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Highlights

• Isogeometric invariant formulation to eliminate self-straining in curved beams.
• Self-straining deteriorates response quality due to a failure in rigid body motion.
• Discretization of global displacement can resolve the self-straining completely.
• Combination with SRI and B-bar methods to alleviate membrane and shear locking.

Abstract

Isogeometric formulations of curved Timoshenko beams in curvilinear coordinates often result in self-straining of membrane
and shear strains, due to the discretization of the local displacement field. Self-straining means a failure in exact representation of
rigid body motions, which consequently deteriorates response quality. To overcome the difficulty of self-straining, we propose an
invariant formulation that discretizes the global displacement field. It turns out that the approximated membrane, shear, and bending
strain measures are invariant regardless of initial geometry in the proposed formulation. For effective applications to any arbitrarily
curved structures and locking-free formulations to alleviate membrane and shear locking, the proposed invariant formulation is
combined with selective reduced integration (SRI) and B̄ projection method. Numerical examples demonstrate the effectiveness
and applicability of the proposed invariant formulation, which gives much more accurate results together with both SRI and B̄
projection method, in comparison to the existing isogeometric formulations.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Membrane and shear locking mean the inability to represent the “inextensible bending” and “shearless bending”,
respectively. Bouclier et al. [1] and Adam et al. [2] suggested locking-free isogeometric formulations of curved
Timoshenko beams in curvilinear coordinates. The local displacement field is discretized to obtain the approximated
membrane and shear strains. However, these strain measures generally fail to pass the patch test of rigid body
motions, which is called as self-straining [3]. Especially as the initial curvature variation of the beam increases, this
self-straining triggers severe numerical instabilities that prevent locking-free formulations in [1,2] from being utilized
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for arbitrarily curved beams. Armero and Valverde [3] showed that, in a finite element context for the curved Kirchhoff
beam analysis using Hermite basis functions, the classical elements which interpolate the axial and the transversal
displacement components separately do not represent the rigid body motions exactly. In this paper, shear deformable
beams are considered for the isogeometric analysis using NURBS basis functions. We discuss a discretization scheme
together with locking-free formulations to overcome the aforementioned difficulties; self-straining and membrane and
shear locking.

This paper is organized as follows: in Section 2.1, we prove the invariance of the strain measures in continuum
form. In Section 2.2, we investigate self-straining of the approximated strain measures. In Section 3, a formulation
to eliminate self-straining is suggested. In Section 4, through numerical examples, we demonstrate self-straining
phenomenon and its elimination employing the proposed formulation.

2. Self-straining in curved Timoshenko beams

2.1. Invariance of strain measures in continuum form

The global displacement vector ẑ is expressed in curvilinear frame as

ẑ = z1j1 + z2j2, (1)

where j1 and j2 are the unit tangential and normal vectors, respectively. The following strain measures can be derived,
from the equilibrium equations and the principle of virtual work [3], as

εm = z1,s − kz2
γs = kz1 + z2,s − θb
ωb = θb,s

 , (2)

where εm , γs , and ωb are the membrane, shear, and bending strain measures, respectively. (•),s denotes a differen-
tiation with respect to the arc-length coordinate s. k and θb represent the initial curvature and the rotation angle of
cross-section, respectively. Combining the Frenet–Serret formulas (j1,s = kj2, j2,s = −kj1) with the derivative of
Eq. (1) with respect to s, Eq. (2) can be rewritten as

εm = ẑ,s · j1
γs = ẑ,s · j2 − θb
ωb = θb,s

 . (3)

To prove the invariance of Eq. (3), take a rigid body translation given by an arbitrary constant vector ẑ = cT ∈ R2 and
a rotation angle θb = cR = 0. Then, for all cT ∈ R2, Eq. (3) satisfies the following:

εm = cT,s · j1 = 0
γs = cT,s · j2 − cR = 0
ωb = cR,s = 0

 . (4)

