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Abstract

We present a stability analysis for two different rotational pressure correction schemes with open and traction boundary
conditions. First, we provide a stability analysis for a rotational version of the grad–div stabilized scheme of Bonito et al. (2015).
This scheme turns out to be unconditionally stable, provided the stabilization parameter is suitably chosen. We also establish a
conditional stability result for the boundary correction scheme presented in Bänsch (2014). These results are shown by employing
the equivalence between stabilized gauge Uzawa methods and rotational pressure correction schemes with traction boundary
conditions.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this work is to provide a stability analysis of splitting schemes for the incompressible Navier–Stokes
equations (NSE)ut + ∇· (u ⊗ u)− ∇·


2

Re
ε(u)


+ ∇p = f, in Ω × (0, T ],

∇· u = 0, in Ω × (0, T ].

(1.1)

Here Ω is a bounded domain in Rd with d ∈ {2, 3}, f : Ω × (0, T ] → Rd is a given smooth source term, Re > 0 is
the so-called Reynolds number, and T > 0 is the final time. The operator ε(u) is assumed to take one of the following
forms:

ε(u) :=
1
2


∇u, open boundary conditions,
∇u + ∇uᵀ, traction boundary conditions.
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The dependent variables are the velocity of the fluid u : Ω ×[0, T ] → Rd , and the pressure p : Ω ×[0, T ] → R. The
system is supplemented with the initial condition

u|t=0 = u0 (1.2)

and suitable boundary conditions discussed below.
Time discretization algorithms for the solution of (1.1)–(1.2) can be classified as either fully coupled or splitting

techniques. Fully coupled methods are usually complicated by the fact that the incompressibility constraint induces a
saddle point structure. It is not our intention here to provide an overview of the literature, so we only refer the reader
to [1]. On the other hand, splitting techniques are advocated because they are somewhat easier to implement, since they
circumvent the saddle point structure. The reader is referred to the overview [2] for details. However, when studying
the properties of such splitting techniques it is usually assumed that the boundary conditions are no-slip, that is

u|Γ = 0,

where Γ := ∂Ω denotes the boundary of Ω . These are not the only possible boundary conditions for (1.1), nor the
only ones that are physically relevant. Other possibilities, and the ones we are interested in here, are the so-called open
and traction boundary conditions

2
Re
ε(u)− pI


|Γ

· n = g, (1.3)

where n is the unit outward normal to Γ and g : Γ × (0, T ] → Rd is a given function. Open boundary conditions, that
is the case where ε(u) =

1
2∇u and g ≡ 0, arise when dealing with outflow or artificial boundaries [3,4]. On the other

hand, for free surface flows [5,6], one usually prescribes traction boundary conditions, i.e., ε(u) =
1
2 (∇u +∇uᵀ) and

g is related to the surface tension.
The development and analysis of splitting schemes for traction boundary conditions is rather scarce. To our

knowledge, the first reference that provides a rigorous analysis of such methods is [7], where the authors show
that these suffer from a drastic accuracy reduction. Several attempts to remedy this shortcoming can be found in
the literature. For instance, [4] proposes a modification of the boundary condition (1.3) aimed at remedying issues
related to backflows and numerical instabilities that appear at open boundary conditions for high Reynolds numbers.
In the course of their discussion, the authors were able to show unconditional stability of a formally first order class
of schemes with modified boundary conditions. Other modifications of the boundary conditions (1.3) also exist in the
literature [8,9] which seem to work in practice, but lack of any analytical justification. Some other works modify the
splitting scheme itself and this allows them to recover optimal experimental orders of convergence, e.g [10–13]. While
many other approaches can be found in the literature, in this work we focus on two of them:

1. Using a so-called grad–div stabilization [13] presents a first order pressure correction method in standard form and
shows its unconditional stability. Here we extend this scheme by considering its rotational form and show that its
first and second order versions are unconditionally stable.

2. Ref. [8] presents a variant of the so-called (using the nomenclature of [2]) rotational pressure correction method
that seems to deliver optimal orders of convergence. However, no analysis of this method is provided. It is our
purpose here to partially bridge this gap.

Let us outline the plan that we will follow to achieve these goals. In Section 2, we recall the recently shown
equivalence [14] between rotational pressure correction schemes and stabilized gauge Uzawa methods. With this at
hand we recast the grad–div stabilized schemes of [13] in gauge Uzawa form and show unconditional stability for the
first and second order variants in Section 3. We then write the scheme of [8] in gauge Uzawa form and show that it is
stable provided the time step and mesh size satisfy a suitable relation in Section 4. In Section 5 we provide numerical
experiments to illustrate the theory and performance of our methods.

1.1. Notation and preliminaries

For D ∈ {Ω ,Γ }, we denote by ⟨·, ·⟩D the L2(D) inner product, if D = Ω we will often omit it. The norm of L2(Ω)
is denoted by ∥ · ∥. To shorten the exposition, given two scalar functions φ and ϕ, we set

[φ, ϕ] := ⟨φ, ϕ⟩ + ⟨∇φ,∇ϕ⟩ and |||ϕ|||
2

:= [ϕ, ϕ] . (1.4)
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We denote nonessential constants by C and their value might change at each occurrence. To avoid irrelevant
technicalities we omit the convective term ∇· (u ⊗ u). In addition, we recall the elementary identity

2p(p − q) = p2
− q2

+ (p − q)2.

To unify the discussion, we define the bilinear form

A ⟨v,w⟩ :=
1

Re


⟨∇v,∇w⟩ , open boundary conditions,
⟨ε(v), ε(w)⟩ , traction boundary conditions,

(1.5)

and set

A(v) := A ⟨v, v⟩
1/2 .

