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The stock market is a popular topic in Twitter. The number of tweets concerning a stock varies over days, and

sometimes exhibits a significant spike. In this paper, we investigate the relationship between Twitter volume

spikes and stock options pricing. We start with the underlying assumption of the Black–Scholes model, the

most widely used model for stock options pricing, and investigate when this assumption holds for stocks

that have Twitter volume spikes. We find that the assumption is less likely to hold in the time period before a

Twitter volume spike, and is more likely to hold afterwards. In addition, the volatility of a stock is significantly

lower after a Twitter volume spike than that before the spike. We also find that implied volatility increases

sharply before a Twitter volume spike and decreases quickly afterwards. In addition, put options tend to be

priced higher than call options. Last, we find that right after a Twitter volume spike, options may still be

overpriced. Based on the above findings, we propose a put spread selling strategy for stock options trading.

Realistic simulation of a portfolio using one year stock market data demonstrates that, even in a conservative

setting, this strategy achieves a 34.3% gain when taking account of commissions and ask-bid spread, while

S&P 500 only increases 12.8% in the same period.

© 2015 Published by Elsevier B.V.

1. Introduction1

Twitter has rapidly gained popularity since its creation in March2

2006. As of July 2014, it has more than 500 million users, with more3

than 271 million being active users [1]. The stock market is a popular4

topic in Twitter. Many traders, investors, financial analysts and news5

agencies post tweets about the stock market in Twitter, which may6

be further retweeted. As a result, there can be thousands of tweets7

each day related to certain stocks. In general, the number of tweets8

concerning a stock varies over days, and sometimes exhibits a signifi-9

cant spike, indicating a sudden increase of interests in the stock. Since10

a collection of tweets reflect the collective wisdom of the users who11

post the tweets, a Twitter volume spike about a stock may contain im-12

portant information regarding the stock. In this paper, we investigate13

the relationship of Twitter volume spikes and stock options pricing.14

The reason for focusing on stock options is because they are valuable15

investment vehicles but are very difficult to understand [23]. Our goal16

is to investigate whether Twitter volume spikes can shed light on the17

behavior of stock options pricing, and whether the insights thus ob-18

tained can help to assist stock options trading.19

A stock option is a financial contract that gives the owner the right,20

but not the obligation, to buy or sell an underlying asset (stock) at a21
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specified strike price on or before a specified date. Specifically, call 22

option gives the owner the right to buy a stock; put options give the 23

owner the right to sell a stock. The Black–Scholes model is the most 24

widely used model for stock options pricing. It has led to a boom in 25

options trading ever since it was introduced in 1970s. We start from 26

the underlying assumption of the Black–Scholes model, i.e., stock 27

price follows a geometric Brownian motion and hence stock return 28

follows a lognormal distribution, and investigate when this assump- 29

tion holds for stocks that have Twitter volume spikes. We then pro- 30

ceed to investigate implied volatility (derived from the Black–Scholes 31

model) as well as the actual volatility around a Twitter volume spike. 32

Our results demonstrate that Twitter volume spikes can be very help- 33

ful in understanding stock options pricing. In addition, using Twit- 34

ter volume spikes, one can design highly profitable options trading 35

strategies. Our main contributions are: 36

• We find that in a time period with a Twitter volume spike, stock 37

return is less likely to follow a lognormal distribution, indicating 38

that Twitter volume spikes are correlated with extreme changes 39

in stock prices. On the other hand, for a short time period after a 40

Twitter volume spike, the lognormal assumption is likely to hold. 41

In addition, the volatility of a stock is significantly lower after a 42

Twitter volume spike than that before the spike. We further inves- 43

tigate stock price model selection, and find that a three-parameter 44

model that uses the same drift and different volatilities before and 45
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after a Twitter volume spike provides the highest gain in the like-46

