PLS solution after one revolution. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The motion of the interface is determined by a velocity field, u, which can be a function of position, time and
geometry of the interface, or be given externally, for instance as the solution of the Navier–Stokes equations (1). The
advection equation for the interface evolution is:

φt + u · ∇φ = 0. (8)

This level set equation is a first order hyperbolic PDE and only needs to be solved near the interface.
The most common choice for the level set function φ is the signed distance to the interface so that |∇φ| = 1. This

ensures that the level set is a smoothly varying function well suited for high order accurate numerical methods. There
are several techniques to solve the level set equation (8) in space and time [6,7].

Despite the high order temporal and spatial approximations of the level set equation, instabilities may appear when
the level set cease to be a signed distance function. This situation occurs at the presence of large topological changes at
the interface vicinity, which are quite common in practical problems. One solution is to reshape the level set function
to a distance function. This method, called reinitialization, has been shown to stabilize the numerical instabilities and
is performed frequently during the evolution of the interface. Reinitialization is performed at each time step by solving
to steady state (as fictitious time τ → ∞) the equation:

φτ + sgn(φ0)(∥∇φ∥ − 1) = 0 (9)

where sgn(φ0) is a one-dimensional smeared out signum function [14].
Unfortunately, one of the major drawbacks of the reinitialization process is the difficulty in preserving the original

location of the interface, often leading to breakdown in the conservation of mass. To overcome this problem of mass
loss with the level set method (Fig. 4a), various solutions have been proposed [10,11,13,34].

The PLS [10] method uses Lagrangian marker particles to rebuild the level set in regions which are under-resolved.
This is often the case for flows undergoing stretching and tearing. Two sets of massless marker particles are placed
near the interface with one set, the positive particles, in the φ > 0 region and the other set, the negative particles
in the φ < 0 region (Fig. 4b). It is unnecessary to place particles far from the interface and this greatly reduces the
number of particles needed in a simulation. The region near the interface could be considered as the region covered
by all elements that have at least one corner with the distance inferior to three times the element size. In this work 10
particles are seeded in each tetrahedral element, which is different from the 4d (d is the dimension) particles proposed
in the original work for the cubic elements [10]. Considering that each cubic element could be divided into 6 tetrahedra
the choice of 10 particles is reasonable. The placement of the massless particles around the zero-level set for this test
can be seen in Fig. 4b. In Fig. 4c the PLS solution after one revolution is shown.

For the purpose of interface reconstruction a radius rp is assigned to each particle as the function of its distance to
the interface. This radius is bounded by minimum and maximum values based upon the mesh size near the interface
(0.1d < rp < 0.5d , d is the mean mesh size). Note that this radius provides a local measure to the interface position.
Once particles are seeded and their radius adjusted, the level set equation (8) is integrated forward in time. Then,
particles are advected with the evolution equation

dxp

dt
= u(xp), (10)

where xp is the position of the particle and u(xp) is its velocity. The particle velocities are interpolated from the
velocities on the underlying grid.
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Remark. In this work we use the second order Crank–Nicolson method for the time stepping of the level set equation
(8). The particle evolution equation (10) is integrated in time using sub-stepping technique in which 10 sub-steps are
considered.

In smooth well resolved regions of the flow where the level set method is highly accurate, the particles do not drift
a non-trivial distance across the interface allowing us to maintain a high order accurate level set solution. Instead,
in under-resolved regions we find particles that are on the wrong side of the interface by more than their radius. We
define a particle as escaped particle only if it crosses the interface by more than its radius. Escaped particles are used
to reconstruct the level set function in under-resolved regions.

To this end, a local level set function is defined for each escaped particle by means of the radius associated to the
particle as:

φp(x) = sp(rp − ∥x − xp∥), (11)

where sp is the sign of the particle, i.e. ±1. These level sets are only defined locally on the corners of the element
containing the escaped particle and can be seen as the particle predictions of the values of the level set function on the
corners of the element. Any variation of φ from φp indicates possible errors in the level set solution.