We denote by κ the best constant in the inequality

κd

∥v∥

2
+ ∥∇v∥

2


≤ ∥v∥
2
+ ReA(v)2, ∀v ∈ H1(Ω), (1.6)

which is either trivial (open boundary conditions) or is a consequence of Korn’s inequality (traction boundary
conditions). By ∥ · ∥1/2,Γ we denote the norm of H1/2(Γ ), the space of traces of H1(Ω) on Γ . We recall that

∥v∥1/2,Γ ≤ C

∥v∥

2
+ ∥∇v∥

2
1/2

. (1.7)

To handle the space discretization, we assume we have at hand finite dimensional spaces Xh ⊂ H1(Ω) and
Qh ⊂ H1(Ω)which we assume LBB stable for h > 0. We set Mh = Qh ∩ H1

0 (Ω). These spaces can be easily realized
with finite elements and, in this case, h denotes the mesh size. We assume that the following inverse inequality holds

∥∂nwh∥1/2,Γ ≤ Ch−1
∥∇wh∥, ∀wh ∈ Mh . (1.8)

The time discretization is carried out by choosing K ∈ N, the number of time steps, and setting the time step to be
τ = T/K. We set tk = kτ and for a time dependent function we denote φk

= φ(tk) and φτ = {φk
}

K
k=0. Over these

sequences we define the operators

dφk+1
:= φk+1

− φk, (1.9)

BDFm


φk+1


:=


1
τ

dφk+1 m = 1,

1
2τ


3φk+1

− 4φk
+ φk−1


m = 2,

(1.10)

and

φ♯,k :=

dφk m = 1,
4
3
dφk

−
1
3
dφk−1 m = 2,

(1.11)

for m = 1, 2. If E is a normed space with norm ∥ · ∥E and φτ ⊂ E , we define the following discrete (in time) norms:

∥φτ∥ℓ2(E) :=


τ

K
k=1

∥φk
∥

2
E

1/2

, ∥φτ∥ℓ∞(E) := max
0≤k≤K

(∥φk
∥E ). (1.12)

Next, we introduce couple of lemmas which are useful for our analyses. In the analysis of first order schemes we
will use the following variant of the well-known discrete Grönwall inequality [15, Lemma 5.1]:

Lemma 1.13 (Discrete Grönwall). Let B ≥ 0 and aτ , bτ , cτ , γ τ ⊂ R be sequences of nonnegative numbers such
that, for n ≥ 0, verify

an
+ τ

n
k=1

bk
≤ τ

n−1
k=0

γ kak
+ τ

n−1
k=0

ck
+ B.
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If τγ k < 1 for all k ≥ 0, then we have

an
+ τ

n
k=1

bk
≤ exp


τ

n
k=0

σ kγ k


τ

n−1
k=0

ck
+ B


,

where σ k
= (1 − τγ k)−1.

On the other hand, we will employ the following three-term recursion inequalities of [16, Propositions 5.1 and 5.2]
for the analysis of second order schemes.

Lemma 1.14 (Three-Term Recursion). Let A, B,C ∈ R satisfy A > 0, C ≥ 0 with A + B + C ≤ 0 and assume that
the quadratic equation Ar2

+ Br +C = 0 has two nonzero real roots r1 and r2. In addition, let aτ solve the inequality

Aak+1
+ Bak

+ Cak−1
≤ gk+1, k ≥ 1.

Then there are constants c1 and c2 that depend only on a0 and a1 such that, for every n ≥ 2, we have

an
≤ c1rn

1 + c2rn
2 +

1
A

n
k=2

rn−k
1

k
s=2

rk−s
2 gs .

2. Stabilized gauge Uzawa equals rotational pressure correction

We begin by recalling the result of [2, Section 3.6]: when supplemented with no-slip boundary conditions, the
rotational pressure correction method of Timmermans et al. [17] is equivalent to the scheme of Kim and Moin [18].
More recently, Pyo [14] showed that, in the same setting, the gauge Uzawa method and the rotational pressure
correction method are, up to a change of variables, equivalent. Let us recall this result in this section.

2.1. Equivalence

Since we are concerned with time discretization schemes, let us operate in a semi-discrete setting to show the
equivalence. To simplify things even further, we will only consider first order schemes (m = 1). Little or no
modification is necessary if the equivalence wants to be shown for m = 2.

2.1.1. The stabilized gauge Uzawa method
This method was introduced in [19] and computes sequencesuτGU, uτGU, pτGU, ψτ and qτ as follows:

• Initialization: Setu0
GU = u0

GU = u0, p0
GU = p0, ψ0

= q0
= 0.

For k = 0, . . . ,K − 1, we compute:

• Velocity update: Find uk+1
GU that solves

uk+1
GU −uk

GU

τ
−

2
Re

∇· (ε(uk+1
GU ))+ ∇ pk

GU = fk+1, uk+1
GU|Γ = 0. (2.1)

• Projection: Find ψk+1 anduk+1
GU that satisfy

uk+1
GU − uk+1

GU

τ
+ ∇dψk+1

= 0, ∇·uk+1
GU = 0, uk+1

GU|Γ · n = 0. (2.2)

• Pressure update: Find qk+1 and pk+1
GU that satisfy

dqk+1
= −∇· uk+1

GU , pk+1
GU = ψk+1

+
1

Re
qk+1. (2.3)
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2.1.2. Rotational pressure correction method
This method was introduced in [17]. It computes sequencesuτROT, uτROT, pτROT and φτ as follows:

• Initialization: Setu0
ROT = u0

ROT = u0, p0
ROT = p0, φ0

= 0.

For k = 0, . . . ,K − 1, we compute:
• Velocity update: Find uk+1

ROT that solves

uk+1
ROT −uk

ROT

τ
−

2
Re

∇· (ε(uk+1
ROT))+ ∇ pk

ROT = fk+1, uk+1
ROT|Γ = 0. (2.4)

• Projection: Find φk+1 anduk+1
ROT that satisfy

uk+1
ROT − uk+1

ROT

τ
+ ∇φk+1

= 0, ∇·uk+1
ROT = 0, uk+1

ROT|Γ · n = 0. (2.5)

• Pressure update: The pressure pk+1
ROT is defined by

dpk+1
ROT = φk+1

−
1

Re
∇· uk+1

ROT. (2.6)

The equivalence of these two methods is the content of this simple, yet illuminating, result.

Proposition 2.7 (Equivalence). The sequences produced by algorithms (2.1)–(2.3) and (2.4)–(2.6) verify uτGU =uτROT, uτGU = uτROT and pτGU = pτROT.