Next, consider an infinitesimal rigid body rotation θb = cR expressed by the constant rotation angle and the associated
displacement vector as

ẑ = (X − Xre f ) × θ = cR Ĩ(X − Xre f ), where Ĩ ≡


0 −1
1 0


. (5)

θ ≡ [0, 0, cR]
T denotes the infinitesimal rotation vector. X, Xre f ∈ R2 represent the position vectors of a point on the

neutral axis and a reference point, respectively. Substituting Eq. (5) into Eq. (3) leads to

εm = θb ĨX,s · j1 = θbj2 · j1 = 0
γs = θb ĨX,s · j2 − θb = 0
ωb = cR,s = 0

 , (6)

for all cR ∈ R and Xre f ∈ R2, since X,s = j1 due to the arc-length parameterization and the orthonormal vectors j1

and j2 are related by j2 = Ĩj1.
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Observation 1. The strain measures in Eqs. (2) and (3) are equivalent to each other and invariant. However, after the
approximation using the NURBS basis functions, it depends on the discretization manner whether the approximated
strain measures are still invariant or not.

2.2. Non-invariance of strain measures in discrete form

Bouclier et al. [1] and Adam et al. [2] discretized the displacement component vector and the rotation as follows:

zh
=

n
I=1

WI (ξ)yI (7)

and

θh
b =

n
I=1

WI (ξ)θbI , (8)

where WI and ξ are the Ith NURBS basis function and the parametric coordinate, respectively. yI and θbI are the
response coefficients corresponding to the Ith control point. n is the total number of the NURBS basis functions.
Using Eqs. (7) and (8), the strain fields in Eq. (2) are approximated as

εh
m =

n
I=1

(WI,s y1I − kWI y2I ), (9)

γ h
s =

n
I=1

(kWI y1I + WI,s y2I − WI θbI ), (10)

and

ωh
b =

n
I=1

WI,sθbI , (11)

where WI,s = WI,ξ/Jcb, Jcb ≡ s,ξ =
X,ξ

, and X represents the neutral axis curve. The rotation coefficient θbI
represents the rotation of control net, which is related to the rotation of physical domain by the affine covariance
property of NURBS basis function [4]. In contrast, the displacement component coefficient yI = [y1I , y2I ]

T has no
physical significance so that it needs to be expressed by the global displacement vector, which requires constructing the
following two linear systems of n equations due to the non-interpolatory characteristic of the NURBS basis function.

zh
1(ξ̄i ) =

n
I=1

WI (ξ̄i )y1I =

n
I=1

Ai I y1I

zh
2(ξ̄i ) =

n
I=1

WI (ξ̄i )y2I =

n
I=1

Ai I y2I

 , (12)

where Ai I ≡ WI (ξ̄i ) are the components of collocation matrix and the positions of the collocation points ξ̄i
(i = 1 ∼ n) are determined, by the Greville abscissae, as

ξ̄i =
1
p
(ξi+1 + ξi+2 + · · · + ξi+p), (13)

where p is the degree of NURBS basis functions. Using Eq. (12) and the relation of Eq. (1), the displacement
coefficients can be expressed as

y1I =

n
i=1

A−1
I i zh

1(ξ̄i ) =

n
i=1

A−1
I i j1

T (ξ̄i )ẑh(ξ̄i )

y2I =

n
i=1

A−1
I i zh

2(ξ̄i ) =

n
i=1

A−1
I i j2

T (ξ̄i )ẑh(ξ̄i )

 , (14)
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where A−1
I i are the components of inverse matrix. Substituting Eq. (14) into Eqs. (9) and (10), we have the following:

εh
m =

n
I=1

n
i=1


WI,s A−1

I i j1
T (ξ̄i ) − kWI A−1

I i j2
T (ξ̄i )


ẑh(ξ̄i ) (15)

and

γ h
s =

n
I=1

n
i=1


kWI A−1

I i j1
T (ξ̄i ) + WI,s A−1

I i j2
T (ξ̄i )