The escaped positive particles are used to rebuild the φ > 0 region and the escaped negative particles to rebuild
the φ ≤ 0 region. For example, take the φ > 0 region and an escaped positive particle. Using Eq. (11), the φp values
of the grid points on the element containing the particle are calculated. Each φp is compared to the local values of φ
and the maximum of these two values is taken as φ+. This is done for all escaped positive particles creating a reduced
error representation of the φ > 0 region. That is, given a level set φ and a set of escaped positive particles E+, we
initialize φ+ with φ on all grid points and then calculate

φ+
= max

∀p∈E+
(φp, φ

+).

Note that this operation is done only for the escaped positive particles and φp’s are only calculated on the elements
containing the escaped particles. Similarly for the negative region, φ ≤ 0, we initialize φ− with φ and then calculate

φ−
= min

∀p∈E−
(φp, φ

−).

φ+ and φ− will not agree due to the errors in both the particle and the level set solutions as well as interpolation
errors, etc. We merge φ+ and φ− back into a single level set value by setting φ to the value of φ+ or φ− which is least
in magnitude at each grid point,

φ =


φ+ if |φ+

| 6 |φ−
|

φ− if |φ+
| > |φ−

|.

The minimum magnitude is used to reconstruct the interface (instead of, for example, taking an average), since it
gives priority to values that are closer to the interface.

The PLS method is also capable of correcting the errors due to the reinitialization. During the reinitialization step,
particles are not moved to conserve the zero-level set and then any error in the reinitialization scheme is corrected
by them. After the reinitialization and correction steps, the radii of the particles are adjusted according to the current
value of φ(xp).

In summary the order of operation in one time step of the PLS method is as follows:

• Solve the level set equation (8) and move the particles.
• Correct errors in the level set function using particles.
• Reinitialize the distance function and again correct errors using particles.
• Adjust the particle radii.
• Reseed particles, if necessary, to have a uniform distribution.

Our proposed local XFEM is loosely coupled with the PLS method to perform numerical examples as shown in
the following section. At each time step first the interface is moved, and then one step of the predictor multi-corrector
fluid solver is performed.
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(a) 0.5 s. (b) 0.8 s. (c) 1.1 s. (d) 1.25 s. (e) 1.5 s.

Fig. 5. Rayleigh–Taylor instability. (a)–(c) shows the evolution of the interface until it breaks. (d)–(e) shows the particles involved in the interface
reconstruction concentrated near the interface. Note that the mesh has low resolution to capture the underlying structure.

5. Numerical examples

All the following examples are solved on tetrahedral meshes and no surface tension is considered. Regarding the
PLS method, the maximum seeding distance is limited to 3h, where h is the maximum edge size. The constant used
in the enrichment criteria of Eq. (7) is taken as C = 10−4.

5.1. Rayleigh–Taylor instability

A single mode Rayleigh–Taylor instability is considered to study the interface capturing technique coupled with
the enrichment method. This instability occurs when a heavy fluid is accelerated into a light one due to gravity forces.
Various authors have used XFEM or other stabilized methods coupled with the Level Set method and hexahedral
elements for the simulation of this phenomenon [20,35]. A rectangular domain Ω = [L×H ] with L = 0.5 m and H =

4 m is extruded in the third direction by one element thickness h = 0.015625 m. The domain is uniformly discretized
by 49152 tetrahedra (32 × 256 × 1 cubes, each of which divided into 6 tetrahedra). The instability is triggered by
a cos form deviation of the amplitude 0.05 at the horizontal interface between two fluids, z = 0.05cos(2πx). The
top heavy fluid has a density ρ+

= 3 kg/m3 and a dynamic viscosity µ+
= 0.0135 kg/(ms) and the bottom light

fluid has ρ−
= 1 kg/m3 and µ−

= 0.0045 kg/(ms). The gravitational acceleration of magnitude g = −10 m/s2 in
the z direction is considered. Similar dimensionless Reynold number, Re =

√
gH Lρ+/µ+

=
√

gH Lρ−/µ−
= 500

and Atwood number, A =
ρ+

−ρ−

ρ++ρ− = 0.5, as in [20,35] are obtained. Slip boundary conditions are considered on the
side walls, no-slip condition on the bottom wall and zero pressure is prescribed at the upper wall. No surface tension
is considered and a fixed time step of ∆t = 0.01 s is used. Fig. 5 shows the evolution of the interface at different
instances along the formation of the instability. Our results are compared well with the results obtained in [20,35]
with hexahedral meshes of the same size. The maximum mass fluctuation is approximately 0.12%. In [20] a mass
fluctuation of 0.10% and in [35] a mass fluctuation of 0.07% was observed for a second-order level-set scheme.
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(a)

(b) 0.0 s. (c) 1.8 s. (d) 3.6 s.