Proof. Evidently, the initialization steps coincide. The velocity update steps (2.1) and (2.4) also coincide. Defining
φk+1

= dψk+1 makes the projection steps (2.2) and (2.5) identical. Finally, applying the operator d to the second
equation of (2.3), using the first equation and the definition of φk+1 yields (2.6). This allows us to conclude. �

In light of this equivalence, in what follows we will drop the subscripts GU and ROT.

2.2. Stabilized gauge Uzawa with elimination of the solenoidal velocity

The projection step (2.2) entails finding a solenoidal functionuτ , which can be rather cumbersome to approximate
using finite elements. For this reason, in practice, this variable is usually eliminated from the scheme. This can be
achieved as follows: Add to the velocity step (2.1) the first equation in (2.2) at time t = tk , this eliminatesuk from the
velocity step. Then, taking the divergence of the first equation in (2.2) and using the second one we substituteuk+1 in
the projection step. This yields the following algorithm:

• Initialization: Set

u0
= u0, p0

= p0, ψ0
= q0

= 0.

For k = 0, . . . ,K − 1, we compute:
• Velocity update: Find uk+1 that solves

uk+1
− uk

τ
−

2
Re

∇· (ε(uk+1))+ ∇(pk
+ dψk) = fk+1, uk+1

|Γ = 0. (2.8)

• Projection: Find ψk+1 that satisfies

∆dψk+1
=

1
τ

∇· uk+1, ∂ndψk+1
|Γ = 0. (2.9)

• Pressure update: Find qk+1 and pk+1 that satisfy

dqk+1
= −∇· uk+1, pk+1

= ψk+1
+

1
Re

qk+1. (2.10)
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As the reader can easily realize, the choice of no-slip boundary conditions carried little or no relevance in the
discussions above. Therefore, a similar reasoning could be provided for other types of boundary conditions. The
analysis of variants of scheme (2.8)–(2.10) that are suitable for open and traction boundary conditions is the main
content of this work.

3. A grad–div stabilized scheme

Let us now turn to an extension of the scheme discussed in [13]. In this work the authors modified the pressure
correction scheme in standard form by introducing a grad–div stabilization and consistent modifications of the
boundary condition in the velocity and pressure. This allowed them to obtain stability and optimal error estimates
for a first order scheme. It is expected then, that a rotational version of this scheme allows us to obtain higher order
schemes. The main purpose of this section is to present the first steps in this direction, namely we present the scheme
and show its unconditional stability.

We compute sequences uτh ⊂ Xh , ψτh , qτh , pτh ⊂ Qh , where uτh and pτh approximate the velocity and pressure,
respectively. The scheme reads:

• Initialization: Set, for k = 0, . . . ,m − 1,

uk
h = ΠXh uk, pk

h = ΠQh pk, qk
h = ψk

h = 0, (3.1)

where ΠXh and ΠQh are the L2-projection operators onto the respective spaces. After this step, for k = 0, . . . ,K−1,
compute:

• Velocity update: Find uk+1
h ∈ Xh that solves, for all vh ∈ Xh ,

BDFm


uk+1

h


, vh


+ A


uk+1

h , vh


−


pk

h + ψ
♯,k
h ,∇· vh


+ α


∇· BDFm


uk+1

h


,∇· vh


=


fk+1, vh


+


gk+1, vh


Γ
, (3.2)

where BDFm (·), A ⟨·, ·⟩ and (·)♯,k were defined in (1.10), (1.5) and (1.11), respectively. The parameter α ≥ 1 is
user defined.

• Projection: Find ψk+1
h ∈ Qh that, for every zh ∈ Qh , satisfies

dψk+1
h , zh


= −

β

τ


∇· uk+1

h , zh


, (3.3)

where β = 1 +
1
2 (m − 1).

• Divergence correction: Find qk+1
h ∈ Qh that solves

dqk+1
h , rh


= −


∇· uk+1

h , rh


∀rh ∈ Qh . (3.4)

• Pressure update: The new approximation of the pressure pk+1
h ∈ Qh is obtained by setting

pk+1
h = ψk+1

h +
1

Re
qk+1

h . (3.5)

3.1. Stability of the first order scheme

Let us now show the stability of scheme (3.2)–(3.5) for m = 1. This is mainly done to clarify the steps necessary
to obtain the result. Our main objective is to show the stability for the second order variant. This will be carried out in
Section 3.2. To avoid irrelevant technicalities, we assume that f ≡ 0 and g ≡ 0.

Theorem 3.6 (Stability for m = 1). Assume that α > max{1, 2/Re}. If m = 1 and τ < 1
2 then the scheme

(3.2)–(3.5) is stable, in the sense that there is a constant C, independent of the solution and discretization parameters
such that,

∥uτh∥ℓ∞(L2) + ∥A(uτh)∥ℓ2(R) ≤ C.

The constant, however, might depend on Re.
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Proof. First, we set vh = 2τuk+1
h in (3.2), then multiply (3.5) by 2τΠQh ∇ · uk+1

h at time t = tk and finally set
rh = 2 τ

Reqk
h in (3.4). Adding the ensuing identities yields

d

∥uk+1

h ∥
2
+ α∥∇· uk+1

h ∥
2
+

τ

Re
∥qk+1

h ∥
2


+ ∥duk+1
h ∥

2
+ α∥d∇· uk+1

h ∥
2

+ 2τA(uk+1
h )2 − 2τ


ψk

h + dψk
h ,∇· uk+1

h


=

τ

Re
∥dqk+1

h ∥
2. (3.7)

Next, set zh = 2τ 2(ψk
h + dψk

h ) = ψk+1
h − d2ψk+1

h in (3.3) to obtain

τ 2

d|||ψk+1

h |||
2
+ |||dψk

h |||
2
− |||d2ψk+1

h |||
2


= −2τ

ψk

h + dψk
h ,∇· uk+1

h


, (3.8)

where ||| · ||| was defined in (1.4). Now we add (3.7) and (3.8) to get

d

∥uk+1

h ∥
2
+ α∥∇· uk+1

h ∥
2
+

τ

Re
∥qk+1

h ∥
2
+ τ 2

|||ψk+1
h |||

2


+ ∥duk+1
h ∥

2
+ α∥d∇· uk+1

h ∥
2
+ τ 2

|||dψk
h |||

2

+ 2τA(uk+1
h )2 =

τ

Re
∥dqk+1

h ∥
2
+ τ 2

|||d2ψk+1
h |||

2. (3.9)