ẑh(ξ̄i ) −

n
i=1

WI θbI . (16)

To investigate the non-invariance of the approximated strain measures, consider the rigid body translation as

ẑh(ξ̄i ) = cT

θbI = θh
b = cR = 0


(i, I = 1 ∼ n), (17)

where the relation θbI = θh
b is obtained from the affine covariance property of the NURBS basis function. Substituting

Eq. (17) into Eqs. (15), (16), and (11) yields the following:

εh
m = cT

T
n

I=1

n
i=1


WI,s A−1

I i j1(ξ̄i ) − kWI A−1
I i j2(ξ̄i )


≡ cT

T a, (18)

γ h
s = cT

T
n

I=1

n
i=1


kWI A−1

I i j1(ξ̄i ) + WI,s A−1
I i j2(ξ̄i )


= cT

T (Ĩa), (19)

and ωh
b = 0. The vector function a = a(ξ) generally does not vanish. However, if the initial geometry is circular

or straight, it can be proved that the vector function vanishes. First, for a circular geometry, the unit tangential and
normal vectors are expressed as:

j2 = (Xc − X)/R = k(Xc − X)

j1 = −Ĩj2 = −k Ĩ(Xc − X)


, (20)

where Xc and R denote the center position and radius of a circle, respectively, and the relation k = 1/R is used.
Substituting Eq. (20) into the expression of the vector a in Eq. (18), and using the partition of unity of NURBS basis
functions, the vector a is rewritten as

a = −k
n

I=1

n
i=1


−WI,s A−1

I i
˜IX(ξ̄i ) + kWI A−1

I i


Xc − X(ξ̄i )


− k ĨXc

n
I=1

WI,s

= −k
n

I=1


−WI,s ĨBI + kWI (Xc − BI )


, (21)

where BI denotes the position of Ith control point. Then, using the relation X,s =
n

I=1 WI,sBI = j1 and Eq. (20),
we have the following:

a = −k

−Ĩj1 + k(Xc − X)


= −k(−Ĩj1 + j2) = 0. (22)

Thus, εh
m = γ h

s = ωh
b = 0 for any cT ∈ R2, if the initial geometry is circular. Second, if the initial geometry is straight

(k = 0), j1 is a constant vector so that we have the following:

a =

n
I=1

WI,s


n

i=1

A−1
I i j1


=

n
I=1

WI,sc = 0, (23)

due to the partition of unity of NURBS basis functions, where c ∈ R2 is a constant vector. Thus, εh
m = γ h

s = ωh
b = 0

for any cT ∈ R2, if the initial geometry is straight.
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We only present the proof of vanishing shear strain if the initial geometry is circular or straight for the infinitesimal
rigid body rotation of Eq. (5) and θbI = θh

b = cR . Similar procedures can be straightforwardly applied to show the
invariance of the membrane strain. First, for a circular geometry, substituting Eq. (5) into Eq. (16), and using the
expression of Ĩa of Eq. (19) and the relation ĨT

= Ĩ−1, we have the following:

γ h
s = cR

n
I=1

n
i=1


kWI A−1

I i j1
T (ξ̄i ) + WI,s A−1

I i j2
T (ξ̄i )


Ĩ

X(ξ̄i ) − Xre f


− cR

n
i=1

WI

= −cR

n
I=1

n
i=1


WI A−1

I i j1
T (ξ̄i ) + WI,s A−1

I i j2
T (ξ̄i )/k


Ĩk

Xc − X(ξ̄i )


+ aT (Xc − Xre f ) − cR . (24)

Then, using Eqs. (20) and (23), the shear strain of Eq. (24) can be shown to vanish, as follows:

γ h
s = cR

n
I=1

n
i=1


WI A−1

I i j1
T (ξ̄i ) + WI,s A−1

I i j2
T (ξ̄i )/k


j1(ξ̄i ) − cR = cR

n
I=1

WI − cR = 0. (25)