(e) 5.4 s. (f) 10.8 s. (g) 16.2 s.

Fig. 6. Isocontours of pressure and the position of the interface (solid surface) at various instances during the sloshing.
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Fig. 7. Time history of the interface position on the right side wall. The solid line shows the results obtained by the XFEM and the dotted line by
the local XFEM proposed.

5.2. Sloshing tank

The ability of the proposed enriched method to model the free surface behavior is studied in this example. The
computational domain is a rectangle of dimensions [0, 1] × [0, 1.5] in the X Z plane that is extruded over a length
0.0125 in the Y direction. A [80 × 120] division in the X Z plane results in a uniform mesh of 57,600 tetrahedra.
The interface separating the two phases is initially given as a sinusoidal wave with an amplitude equal to 0.1 as,
Z = 1.01 + 0.1 sin((x − 0.5)π). The level set is initialized as the distance to this sinusoidal interface. The densities
of the fluids are ρ+

= 1.0 kg/m3 and ρ−
= 1000.0 kg/m3 and the dynamic viscosities are µ+

= 0.01 kg/(ms) and
µ−

= 1.0 kg/(ms). Considering g = −1 m/s2, the non-dimensional Froude and Reynolds number are 1 and 1000,
respectively. Slip boundary condition is considered for the side walls, while the bottom wall is considered no-slip and
pressure is fixed to zero on the top wall. The time step is ∆t = 0.0075 s and the end time is 20 s. The position of
the free surface and the underlying pressure is shown in Fig. 6. The time history of the height of the interface on the
right side wall is shown in Fig. 7 and is compared with the XFEM. It can be seen that due to the viscous damping
the amplitude of the height decreases. The mean frequency of the oscillation is 0.277 Hz, which agrees with reported
values 0.279 [36] and 0.274 [20]. Note that in this example no difference is observed between the results of the Level
Set and PLS methods. This can be explained as no tearing or merging of the interface occurs and therefore volume is
conserved well even with the Level Set method.

5.3. Rising bubble

The rise and deformation of 2D and 3D bubbles in vertical, rectangular container is considered here in the absence
of surface tension. The density of water and air were taken to be, 1000.0 kg/m3 and 1.226 kg/m3, respectively. The
viscosity of the surrounding water was taken as 0.35 kg/(ms), and the viscosity of the air inside the bubble to be
0.00358 kg/(ms). These values result in a jump approximately equal to 1000 in density and 100 in viscosity. The
initial diameter of the bubble was D = 0.05 m and g = −9.81 m/s2. For the 2D case the width and the height of
the rectangular domain were considered 2 times and 4 times of that the bubble diameter, respectively, which results in
a rectangular domain of [0.1 × 0.2]. The extension in the third dimension was considered as one element thickness.

With the above parameters the Reynolds number, defined as Re =
ρD

√
gD

µ
, is 100. Eötvös number, E =

g(ρw−ρa)D2

γ
,

tends to infinity as no surface tension was considered (γ = 0). For these parameters formation of a skirted bubble is
reported [37,38]. A uniform tetrahedral mesh of size 0.0025 was considered (40×80×1) and the time step increment
was equal to 0.002 s. Pressure was assigned to zero on the top wall and slip boundary conditions were considered on
the side and bottom walls.

Fig. 8 shows the interface position and the pressure field for various instances during the deformation of the bubble.
The results are in good agreement with those reported in [33,36] for large Eötvös numbers.
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(a) 0.0 s. (b) 0.05 s. (c) 0.1 s.

(d) 0.15 s. (e) 0.2 s. (f) 0.22 s.

Fig. 8. Bubble rising. Isocontours of pressure and the position of the interface (solid surface) at various instances.