It remains to control the terms on the right hand side of (3.9). This can be achieved as follows. First, we apply d to
(3.3) and set zh = d2ψk+1

h to derive

τ 2
|||d2ψk+1

h |||
2

≤ ∥d∇· uk+1
h ∥

2. (3.10)

Second, we set rh = dqk+1
h in (3.4) to conclude that

∥dqk+1
h ∥

2
≤ ∥∇· uk+1

h ∥
2. (3.11)

Combining (3.9)–(3.11) yields

∥uk+1
h ∥

2
+ α


1 −

τ

2


∥∇· uk+1

h ∥
2
+

τ

Re
∥qk+1

h ∥
2
+ τ 2

|||ψk+1
h |||

2
+ ∥duk+1

h ∥
2
+ 2τA(uk+1

h )2

+ τ 2
|||dψk

h |||
2

≤ ∥uk
h∥

2
+ α∥∇· uk

h∥
2
+

τ

Re
∥qk

h∥
2
+ τ 2

|||ψk
h |||

2, (3.12)

where we used that α > max{1, 2/Re}. We now rewrite the previous inequality in a form that makes it suitable to
apply Lemma 1.13. Define

ak
= ∥uk

h∥
2
+ α∥∇· uk

h∥
2
+

τ

Re
∥qk

h∥
2
+ τ 2

|||ψk
h |||

2,

bk
= 2A(uk

h)
2,

and notice that (3.12) can then be rewritten as
1 −

τ

2


ak+1

+ τbk+1
≤


1 −

τ

2


ak

+
τ

2
ak .

Finally, we add this inequality over k = 0, . . . ,K − 1 and multiply the result by

1 −

τ
2

−1 to obtain

aK
+ τ

K
k=1

bk
≤ a0

+ τ

K−1
k=0

1

2

1 −

τ
2

ak .

Since τ < 1
2 , we can apply the framework of Grönwall’s inequality in the form given by Lemma 1.13 by setting

γ k
= γ =

1
2(1−

τ
2 )

, cτ = 0 and B = a0. Therefore, we have

aK
+ τ

K
k=1

bk
≤ a0 exp (Tσγ ) ,
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where σ = (1 − τγ )−1 and

σγ =
γ

1 − τγ
=

1
2 − 2τ

< 1.

This immediately allows us to conclude. �

Remark 3.13 (Alternative Pressure Update Step). Following the course of the proof of Theorem 3.6 the reader can
easily verify that we can replace (3.5) by

pk+1
h = ψk+1

h +
κ

Re
qk+1

h

and retain stability. Indeed, to obtain an alternative to (3.7) one now needs to set rh = 2 κτReqk
h in (3.4). The first term

on the right hand side of (3.9) will now be multiplied by κ , we can then invoke inequality (1.6) to conclude.

3.2. Stability of the second order scheme

Let us now obtain stability of the scheme (3.2)–(3.5) in the case m = 2. To our knowledge, together with the
scheme in [7] these are the only unconditionally stable formally second order schemes for the Navier–Stokes equations
with traction boundary conditions. The idea of the proof is very similar to that of Theorem 3.6, yet it is inevitably
obscured by tedious technical calculations that are necessary to properly balance all the terms. These calculations are
modifications of [16, Sections 5.2–5.3]. In particular, in the last step, instead of a discrete Grönwall’s inequality we
will employ the three-term recursion inequalities of Lemma 1.14.

Theorem 3.14 (Stability for m = 2). If m = 2 and τ is sufficiently small, then the scheme (3.2)–(3.5) is stable
provided that α > max{1, 2/Re}, in the sense that the solution satisfies

∥uτh∥ℓ∞(L2) + ∥A(uτh)∥ℓ2(R) ≤ C,

where C is a constant that does not depend on the solution of the scheme nor the discretization parameters. The
constant C, however, might depend on Re.

Proof. First we set vh = 4τuk+1
h in (3.2) then multiply (3.5), at time t = tk , by 4τΠQh ∇ · uk+1

h . Next, we also set

rh = 4 τ
Reqk in (3.4) and zh =

8τ 2

3 (ψ
k
h + ψ

♯,k
h ) in (3.3). Add the resulting equations and employ the identity

2τak+1BDF2


ak+1


= 2τBDF2


|ak+1

|
2


+ 2d|dak+1
|
2
+ |d2ak+1

|
2

to obtain

2τBDF2


∥uk+1

h ∥
2
+ α∥∇· uk+1

h ∥
2


+ 2d

∥duk+1

h ∥
2
+ α∥∇· duk+1

h ∥
2
+

τ

Re
∥qk+1

h ∥
2


+ ∥d2uk+1
h ∥

2
+ α∥∇· d2uk+1

h ∥
2
+ 4τA(uk+1

h )2 +
8τ 2

3


dψk+1

h , ψk
h + ψ

♯,k
h


= 2

τ

Re
∥dqk+1

h ∥
2. (3.15)

We now proceed as follows. First, notice that

∥∇· duk+1
h ∥

2
=

∇· duk+1
h +

2τ
3

d2ψk+1
h

2

+
4τ 2

9
∥d2ψk+1

h ∥
2
−

4τ
3


d2ψk+1

h ,∇· duk+1
h


−

8τ 2

9
∥d2ψk+1

h ∥
2.

Apply d to (3.3) and set zh = d2ψk+1
h to obtain

−
8τ 2

9
∥∇d2ψk+1

h ∥
2

=
4τ
3


∇· duk+1

h , d2ψk+1
h


+

8τ 2

9
∥d2ψk+1

h ∥
2.