lihood value.47

• We find a clear pattern in implied volatility (IV) around a Twitter48

volume spike. Specifically, IV increases sharply before a Twitter49

volume spike and decreases quickly afterwards. Furthermore, IV50

of put options tends to be larger than IV of call options. We also51

find that the volatility around a Twitter volume spike is particu-52

larly high. In addition, options may still be overpriced right after53

a Twitter volume spike. This is particularly true for put options,54

which confirms that people tend to strongly prefer avoiding losses55

to acquiring gains [14].56

• Based on our findings, we propose a put spread selling strategy for57

stock options trading. Realistic simulation of a portfolio using one58

year stock market data demonstrates that, even in a conservative59

setting, this strategy achieves a 34.3% gain when taking account60

of commissions and ask-bid spread, while S&P 500 only increases61

12.8% in the same period.62

While several studies relate social media and the financial market63

(e.g., [8,18,19,21,29], see more details in Section 2), to the best of our64

knowledge, our study is the first that analyzes the relationship be-65

tween Twitter volume spikes and stock options pricing. Our results66

indicate that social media can be a powerful tool to help understand67

the behavior of stock options, and further assist the trading of stock68

options.69

The rest of the paper is organized as follows. Section 2 briefly70

reviews related work. Section 3 describes how we collect data and71

identify Twitter volume spikes. Section 4 briefly describes the lognor-72

mal stock price model and the Black–Scholes model. Section 5 ana-73

lyzes the relationship between Twitter volume spikes and stock price74

model. Section 6 analyzes the relationship between Twitter volume75

spikes and stock options pricing. Section 7 presents a stock options76

trading strategy and evaluates its performance. Section 8 briefly dis-77

cusses the choice of threshold for identifying Twitter volume spikes.78

Last, Section 9 concludes the paper and presents future work.79

2. Related work80

Existing studies on Twitter have investigated the general charac-81

teristics of the Twitter social network (e.g., [13,17]) and the social in-82

teractions within Twitter [11]. Several studies use tweets to predict83

real-world events such as earthquakes [26], box-office revenues of84

movies [4,9], seasonal influenza [2], the popularity of a news article85

[5], and popular messages in Twitter [10].86

The studies that are closest to ours are those that relate Twitter to87

the financial market. Kanungsukkasem et al. [16] propose a method88

to recognize NASDAQ stock symbols in a stream of tweets. Bar-Haim89

et al. [6] predict stock price movement by analyzing tweets to find ex-90

pert investors and collect experts’ opinions. Several studies use Twit-91

ter sentiment data to predict the stock market. Bollen et al. [8] find92

that specific public mood states in Twitter are significantly correlated93

with the Dow Jones Industrial Average (DJIA), and thus can be used to94

forecast the direction of DJIA changes. Zhang et al. [29] find that emo-95

tional tweet percentage is correlated with DJIA, NASDAQ and S&P 500.96

Later on, Mao et al. [19] find that Twitter sentiment indicator and the97

number of tweets that mention financial terms in the previous 1–298

days can be used to predict the daily market return. Makrehchi et al.99

[18] propose an approach that uses event based sentiment tweets100

to predict the stock market movement, and develop a stock trading101

strategy that outperforms the baseline. In our prior study [20], we102

find that the daily number of tweets that mention S&P 500 stocks is103

correlated with certain stock market indicators at three different lev-104

els, from the stock market, to industry sector, and then to individual105

company stocks. The study [25] also reports the correlation between106

trading volume and the daily number of tweets for individual com-107

pany stocks. In another prior study [21], we provide insight on when108

Twitter volume spikes occur and possible causes of these spikes. Fur- 109

thermore, we develop a Bayesian classifier that uses Twitter volume 110

spikes to assist stock trading. 111

Our current study differs from all the above in that we focus on 112

Twitter volume spikes and stock options pricing. To the best of our 113

knowledge, this is the first study that investigates how Twitter vol- 114

ume spikes can be used to understand stock options pricing and assist 115

stock options trading. 116

3. Methodology 117

In this section, we describe our methodology of collecting data 118

and identifying Twitter volume spikes. 119

3.1. Stock market data 120

We obtain daily stock market data and stock option data for the 121

500 stocks in the S&P 500 index. For stock market data, we consider 122

stock daily closing price for each stock. For stock option data, we con- 123

sider the call and put options of a stock. We only consider short term 124

options that will expire in around 30 days. 125

3.2. Twitter data 126

In Twitter community, people usually mention a company’s stock 127

using the stock symbol prefixed by a dollar sign. For example, $AAPL 128

represents the stock of Apple Inc. When collecting public tweets on 129

S&P 500 stocks, we only search for tweets that follow the above con- 130

vention (i.e., having a dollar sign before a stock symbol). This is be- 131

cause many stock symbols (e.g., A, CAT, GAS) are common words, and 132

hence using search keywords without the dollar sign will result in a 133

large number of spurious tweets. Unless otherwise stated, the results 134

reported in the paper are based on Twitter data collected over one 135