Second, for straight geometry, k = 0 and j2 is a constant vector. Substituting Eq. (5) into (16), and using the relations
X,s =

n
I=1 WI,sBI = j1 and j2 = Ĩj1, we obtain the following:

γ h
s = cRj2

T Ĩ
n

I=1

n
i=1

WI,s A−1
I i X(ξ̄i ) − cRj2

T Ĩ
n

I=1

WI,s


n

i=1

A−1
I i Xre f


− cR

= cRj2
T Ĩ

n
I=1

WI,sBI − cRj2
T ĨXre f

n
I=1

WI,s − cR

= cRj2
T j2 − cR = 0, (26)

for all cR ∈ R and Xre f ∈ R2. Therefore, the following observation is given.

Observation 2. The discretization of Eqs. (7) and (8) leads to the non-invariance of the approximated membrane
strain of Eq. (9) and the shear strain of Eq. (10). However, in case the initial geometry is circular or straight, the
strain measures remain invariant as well. Also, self-straining can be reduced through h-refinement as the initial
curvature variation of elements decreases. The approximated bending strain is always invariant, regardless of the
initial geometry.

Hereafter, the discretization using Eqs. (7) and (8) is denominated as “Discretization #1 (D#1)”.

3. Locking-free invariant formulation

3.1. Invariant discretization using the global displacement field

We prove that the discretization of the global displacement vector instead of Eq. (7) can eliminate self-straining of
the membrane and shear strain measures. The global displacement is discretized as

ẑh
=

n
I=1

WI ŷI , (27)

where ŷI is the displacement coefficient corresponding to Ith control point. The approximated membrane and shear
strain measures of Eq. (3) can be rewritten, using Eqs. (8) and (27), as

εh
m =

n
I=1

(WI,s ŷI ) · j1

γ h
s =

n
I=1


(WI,s ŷI ) · j2 − WI θbI


 . (28)
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To verify the invariance of the strain measures of Eq. (28), consider the rigid body translation expressed by ẑ = cT and
the rotation angle cR = 0. By the affine covariance property of NURBS basis function, ŷI = cT and θbI = cR = 0.
Then, Eq. (28) is rewritten as

εh
m = (cT · j1)

n
I=1

WI,s = 0

γ h
s = (cT · j2)

n
I=1

WI,s = 0

 , (29)

for all cT ∈ R2 due to the partition of unity of NURBS basis function. Next, we consider the infinitesimal rigid body
rotation expressed by a constant angle cR ∈ R. The affine covariance property of NURBS basis function enables to
represent the rigid body rotation of physical domain as ŷI = cR Ĩ(BI − Xre f ) and θbI = cR . Substituting into (28)
gives

εm =

n
I=1


WI,scR Ĩ(BI − Xre f )


· j1

= cR Ĩ
n

I=1

(WI,sBI · j1) − (cR ĨXre f · j1)

n
I=1

WI,s

= cR Ĩj1 · j1 = 0 (30)

and

γs =

n
I=1


WI,scR Ĩ(BI − Xre f )


· j2 − cR

=

n
I=1

WI,scR ĨBI · j2 − (cR ĨXre f · j2)

n
I=1

WI,s − cR

= cR Ĩj1 · j2 − cR = 0, (31)

for all cR ∈ R, where X,s =
n

I=1 WI,sBI = j1 and j2 = Ĩj1 are used.

Observation 3. The approximated membrane and shear strain measures in Eq. (28) are invariant regardless of the
initial geometry.

Hereafter, the discretization using Eqs. (8) and (27) is denominated as “Discretization #2 (D#2)”.