Therefore we get

∥∇· duk+1
h ∥

2
=

∇· duk+1
h +

2τ
3

d2ψk+1
h

2

+
4τ 2

9
|||d2ψk+1

h |||
2
+

4τ 2

9
∥∇d2ψk+1

h ∥
2. (3.16)
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Insert this identity in (3.15) to conclude that

2τBDF2


∥uk+1

h ∥
2
+ α∥∇· uk+1

h ∥
2


+ 2d


∥duk+1

h ∥
2
+ α

∇· duk+1
h +

2τ
3

d2ψk+1
h

2

+
4ατ 2

9
∥∇d2ψk+1

h ∥
2

+
4(α − 1)τ 2

9
|||d2ψk+1

h |||
2
+

τ

Re
∥qk+1

h ∥
2



+ ∥d2uk+1
h ∥

2
+ α∥∇· d2uk+1

h ∥
2
+ 4τA(uk+1

h )2 +
8τ 2

9
d|||d2ψk+1

h |||
2

+
8τ 2

3


dψk+1

h , ψk
h + ψ

♯,k
h


= 2

τ

Re
∥dqk+1

h ∥
2. (3.17)

Since, by assumption, α > 1, it is now necessary to control the last term on the left hand side of (3.17). To do so, we
begin by writing

8τ 2

3


dψk+1

h , ψk
h + ψ

♯,k
h


=

8τ 2

3


dψk+1

h , ψk
h


+ |||dψk+1

h |||
2
−


dψk+1

h , d2ψk+1
h


+

1
3


dψk+1

h , d2ψk
h


=

4τ 2

3


d|||ψk+1

h |||
2
+ |||dψk

h |||
2
− |||d2ψk+1

h |||
2


+
8τ 2

9


dψk+1

h , d2ψk
h


.

Next, we notice that

8τ 2

9
d|||d2ψk+1

h |||
2
−

4τ 2

3
|||d2ψk+1

h |||
2
+

8τ 2

9


dψk+1

h , d2ψk
h


=

8τ 2

9


dψk

h , d
2ψk

h


−

4τ 2

9


|||d2ψk+1

h |||
2
+ 2|||d2ψk

h |||
2
− 2


d2ψk+1

h , d2ψk
h


=

4τ 2

9


d|||dψk

h |||
2
− |||d3ψk+1

h |||
2

.

In conclusion,

8τ 2

9
d|||d2ψk+1

h |||
2
+

8τ 2

3


dψk+1

h , ψk
h + ψ

♯,k
h


=

4τ 2

3


d|||ψk+1

h |||
2
+ |||dψk

h |||
2


+
4τ 2

9


d|||dψk

h |||
2
− |||d3ψk+1

h |||
2

. (3.18)

Substitute (3.18) in (3.17) to obtain

2τBDF2


∥uk+1

h ∥
2
+ α∥∇· uk+1

h ∥
2


+ 2d


∥duk+1

h ∥
2
+ α

∇· duk+1
h +

2τ
3

d2ψk+1
h

2

+
4ατ 2

9
∥∇d2ψk+1

h ∥
2
+

4(α − 1)τ 2

9
|||d2ψk+1

h |||
2

+
τ

Re
∥qk+1

h ∥
2
+

2τ 2

9


3|||ψk+1

h |||
2
+ |||dψk

h |||
2


+
4τ 2

3
|||dψk

h |||
2
+ ∥d2uk+1

h ∥
2
+ α∥∇· d2uk+1

h ∥
2

+ 4τA(uk+1
h )2 = 2

τ

Re
∥dqk+1

h ∥
2
+

4τ 2

9
|||d3ψk+1

h |||
2. (3.19)

It remains then to control the terms on the right hand side, which is obtained as in the first order case. Apply d2 to
(3.3) and set zh = d3ψk+1

h to obtain

4τ 2

9
|||d3ψk+1

h |||
2

≤ ∥∇· d2uk+1
h ∥

2.
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Eq. (3.4) implies

∥dqk+1
h ∥

2
≤ ∥∇· uk+1

h ∥
2.

Finally, by inserting these bounds in (3.19) and using that α > max{1, 2/Re}, we can apply the three term recursion
inequalities of Lemma 1.14. Indeed, setting

ak
= ∥uk

h∥
2
+ α∥∇· uk

h∥
2, bk

= 4τA(uk
h)

2,

dk
= 2


∥duk

h∥
2
+ α

∇· duk
h +

2τ
3

d2ψk
h

2

+
4ατ 2

9
∥∇d2ψk

h ∥
2
+

4(α − 1)τ 2

9
|||d2ψk

h |||
2

+
τ

Re
∥qk

h∥
2
+

2τ 2

9


3|||ψk

h |||
2
+ |||dψk−1

h |||
2


,

A = 3(1 − τ) > 0, B = −4 < 0, C = 1 > 0,

we observe that our previous discussion implies

Aak+1 Bak
+ Cak−1

≤ −(bk+1
+ dk+1

− dk).

In addition, A + B + C = −3τ < 0 and, if τ is small enough, the equation Ar2
+ Br + C = 0 has roots

r1 =
2 −

√
1 − 3τ

3(1 − τ)
=

1
3


1 −

τ

2
+ O(τ 2)


,

r2 =
2 +

√
1 − 3τ

3(1 − τ)
= 1 +

3τ
2

+ O(τ 2).

Both roots are positive; r1 <
1
3 and r2 is larger but close to one. Consequently, Lemma 1.14 implies that, for n ≥ 2,

we have

an
≤ C(a0

+ a1)(rn
1 + rn

2 )−
1

3(1 − τ)

n
k=2

rn−k
1

k
s=2

rk−s
2 (bs

+ ds
− ds−1),

which, since τ is small can be rewritten as

an
+

1
3

n
k=2

rn−k
1

k
s=2

rk−s
2 bs

≤ C1(1 + exp(C2T ))(a0
+ a1)−

1
3(1 − τ)

n
k=2

rn−k
1

k
s=2

rk−s
2 (ds

− ds−1),

for some constants C1 and C2. To handle the last term we argue as in [16, Theorem 5.2]. This implies the result. �

Notice that a similar observation to Remark 3.13 is also valid here.