year, from August 1, 2013 to August 6, 2014. 136

3.3. Twitter volume spikes 137

We next describe how we identify Twitter volume spikes. Con- 138

sider a stock. Roughly, a Twitter volume spike happens when the 139

number of tweets related to the stock is significantly larger than 140

usual. Therefore, one way to identify Twitter volume spikes is as fol- 141

lows. We first obtain the number of tweets for the stock on a day and 142

the average number of tweets for the stock in the past N days. Then 143

if the former is significantly larger than the latter, we say there is a 144

Twitter volume spike. The above approach uses the absolute number 145

of tweets to identify Twitter volume spikes, which may not provide 146

robust identification. For instance, it can lead to false Twitter volume 147

spikes when the numbers of tweets for a large number of stocks are 148

inflated (for instance, due to abuse of some users, as we have ob- 149

served in the collected data). Therefore, for a stock, instead of using 150

the absolute value of the number of tweets, we use the relative value, 151

i.e., the number of tweets for the stock on a day over the total num- 152

ber of tweets for all S&P 500 stocks on that day, to identify Twitter 153

volume spikes. Specifically, if this relative value is at least K times of 154

the average relative value in the past N days, then we say the stock 155

has a Twitter volume spike. Unless otherwise stated, we use N = 70 156

and K = 3 in this paper. In Section 8, we further investigate the choice 157

of K. 158

The above definition only considers the number of tweets, while 159

does not consider the users who post the tweets. In our context, a 160

large number of tweets about a stock is interesting only if it indicates 161

that many users show significantly increased interests in the stock. 162

Therefore, we add two additional conditions when identifying Twit- 163

ter volume spikes. First, the number of unique users has to be suffi- 164

ciently large. Specifically, we say a stock has a Twitter volume spike 165

on a day only if the number of unique users that post the tweets is 166
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larger than a threshold. We choose the threshold to be 10 in this pa-167

per. Even when the number of unique users is sufficiently large, ma-168

jority of the tweets can be from a small number of users. To avoid169

such a scenario, we further require that the tweets have to be from a170

diverse set of users. Specifically, we define a user diversity index, and171

require that the index to be larger than a threshold. Suppose M unique172

users tweet about a stock on a day. Let pi denote the fraction of tweets173

from user i. Then we define user diversity index as174

I = −∑M
i=1 pi log pi

log M
(1)

where the numerator is the entropy, while the denominator is the175

maximum value of the entropy (i.e., when each of the M users posts176

the same number of tweets, i.e., pi = p j,∀i �= j). Therefore, I ∈ (0, 1].177

Furthermore, it is easy to see that the value of I is independent of the178

base of the logarithm by applying change of base in the logarithm. In179

this paper, we say a stock has a Twitter volume spike on a day only if180

the user diversity index is above a threshold, chosen as 0.4.181

In summary, we use three conditions, one on the number of182

tweets, one on the number of unique users that post the tweets, and183

the third on the diversity of the users that post the tweets, when iden-184

tifying Twitter volume spikes. For the Twitter data that we collected185

(i.e., tweets that contain S&P 500 stock symbols from August 1, 2013186

to August 6, 2014), we find that all the 500 stocks have at least one187

Twitter volume spike, and there are a total of 3288 Twitter volume188

spikes, which are used in the analysis in the rest of the paper.189

4. Background190

The Black–Scholes model assumes that stock price follows a ge-191

ometric Brownian motion. In the following, we first briefly describe192

the geometric Brownian motion model, and then describe the Black–193

Scholes model.194

4.1. Stock price model195

196
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4.2. Black–Scholes model for stock option pricing 213

As we briefly mentioned earlier, a stock option is a financial con- 214

tract that gives the buyer (owner) the right to buy or sell an under- 215

lying asset at a specified price (strike price) on or before a specified 216

date (expiration date) [28]. Stock options are in two categories: call 217

options and put options. A call option of a stock gives the buyer the 218

right to buy the stock at the strike price; a put option gives the buyer 219

the right to sell the stock at the strike price. 220

The Black–Scholes model [7] is a widely used mathematical model 221

for estimating the price of a stock option. In its basic form, it assumes 222

that the market consists of a risky asset (i.e., a stock) and a riskless 223

asset. The rate of return on the riskless asset is constant, and thus 224

called the risk-free interest rate, denoted as r. The stock does not pay 225

a dividend, and its price follows a Geometric Brownian motion with 226

drift μ and volatility σ . There is no arbitrage opportunity (i.e., there 227

is no way to make a riskless profit). The market is frictionless (i.e., 228

transactions do not incur any fees or costs). 229

Let t denote time. Let St denote the stock price at time t, which is 230

as modeled in (2). Let V(S, t) be the price of the stock option, which 231

is a function of time t and stock price S. The Black–Scholes equation 232

is a partial differential equation that describes the price of the option 233

over time. Specifically, it is 234

∂V

∂t
+ 1

2
σ 2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, (6)