3.2. Locking-free invariant formulation

The proposed invariant formulation (D#2) is combined with the B̄ projection method for NURBS basis functions
whereas the formulation D#1 is used in Bouclier et al. [1]. Basically, in the B̄ projection method, the approximated
strain field described in the space Q p of pth order NURBS basis functions is linearly projected onto the space Q p−1
of (p − 1)th order. The detailed description of selecting the number of basis functions and the set of knots in the space
Q p−1 can be found in Bouclier et al. [1]. The strain field in the space Q p is projected onto the space Q p−1 as

ε̃h
m =

ñ
I=1

W̃I ε̃
h
m I

γ̃ h
s =

ñ
I=1

W̃I γ̃
h
s I

 , (32)

where ñ denotes the number of basis functions in the lower order space. W̃I is the corresponding lower order basis
function. Then, the equivalence between the original and the projected strain fields is weakly expressed, for all
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v ∈ Q p−1, as
Ω

vεh
mdΩ =


Ω

v

ñ
I=1

W̃I ε̃
h
m I dΩ

Ω
vγ h

s dΩ =


Ω

v

ñ
I=1

W̃I γ̃
h
s I dΩ

 . (33)

The test function v ∈ Q p−1 can be expressed by the lower order basis functions W̃I so that
Ω

εh
m

ñ
K=1

W̃K vK dΩ =


Ω

ñ
I,J=1

W̃I W̃J ε̃h
m I vJ dΩ

Ω
γ h

s

ñ
K=1

W̃K vK dΩ =


Ω

ñ
I,J=1

W̃I W̃J γ̃ h
s I vJ dΩ

 . (34)

Then, defining M̃I J =

Ω W̃I W̃J dΩ , the coefficients of the projected strain field are obtained as

ε̃h
m I =

ñ
J=1

M̃−1
I J


Ω

W̃J εh
mdΩ

γ̃ h
s I =

ñ
J=1

M̃−1
I J


Ω

W̃J γ h
s dΩ

 . (35)

In the proposed invariant formulation (D#2) using Eqs. (28) and (32), ε̃h
m and γ̃ h

s are derived as

ε̃h
m =

ñ
I,J=1

n
K=1

W̃I M̃−1
I J


Ω

W̃J (WK ,s ŷK ) · j1dΩ

γ̃ h
s =

ñ
I,J=1

n
K=1

W̃I M̃−1
I J


Ω

W̃J

(WK ,s ŷK ) · j2 − WK θbK


dΩ

 . (36)

Also, by the formulation D#1, as in Ref. [1], they can be derived as

ε̃h
m =

ñ
I,J=1

n
K=1

W̃I M̃−1
I J


Ω

W̃J (WK ,s y1K − kWK y2K )dΩ

γ̃ h
s =

ñ
I,J=1

n
K=1

W̃I M̃−1
I J


Ω

W̃J (kWK y1K + WK ,s y2K − WK θbK )dΩ

 . (37)

4. Numerical examples

4.1. Self-straining in curved beam models

We consider two curved beam models; model #1 and model #2. The geometry of model #1 is described by cubic
B-spline basis functions and four control points, as shown in Fig. 1(a). The vertical coordinates (H) of control points
B and C are altered to investigate the dependence of non-invariance on the initial geometry. Fig. 1(b) shows the norm
of vector a in Eq. (18) for two cases; H = 0.125 and H = 1 over the half of the parametric domain (0 ≤ ξ < 0.5)
due to the symmetry of the curve about the mid-point (ξ = 0.5), where a = 0 due to the point symmetry. It shows
that a does not vanish in the domain. In other words, the membrane and shear strains are generated during rigid body
motions. Fig. 1(c) shows that the L2 norm of a increases as we increase H, which indicates that self-straining gets
worse as the initial curvature variation of domain increases.
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(a) Model description. (b) Distribution of ∥a∥. (c) ∥a∥L2 for increasing H.

Fig. 1. Non-invariance of model #1.

(a) Model description. (b) Translation (prescribed force).

(c) Translation (prescribed displacement). (d) Rotation.

Fig. 2. Inability of model #2 to represent rigid body motions due to self-straining.