4. A scheme with modification of the boundary correction

Here we present a gauge Uzawa method for the boundary correction scheme discussed in [8]. We show stability
for first and second order variants of this method if the time step and mesh size satisfy a certain condition. We seek
for sequences uτh ⊂ Xh , ψτh ⊂ Mh , qτh , pτh ⊂ Qh , where uτh and pτh are used to approximate the velocity and pressure,
respectively. Note that here ψτh ⊂ Mh . This is in contrast to what was adopted in Section 3, i.e., ψτh ⊂ Qh . After an
initialization as in (3.1) the scheme proceeds, for k = 0, . . . ,K − 1, as follows:

• Velocity update: Find uk+1
h ∈ Xh that satisfies, for all vh ∈ Xh ,

BDFm


uk+1

h


, vh


+ A


uk+1

h , vh


−


pk

h,∇· vh


+


∇ψ

♯,k
h , vh



fk+1, vh


−

τ

βRe


∂ndψk

h ,∇Γ · vh


Γ

+


gk+1, vh


Γ
, (4.1)

where BDFm (·), A ⟨·, ·⟩ and (·)♯,k were defined in (1.10), (1.5) and (1.11), respectively. As before, the parameter
β is set to β = 1 +

1
2 (m − 1). By ∇Γ · vh we denote the surface divergence of vh .
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• Projection: Find ψk+1
h ∈ Mh that satisfies

∇dψk+1
h ,∇zh


=
β

τ


uk+1

h ,∇zh


, ∀zh ∈ Mh . (4.2)

• Divergence correction: Find qk+1
h ∈ Qh that solves

dqk+1
h , rh


= −


∇· uk+1

h , rh


, ∀rh ∈ Qh . (4.3)

• Pressure update: The new pressure pk+1
h ∈ Qh is obtained by setting

pk+1
h = ψk+1

h +
κ

Re
qk+1

h , (4.4)

where κ was defined in (1.6).

4.1. The scheme as a rotational pressure correction method

With the result of Proposition 2.7 at hand it is easy to provide a motivation for scheme (4.1)–(4.4). Indeed, if we
were able to integrate back by parts the momentum equation, we would obtain

BDFm


uk+1


− ∇·


2

Re
ε(uk+1

h )


+ ∇


pk

h + ψ
♯,k
h


, vh


+


2

Re
ε(uk+1

h ) · n − pk
hn, vh


Γ

=


fk+1, vh


+


gk+1

+ Lk+1
h , vh


Γ
,

where, as in [8], we introduced Lτh to be the solution of
Lk+1

h , vh


Γ

= −
τ

βRe


∂ndψk

h ,∇Γ · vh


Γ
.

This would imply that

BDFm


uk+1


− ∇·


2

Re
ε(uk+1

h )


+ ∇


pk

h + ψ
♯,k
h


= fk+1,

and 
2

Re
ε(uk+1

h )− pk
hI


|Γ
· n = gk+1

+ Lk+1
h ,

as in [8]. Finally, integrating back by parts (4.2) would yield

−


∆dψk+1

h , zh


= −

β

τ


∇· uk+1

h , zh


or

∆dψk+1
h =

β

τ
∇· uk+1

h .

Notice that these coincide with the equations of a stabilized gauge Uzawa scheme. Then by using the equivalence
given in Proposition 2.7, we conclude that (4.1)–(4.4) is the same as the scheme of [8], written in a slightly different
form.

4.2. Stability analysis of the first order scheme

Here we present a stability analysis of scheme (4.1)–(4.4) for m = 1 (first order variant). As in the case of the
grad–div stabilized scheme of Section 3, our real interest is in m = 2, but we present this because the arguments are
simpler and will allow us to clarify the discussion in the analysis of the second order variant provided below. To avoid
irrelevant technicalities, assume that f ≡ 0 and g ≡ 0.
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Theorem 4.5 (Stability for m = 1). Assume that the space Mh verifies (1.8). If m = 1, τ is sufficiently small and the
mesh size and time step satisfy

τ ≤ CReh2 (4.6)

then the scheme (4.1)–(4.4) is stable, in the sense that it satisfies

∥uτh∥ℓ∞(L2) + ∥A(uτh)∥ℓ2(R) ≤ C,

where the constant might depend on Re, but is independent of the solution of the scheme or discretization parameters.

Proof. Set vh = 2τuk+1
h in (4.1); multiply (4.4), at time t = tk , by −2τΠQh ∇· uk+1

h and integrate over Ω ; finally, set
rh = 2 κτReqk

h in (4.3). Adding the ensuing identities we obtain

d∥uk+1
h ∥

2
+ ∥duk+1

h ∥
2
+ 2τA(uk+1

h )2 +
κτ

Re
d∥qk+1

h ∥
2
+ 2τ


∇(ψk

h + dψk
h ),uk+1

h


≤ 2τ


Lk+1

h ,uk+1
h


Γ

+
κτ

Re
∥∇· uk+1

∥
2, (4.7)

where we used that ψτh ∈ Mh ⊂ H1
0 (Ω) to infer

∇dψk
h ,uk+1

h


= −


dψk

h ,∇· uk+1
h


,

and that, setting rh = dqk+1
h , in (4.3) reveals

∥dqk+1
h ∥ ≤ ∥∇· uk+1

h ∥.

Next we set zh = 2τ 2(ψk
h + ψ

♯,k
h ) in (4.2) to get

τ 2

d∥∇ψk+1

h ∥
2
+ ∥∇dψk

h ∥
2
− ∥∇d2ψk+1

h ∥
2


= 2τ

uk+1

h ,∇(ψk
h + dψk

h )

. (4.8)

Applying d to (4.2) and setting zh = d2ψk+1
h yields

τ 2
∥∇d2ψk+1

h ∥
2

≤ ∥duk+1
h ∥

2. (4.9)

Now we add (4.7)–(4.9) to derive

d∥uk+1
h ∥

2
+ 2τA(uk+1

h )2 +
κτ

Re
d∥qk+1

h ∥
2
+ τ 2


d∥∇ψk+1

h ∥
2
+ ∥∇dψk

h ∥
2


≤ 2τ

Lk+1

h ,uk+1
h


Γ

+
κτ

Re
∥∇· uk+1

∥
2. (4.10)

Notice that inequality (1.6) implies
κτ

Re
∥∇· uk+1

h ∥
2

≤
τ

Re
∥uk+1

h ∥
2
+ τA(uk+1

h )2.