where we write V(S, t) simply as V and St as S for ease of notation. 235

The Black–Scholes equation can be used to estimate the price of 236

call and put options. Let T denote its expiration date. Let E denote the 237

strike price of the option. If the option is a call option, it has a payoff 238

of ST − E if ST is larger than E. Otherwise, the payoff is zero. That is, 239

the payoff is 240

max (ST − E, 0)

Using the above condition and the Black–Scholes equation, the price 241

of the call option at time t is 242

S

w 243

n 244

d

245

d

I 246

t 247
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U 248

o 249

−
w 250

251

d 252
Let St denote stock price on day t. Let μ denote the drift rate of

he stock, and let σ denote the stock volatility. The most widely used

odel for stock price [7,12,22,24] is the Geometric Brownian motion

odel, that is,

St = μSt dt + σ St dWt , (2)

here Wt is a Brownian motion. On the right hand side of (2), the first

erm is used to model deterministic trends, while the second one is

sed to model unpredictable events. For an arbitrary initial value S0,

he stochastic differential equation (2) has the analytic solution

t = S0 exp

((
μ − σ 2

2

)
t + σWt

)
. (3)

et Rt denote the log return (i.e., logarithm of stock return) on day t.

hen

t = ln
St

St−1

=
(
μ − 1

2
σ 2

)
+ σ(Wt − Wt−1), (4)

here Wt − Wt−1 is the usual Brownian increment that follows a nor-

al distribution. The above shows that when assuming stock price

ollows a Geometric Brownian motion, log return follows a normal
istribution, or stock return follows a lognormal distribution. Given

samples of log returns, denoted as {R1, . . . , Rm}, the two parame-

ers, μ and σ , can be estimated empirically as

=
∑m

t=1 Rt

m
, σ =

√∑m
t=1 (Rt − R)

m − 1
(5)

here R is the mean of the m samples.

p 253

5 254

(

[

h
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here N(d) is the cumulative distribution function of the standard

ormal distribution, and

1 =
ln St

E
+

(
r + σ 2

2

)
(T − t)

σ
√

T − t
, (8)

2 =
ln St

E
+

(
r − σ 2

2

)
(T − t)

σ
√

T − t
= d1 − σ

√
T − t. (9)

f the option is a put option, it has a payoff of E − ST if ST is smaller

han E. Otherwise, the payoff is zero. That is, the payoff is

ax (E − ST , 0)

sing the above condition and the Black–Scholes equation, the price

f the put option at time t is

St N( − d1) + e−r(T−t)EN( − d2), (10)

here N(d), d1 and d2 are as defined earlier.

While the above model assumes no dividend, the case with divi-

end can also be handled [28]. We address dividend in all the results

resented in the paper.

. Twitter volume spikes and stock price model
While log return is widely assumed to follow normal distribution 255

see Section 4.2), this assumption does not always hold in practice 256

23]. Specifically, the distribution of log returns can possess much 257

eavier tails than those of normal distribution. In other words, log 258
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Table 1

Percentage of samples that follow a normal distribution.

τ 15 30 50 100 150

Percentage 77.2% 66.2% 53.8% 31.2% 19.6%

returns can grow or drop much more sharply than that in normal

distribution. Intuitively, sharp increases or decreases in stock returns

can trigger more discussions about them, and hence Twitter vol-

ume spikes. Therefore, extreme stock prices might be correlated with

Twitter volume spikes. In the following, we investigate whether this

is indeed the case. After that, we investigate the characteristics of

the stock price before and after a Twitter volume spike, and how to

choose model parameters in the presence of Twitter volume spikes.