5.3.1. 3D

The same parameters as for the 2D case were considered for the 3D case. The computational domain was a box
of [0.1 × 0.1 × 0.2] m, uniformly discretized by tetrahedra of size 0.0025. No surface tension was considered and
the time stepping was equal to 0.002 s. Our results are similar to those obtained in [33,38] for Re = 100 and a large
Eötvös number but are obviously different from the results obtained in [20], although the setting exactly matches this
reference. Simulations carried on in [33,38] for large density ratio, around 1000, and small surface tension suggest
that the deformation of the bubble from a sphere to an elliptic cap extends to the bell shape and eventually ends up
with the piercing of the top surface as shown in Fig. 9. The importance of the PLS method on the mass conservation
can be seen in Fig. 10 where the volume fluctuation percentage for the bubble is compared for the pure level set and
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(a) 0.0 s. (b) 0.042 s. (c) 0.072 s.

(d) 0.102 s. (e) 0.122 s. (f) 0.132 s.

Fig. 9. Bubble rising in 3D. Pressure and the position of the interface (solid surface) at various instances. The cut plane passes through the middle
of the bubble to show the inner structure.

PLS methods. We also observe that if the Level Set method is used and no correction is done to preserve the volume,
no piercing of the top surface appears which is similar to the results obtained in [20].

5.3.2. Coalescence
Coalescence of two bubbles in 3D is simulated to study the performance of the method in the presence of multiple

interfaces [33]. Two bubbles of the same density and viscosity, ρb = 1 kg/m3 and µb = 0.00025 kg/(ms), are
surrounded by a fluid of density ρ f = 10 kg/m3 and viscosity µb = 0.0005 kg/(ms). Due to the symmetry and to
better appreciate the interior surfaces of the bubbles, one fourth of the model is considered only. Fig. 11 shows the
initial position of the bubbles in the simulation box. The lower and upper bubbles have a radius of rl = 0.1 m and
ru = 0.15 m, respectively. The distance between the centers of the bubbles is 0.3 m and the lower bubble is placed
0.25 m away from the bottom wall. The box has the dimensions of [0.5 m×0.5 m×1 m] and is discretized uniformly
with tetrahedra of size 0.01. Pressure is fixed on the top wall of the box and the slip condition is applied to the rest of
the walls. The setting of this example is similar to the one proposed in [33].

The bubbles are lighter than the surrounding water and rise in time. The pressure gradient imposes that the bottom
interface of the bubbles travel faster compared to the front one. However, the lower bubble, which is in the wake of
the larger one, tries to move fast from the front too (Fig. 12b). As time evolves an upward moving jet is produced
in the volume between the two bubbles that affects the bubbles’ transient motion and their shape. The bottom of the
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Fig. 10. Bubble volume fluctuation percentage, (100 ×
V −V0

V0
), compared for the Level Set and PLS methods.

Fig. 11. Initial position of the bubbles and a zoom of the pressure field near the bubbles’ zone.

lower bubble also deforms from spheric to elliptic shape similarly to the single bubble behavior. The evolution of the
interfaces can be seen in Fig. 12. Both bubbles develop a toroidal shape and at t = 0.21 s the front portion of the
small bubble almost catches up with the bottom portion of the larger bubble. Fig. 13a shows the interface position
of the merged bubble and the pressure field in a diagonal cut through the domain. The underlying particles are seen
in Fig. 13b, the red particles are the bubble particles (negative distance) and the blue ones are the surrounding fluid
particles (positive distance). In Fig. 13c the particle radii that are the local measure of the interface are shown for the
particles near the interface.

6. Conclusion

We have proposed a local XFEM method to solve two-fluid flow problems. The pressure field is enriched by a
discontinuous basis similar to the ones used in the standard XFEM, but condensed at the elemental level. In this way
we take advantage of the stability obtained by the XFEM enrichments and at the same time avoid changing the graph
of the matrix as the interface moves. No difference has been detected between the results obtained using this method
and those obtained with the standard XFEM for two-fluid flow. To overcome the mass loss/gain of the Level Set,
the PLS method is coupled with our local XFEM. Several benchmark problems have been solved using tetrahedral
meshes. Numerical results compare well with those obtained with standard XFEM using hexahedral meshes.
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(a) 0.05 s. (b) 0.1 s. (c) 0.14 s. (d) 0.17 s. (e) 0.21 s.

Fig. 12. Coalescence of two bubbles. The cut plane passes through the diagonal of the computational box.

a b c

Fig. 13. Coalescence of two bubbles at t = 0.226 s. (a) Interface position and the pressure field. (b) Distribution of positive and negative particles.
(c) Particle radius counter fill for the particles near the interface.
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