Moreover, using [8, Lemma 3.3], we see that

2τ

Lk+1

h ,uk+1
h


Γ

= −
2τ 2

βRe


∂ndψk

h ,∇Γ · uk+1
h


Γ

≤
Cτ 2

Re
∥uk+1

h ∥1/2,Γ ∥∂ndψk
h ∥1/2,Γ .

Using the trace inequality (1.7), inequality (1.6) and the inverse estimate (1.8) we continue this bound as follows:

2τ

Lk+1

h ,uk+1
h


Γ

≤ C
τ 2h−1

Re
∥∇dψk

h ∥


∥uk+1

h ∥
2
+ ReA(uk+1

h )2
1/2

≤
τ

2Re


∥uk+1

h ∥
2
+ ReA(uk+1

h )2


+ C
τ 3

Reh2 ∥∇dψk
h ∥

2

≤
τ

2Re


∥uk+1

h ∥
2
+ ReA(uk+1

h )2


+ τ 2
∥∇dψk

h ∥
2,
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where, in the last step, we used the mesh condition (4.6). Inserting these observations into (4.10) yields the final
estimate

1 −
τ

2Re


∥uk+1

h ∥
2
+
τ

2
A(uk+1

h )2 +
κτ

Re
d∥qk+1

h ∥
2
+ τ 2d∥∇ψk+1

h ∥
2

≤ ∥uk
h∥

2.

We now proceed as in the proof of Theorem 3.6 and use Lemma 1.13. This concludes the proof. �

4.3. Stability analysis of the second order scheme

Let us now present the stability analysis for the second order scheme (m = 2). The proof combines the ideas of
Theorems 3.14 and 4.5. For this reason we keep details to a minimum. The stability is as follows.

Theorem 4.11 (Stability for m = 2). Assume that the space Mh satisfies (1.8). If m = 2, τ is sufficiently small
and (4.6) holds, then the scheme (4.1)–(4.4) is stable, in the sense that it satisfies

∥uτh∥ℓ∞(L2) + ∥A(uτh)∥ℓ2(R) ≤ C,

where the constant C might depend on Re, but is independent of the solution of the scheme or discretization
parameters.

Proof. Set vh = 4τuk+1
h in (4.1); multiply (4.4), at time t = tk , by −4τΠQh ∇ · uk+1

h and integrate over Ω ; set

rh = 4 κτReqk
h in (4.3) and zh =

8τ 2

3


ψk

h − ψ
♯,k
h


in (4.2); apply the operator d to (4.2) and set zh = d2ψk+1

h . Adding

the ensuing identities yields, after tedious calculations which nevertheless closely follow the arguments of the proof
of Theorem 3.14, that

2τBDF2


∥uk+1

h ∥
2


+ 2d

duk+1
h −

2τ
3

∇d2ψk+1
h

2

+
κτ

Re
∥qk+1

h ∥
2
+

2τ 2

3
∥∇ψk+1

h ∥
2
+

4τ 2

9
∥∇dψk

h ∥
2



+ ∥d2uk+1
h ∥

2
+

4τ 2

3
∥∇dψk

h ∥
2
+ 4τA(uk+1

h )2

≤
2κτ
Re

∥∇· uk+1
h ∥

2
+ 4τ


Lk+1

h ,uk+1
h


Γ

+
4τ 2

9
∥∇d3ψk+1

h ∥
2. (4.12)

Next, we apply d2 to (4.2) and set zh = d3ψk+1
h to get

4τ 2

9
∥∇d3ψk+1

h ∥
2

≤ ∥d2uk+1
h ∥

2. (4.13)

Adding (4.13) and (4.12) yields a suitable bound for the last term on the right hand side. The remaining terms can
be handled as in the proof of Theorem 4.5. To conclude we follow the proof of Theorem 3.14 and apply the three term
recursion inequalities of Lemma 1.14. �

Remark 4.14 (Other Schemes). The technique used in [4, Section 4] to show unconditional stability of their scheme
is very similar to the ones we have discussed here. Thus, one can combine our ideas with their techniques to obtain
unconditionally stable higher order schemes for the modified boundary conditions of [4]. To avoid repetition, we skip
these details.

5. Numerical illustrations

Let us, in this last section, evaluate the performance of the numerical schemes for traction boundary conditions
discussed in previous sections. In Section 5.1, we explore computationally the rate of convergence for the grad–div
stabilized scheme presented and analyzed in Section 3 for m = 2 (second order scheme). For the boundary correction
scheme of Section 4, similar computations are carried out in Section 5.2.

All examples are computed with the help of the open-source finite element library deal.II [20]. In particular, the
implementation is an extension of the framework used in [21]. We use the lowest order Taylor–Hood elements over



320 S. Lee, A.J. Salgado / Comput. Methods Appl. Mech. Engrg. 309 (2016) 307–324

(a) Re = 10−1. (b) Re = 1.

(c) Re = 102. (d) Re = 104.

Fig. 5.1. Decay of different error norms versus time step τ for the rotational pressure correction projection method with grad–div stabilization of
Section 3 with different Re numbers. The order of convergence O(τ3/2) is observed as expected for all cases.

quadrilateral meshes, that is Q2/Q1 finite elements. In all the experiments, the arising linear systems are solved using
the generalized minimal residual method (GMRES) solver with an AMG preconditioner.

For all convergence tests we set Ω = (0, 1)2 and choose the right hand sides f and g so that the exact solution to
(1.1)–(1.3) is

u(t, x, y) :=


sin(t + x) sin(t + y)
cos(t + x) cos(t + y)


, p(t, x, y) := sin(t + x − y).