Model #2 is constructed as a straight geometry with quadratic B-spline basis functions and uniform knot
distribution. Then, 6 control points in the middle of the beam are vertically moved to the positions A(0.0025),
B(0.0075), C(0.05), D(0.05), E(0.0075), and F(0.0025), where the numbers in the parentheses represent Y -coordinates
as shown in Fig. 2(a).

To verify self-straining of model #2 using the formulation D#1, three loading conditions (concentrated force
F = 100, displacement d = 0.05) are imposed for rigid body translation (Fig. 2(b) and (c)) and the infinitesimal rigid
body rotation (Fig. 2(d)). Three Gauss integration points (full integration) are used for each element. Even though no
essential boundary conditions are imposed, spurious constraints restrict rigid body motions due to self-straining in the
middle region of large curvature. For the same problems, the formulation D#2 results in singular stiffness matrices
properly. In the following section, it is shown that these self-straining phenomena have significant influence on the
accuracy of response analysis.

4.2. Errors in displacement field due to self-straining

For both of the models #1 and #2, pure bending problems are considered with a clamped boundary condition and
a sinusoidal loading of distributed moment as follows:

m(s) = E I
 π

2L

2
sin
 π

2L
s


, (38)
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(a) Problem description. (b) Deformation (SRI).

Fig. 3. Response analysis of model #1 (H = 1).

(a) X -directional displacement. (b) Y -directional displacement. (c) Rotation.

Fig. 4. Dependence on vertical coordinate H.

where s and L are the arc-length coordinate and the length of the beam, respectively. E = 210 GPa and I = bh3/12
are the Young’s modulus and the second moment of inertia, respectively. b = 0.01 and h are respectively the width and
thickness of beam, and Poisson’s ratio is set to be zero. In this paper, two locking-free formulations are considered;
the selective reduced integration (SRI) [2] and the B̄ projection method [1]. Also, the effect of replacing the strain
field discretization with D#2 is investigated. The exact solution of rotation angle for this problem is derived in Adam
et al. [2] as Eq. (A.1), which involves the arc-length coordinate s. We further extend the exact solution to the exact
solution of the first order derivatives of global displacements, which is followed by retrieving the global displacement
field through numerical integration of Eq. (A.5). As the arc-length coordinate s is also calculated by the numerical
integration, the obtained reference solutions for both of displacement and rotation are not exact. However, we calculate
these numerical integrations using enough number of elements and Gauss integration points, so that the solutions are
denominated as precise solutions. Detailed expressions for the reference solutions can be found in the Appendix.

Consider the model #1 of cantilever with the vertical coordinate H = 1 and thickness h = 0.01 as shown in
Fig. 3(a). Fig. 3(b) illustrates the deformed configurations of the 5 elements cantilever beam under two different
formulations D#1 and D#2, combined with the SRI.

The result of formulation D#1 is significantly deteriorated, compared with that of formulation D#2. Fig. 4 shows
the dependence of L2 error of responses on the vertical coordinate H. As increasing the H, the error of displacement
obtained by the formulation D#1 significantly increases, which is mainly due to the numerical instability caused by
self-straining. It is noted that, since the approximated bending strain measure is invariant, the rotation angle is not
affected by self-straining and shows good agreement with the precise solution even if the formulation D#1 is used.

Fig. 5(a) shows that the L2 norm of vector a reduces according to h-refinement, as mentioned in Observation 2.
The spurious strain energy generated in the rigid body motions reduces as the mesh is refined. However, the
non-invariance still persists and consequently yields overall poor accuracy of the displacement field. Fig. 5(b) and
(c) present the convergence of displacements. The invariant formulation D#2 gives much more accurate results than
D#1 for both SRI and B̄ projection method.
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(a) Self-straining. (b) X -directional displacement. (c) Y -directional displacement.

Fig. 5. Displacement comparison in discretization methods (D#1 and D#2).

(a) Self-straining. (b) X -directional displacement. (c) Y -directional displacement.

Fig. 6. Comparison of displacement fields (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

To investigate the effect of higher-order discretization on self-straining, we consider the single element cantilever
of model #1 with the vertical coordinate H = 1 and thickness h = 0.01 as shown in Fig. 3(a). For three different
orders of basis function, Fig. 6(a) shows the norm of the vector a in Eq. (18) over the half of the parametric domain
(0 ≤ ξ < 0.5) due to the point symmetry of the curve about the mid-point (ξ = 0.5) where a = 0. As shown in
Fig. 6(a), the self-straining is still persisting in the higher order discretization, which implies that the p-refinement
does not effectively reduce the numerical instability. Consequently, compared with the results of D#2 using cubic
basis function (Light blue) in Fig. 6(b) and (c), the displacement field obtained by D#1 is significantly deteriorated
with oscillations, even employing quartic (Green) and quintic (Orange) basis functions.

Consider the model #2 of cantilever model with the number of elements NE and thickness h = 0.01, as shown in
Fig. 7(a). Fig. 7(b) and (c) illustrate the deformed configurations obtained by the formulations D#1 and D#2, combined
with the SRI. The displacement field obtained by the D#1 undergoes severe oscillations from the position where the
abrupt change of curvature occurs, as shown in Fig. 7(b). As the mesh is refined, the amplitude of oscillations is
significantly reduced. This can be explained by the reduction of self-straining due to the h-refinement (Observation 2).
However, compared with the results of D#2 using coarse mesh shown in Fig. 7(c), it is apparent that the persisting
oscillations in the refined model significantly deteriorate the quality of responses.

Fig. 8 shows the global displacement fields using the SRI combined with the formulations D#1 and D#2. The
displacement fields using the D#1 exhibit serious oscillations persisting even in the refined model, even though the
overall accuracy is improved. The rotation angle is always accurate regardless of discretization method, due to the
invariance of the approximated bending strain measure.

Fig. 9 shows the comparison of strain fields, where the vertical dotted lines represent the element boundaries. We
notice that several discontinuities appear in the strain fields using the D#1, due to the discontinuity of initial curvature.
In both formulations of D#1 and D#2, the vanishing points of membrane and shear strains coincide with the position
of integration points in the SRI [2]. However, it is obvious that the amplitude of strains in the D#1 is much larger than
that of the D#2. This is mainly due to the numerical instability triggered by self-straining around the region of large
curvature and its propagation due to the higher order continuity of displacement field. The bending strain is accurate,
regardless of discretization method, due to its invariance property.
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(a) Problem description. (b) Deformation (SRI, D#1). (c) Deformation (SRI, D#2).

Fig. 7. Comparison of configuration (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

(a) X -direction. (b) Y -direction. (c) Rotation.

Fig. 8. Comparison of displacement and rotation fields (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 9. Comparison of strain fields.

4.3. Comparison of the conventional and invariant locking-free formulations

We compare the accuracy of results obtained from the conventional (D#1) and invariant (D#2) locking-free
formulations (SRI and B̄ projection method). Consider again the model #2 whose initial length is L = 1.02, with
the distributed moment loading and clamped boundary condition, as described in Fig. 7(a). 20 elements with uniform
knot distribution are used. Fig. 10 shows the change of the relative L2 error of responses as we increase the slenderness
ratio (L/h). If the full integration (3 integration points for each element) is used in the formulation D#1, the deformation
(Green) vanishes even for small slenderness ratio. This is due to self-straining of the membrane and shear strains which
absorb the major part of the strain energy, especially in the region of large curvature. If the invariant formulation D#2
is employed, the accuracy of responses (Orange) in small slenderness ratio is significantly improved but deteriorated
due to membrane and shear locking troubles as the slenderness ratio increases. To alleviate these locking troubles, the
SRI [2] and the B̄ projection method [1] are employed.
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Fig. 10. Comparison of relative L2 errors in model #2 (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 11. Comparison of deformed configurations.