5.1. Grad–div stabilization

Here we explore the scheme (3.1)–(3.5) of Section 3. Computational results for a first order discretization
(m = 1) and comparisons with suboptimal classical standard pressure correction schemes have been provided
in [13]. Therefore, here we focus on the second order (m = 2) case. For all values of the discretization parameters
we set α = 1. The behavior of the errors in the velocity and pressure approximations versus the time step τ is
depicted in Fig. 5.1 with different Re ∈ {10−1, 100, 102, 104

} numbers. The space discretization is chosen fine
enough (h = 0.015625) so that it does not pollute the time discretization error. However, note that larger mesh
size (h = 0.0625) is chosen for the case Re = 104 to be efficient in computational time for solver. We observe a rate
of convergence of O(τ 3/2) for the velocity in the ℓ2(H1(Ω)) and ℓ∞(L2(Ω)) norms and the pressure in the ℓ2(L2(Ω))
and ℓ∞(L2(Ω)) norms for all cases. Notice that this is to be expected, since this is the provable rate of convergence
for the rotational scheme even in the case of no-slip boundary conditions [22].
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(a) Re = 10−1. (b) Re = 1.

(c) Re = 102. (d) Re = 104.

Fig. 5.2. Decay of different error norms versus time step τ for the rotational pressure correction projection method with boundary correction of
Section 4 with different Re numbers. An order of convergence O(τ3/2) is observed. Note that we employ a smaller mesh size for case (a) Re = 0.1
due to the mesh condition (4.6).

5.2. Boundary correction scheme

To test the scheme with boundary correction (4.1)–(4.4) of Section 4 we keep the setup of Section 5.1. The results
are shown in Fig. 5.2 with different Re ∈ {10−1, 100, 102, 104

} numbers. The space discretization is chosen fine
enough (h = 0.015625) so that it does not pollute the time discretization error. We observe a rate of convergence of
O(τ 3/2) for the velocity in the ℓ2(H1(Ω)) and ℓ∞(L2(Ω)) norms and the pressure in the ℓ2(L2(Ω)) and ℓ∞(L2(Ω))
norms for all cases. From these observations we can obtain several conclusions: The first, and obvious one, is that
indeed the boundary correction provides an improvement in accuracy over the standard rotational scheme. Secondly,
to obtain stability and expected convergence rate, we observe that, while (4.6) might not be sharp, the time step τ
is related to the Reynolds number Re and the mesh size h especially when Re < 1. This can be illustrated by the
fact that, in the case of Re = 10−1 a smaller time step and mesh size (h = 0.0078125) were required to obtain the
expected convergence rates.

One final observation is in convergence order. Namely, even though the scheme with grad–div stabilization couples
the components of the velocity and thus complicates the linear algebra, a comparison of Figs. 5.1(b) and 5.2(b) with
Re = 1 reveals that the magnitude of the errors for both velocity and pressure is smaller for a same given mesh size
and a time step. Therefore, we observe that grad–div stabilization scheme seems to be more accurate.

Finally, we must remark that the computations of [8] show a rate of convergence of O(τ 2). However, we believe
that this is due to the fact that the author there considers a smooth domain and that, for general domains, our results
are sharp.
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Fig. 5.3. Geometry for the test case of Section 5.3 with the notation for different pieces of the boundary. Homogeneous no-slip boundary conditions
are imposed on ΓS ∪ Γ2 ∪ Γ3, outflow boundary conditions are imposed on Γ4, i.e., (5.1). A parabolic inflow, as in (5.2), is prescribed on Γ1.

Fig. 5.4. Velocity magnitude and pressure values at t = 30 for the example of Section 5.3.

5.3. Flow around a cylinder

Let us conclude with a more realistic example. In the domain Ω = (0, 2.2) × (0, 0.41)\Br (0.2.0.2), we compute
a 2D laminar flow around a cylinder which is introduced as a benchmark problem in [23]. Here Br := {x ∈

R2
: |x − c| ≤ r} is the circle with the center c = (0.2, 0.2)ᵀ and radius r = 0.05. The detailed geometry and

the notation we adopt for pieces of the boundary are depicted in Fig. 5.3. We set homogeneous no-slip boundary
conditions on ΓS ∪ Γ2 ∪ Γ3, i.e.,

u|ΓS∪Γ2∪Γ3 = 0.

On the outflow boundary Γ4, a homogeneous open boundary condition is given:
1

Re
∇u − pI


|Γ4

· n = 0. (5.1)

Finally, on Γ1, a parabolic inflow is prescribed

u(t, 0, y) =


4y(0.41 − y)U

0.412 , 0
ᵀ

, (5.2)

where the velocity magnitude is U = 1.5. The fluid begins at rest and we set the Reynolds number to Re = 1000. To
ensure numerical stability we add a first order numerical viscosity to the momentum equation of the form ∇·(ν∇uk+1)

where, in every cell, the artificial viscosity is defined by ν :=
1
2 ch|uk

|, with h being the cell size. In all tests we set
c = 0.2.

For space discretization we employ the lowest order Taylor–Hood elements Q2/Q1 with 33,536 and 4288 degrees
of freedom for velocity and pressure, respectively. The minimum mesh size in the domain is h = 0.125 The time step
is chosen as τ = 0.005.
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Fig. 5.4 depicts the magnitude of the velocity |u| and the pressure values at time t = 30 by using the boundary
correction method of Section 4. The grad–div stabilization method of Section 3 yields similar results, albeit at a higher
computational cost due to the complexity of the underlying linear systems, see [13]. We note that the obtained results
seem to coincide with those shown in [23].

6. Conclusion

We present stability analyses for the two different rotational pressure correction fractional time stepping schemes
supplemented with open and traction boundary conditions. The grad–div stabilized scheme is unconditionally stable
and our results can open the door for producing an error analysis for it. For the results of boundary correction scheme
in Section 4, we observe a major drawback. Namely, we require the rather stringent condition (4.6). Computations
presented in [8] and in this work indicate that this is not sharp. How to circumvent this is currently under investigation.
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Z. Minarechová, D. Ševčcovič (Eds.), ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoké Tatry–Podbanské, Slovak
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