Table 1
Comparison of contribution in total strain energy.

Formulation D#1 Invariant formulation D#2
Etotal Emembrane Eshear Ebending Etotal Emembrane Eshear Ebending

1.93E+04 2.83E+03 7.17E+03 9.29E+03 4.48E+04 1.03E+03 4.59E+02 4.33E+04
Ratio (%) 100 14.65 37.17 48.17 100 2.31 1.03 96.67

As shown in Fig. 10, although locking-free formulations combined with D#1 eliminate the dependence of solution
on the slenderness ratio, the accuracy (Purple, Blue) is still not satisfactory. This inaccuracy stems from the severe
numerical instability triggered by self-straining, as illustrated in Figs. 7 and 8. As the invariant formulation D#2 is
employed, the self-straining problem is resolved and the accuracy of responses is significantly improved in all the
slenderness ratios (Light blue, Red).

Fig. 11 illustrates the deformed configurations obtained from D#1 and D#2 using the full integration, for the case
of slenderness ratio L/h = 10.2. As shown in the curved region of Fig. 11(a), the beam seems to be constrained by
the spurious constraint that restricts the deformation of beam to be very small.

Table 1 presents the strain energy of each deformation mode and its ratio to the total strain energy in the curved
region (0.4 ≤ X ≤ 0.6). In the result of D#1, the membrane and shear strain energy constitutes a half of total strain
energy, which is mainly due to the spurious membrane and shear strains generated by self-straining that appears as a
serious spurious constraint in the curved region. This trouble is fully resolved through the invariant formulation D#2,
as shown in Fig. 11(b). Table 1 shows that the beam model nearly recovers the pure bending nature.
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5. Conclusions

In this paper, we observe self-straining phenomena in existing isogeometric formulations of curved Timoshenko
beams. Self-straining gets worse as the curvature variation of domain increases and has significant influence on the
accuracy of response analysis. Self-straining can be reduced more or less through h-refinement as the initial curvature
variation of elements decreases, however, it is apparent that the persisting oscillations in the refined model significantly
deteriorate the response quality. In the existing formulation, a numerical example demonstrates that the membrane and
shear strain energy constitutes a half of total strain energy, which is mainly due to the spurious membrane and shear
strains generated by self-straining that appears as a serious spurious constraint in the curved region. In the proposed
invariant formulation that uses the discretization of the global displacement field, it is shown that self-straining can
be completely eliminated. Through various numerical examples, we verify the significance of the proposed invariant
formulation to achieve accurate results for arbitrarily curved beams.
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Appendix

For the sinusoidal moment loading condition of Eq. (38), Adam et al. [2] derived the exact solution of the rotation
angle as

θb(s) = sin
 π

2L
s


. (A.1)

Since the membrane and shear strains vanish due to the pure bending nature, using Eq. (3), for a given θb and
∀s ∈ [0, L], we have two differential equations for the global displacement vector ẑ as

ẑ,s · j1 = 0
ẑ,s · j2 = θb


. (A.2)

Eq. (A.2) can be rewritten as
(j1)1 (j1)2
(j2)1 (j2)2


ẑ,s =


0
θb


, ∀s ∈ [0, L]. (A.3)

Therefore, the exact solution of ẑ,s is obtained as

ẑ,s =
1

(j1)1(j2)2 − (j1)2(j2)1


(j2)2 −(j1)2

−(j2)1 (j1)1


0
θb


=


−(j1)2
(j1)1


θb, (A.4)

since (j1)1(j2)2 − (j1)2(j2)1 = ∥j1 × j2∥ = 1. Considering the clamped boundary condition, we have the final
expression of the global displacement field as

ẑ(s) =

 s

0


−(j1)2(s̃)
(j1)1(s̃)


θb(s̃)ds̃. (A.5)
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