5.1. Twitter volume spikes and lognormal assumption

For a stock, consider a time series of log returns over 2τ days

around day t, Rt,τ = {Rt−τ+1, . . . , Rt , . . . , Rt+τ }. In the following, we

vary τ from 15 to 150, and identify when Rt,τ is likely to follow a

normal distribution. For this purpose, we consider the log returns of

all the S&P 500 stocks from February 21, 2012 to August 1, 2014. For

each stock, we random pick a time t and use Shapiro–Wilk test [27]

to test whether Rt,τ follows a normal distribution. Table 1 shows the

percentage of the samples that follow a normal distribution for dif-

ferent values of τ . We can see that as τ increases, the percentage of

samples that follow a normal distribution decreases. This indicates

that the assumption of normal distribution is more likely to hold for

short-term data and is less likely to hold for long-term data. In the

rest of the paper, we choose τ ≤ 30.

We next investigate whether extreme stock returns are related to

Twitter volume spikes. For this purpose, we consider all the Twitter

volume spikes (there are 3288 such samples). Suppose for a stock, a

Twitter volume spike happens on day t, we then use Shapiro–Wilk

test [27] to test whether Rt,τ follows a normal distribution. Table 2

shows the percentage of samples that follow a normal distribution,

where τ = 15 or 30. For comparison, the results for a day that is cho-

sen randomly are also shown in the table. For fair comparison, the

samples of random chosen days are constructed as a one-to-one map-

ping with those of Twitter volume spikes. Specifically, if for a stock,

there is a Twitter volume spike on day t, then we randomly choose a

day, t′, as a sample that corresponds to the sample for Twitter volume

spike. From Table 2, we see that the log returns around a Twitter vol-

ume spike are much less likely to follow a normal distribution than

those around a random day.

Table 2

Percentage of samples that follow a normal dist

The results for randomly chosen days are also p

Testing set τ = 15

Twitter volume spike Rand

Rt,τ 57.4% 76.6

R−
t,τ 69.7% 86.0

R+
t,τ 83.7% 86.3

Table 3

Percentage of samples that follow a normal dist

results for randomly chosen days are also prese

Testing set τ = 15

Twitter volume spike Rand

R′−
t,τ 87.9% 88.5

R′+
t,τ 88.2% 88.5
Please cite this article as: W. Wei et al., Twitter volume spikes
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We next consider the time periods before and after a Twitter vol-

me spike separately. Let R−
t,τ denote the series of log returns of

days, from t − τ + 1 to t. We again use Shapiro–Wilk test to test

hether R−
t,τ follows a normal distribution. Similarly, let R+

t,τ denote

he set of log returns of τ days, from t + 1 to t + τ, we test whether it

ollows a normal distribution. Table 2 also shows, for each of the two

ub-periods, the percentage of samples that follow a normal distribu-

ion. We observe that the log returns in the two sub-periods are more

ikely to follow normal distributions than those in the entire period.

urthermore, the log returns in the latter sub-period (i.e., after the

witter volume spike, excluding the day with Twitter volume spike)

re more likely to follow a normal distribution than those in the for-

er sub-period. This implies that the log returns on the days around

Twitter volume spike, and especially on the day with Twitter vol-

me spike, are more likely to be extreme values. To further confirm

his, we remove 6 days, from t − 2 to t + 3, in each sample. Specifi-

ally, let R′−
t,τ denote the set of log returns from t − τ + 1 to t − 3, and

et R′+
t,τ denote the set of log returns from t + 4 to t + τ . The results

re shown in Table 3. We observe that log returns are indeed more

ikely to follow a normal distribution after removing these 6 days. In

act, the results are comparable to those when choosing a random

ay, which further confirms that extreme log returns are correlated

ith Twitter volume spikes.

.2. Twitter volume spikes and stock price model selection

We have observed that stock price exhibits different behaviors be-

ore and after a Twitter volume spike. Specifically, log returns are

ore likely to follow a normal distribution after a Twitter volume

pike. In the following, we first compare the stock volatility in the

ime periods before and after a Twitter volume spike. The results will

rovide insights on whether different model parameters are needed

or the two time periods. Based on our results in Section 5.1, all the re-

ults below are restricted to a short time period surrounding a Twitter

olume spike. Specifically, suppose that a Twitter volume spike hap-

ens on day t. Then we only consider the days in [t − τ + 1, t + τ ],

here τ ≤ 30. Let σ−
τ denote the stock volatility derived from the log

eturns from day t − τ + 1 to t. Let σ+
τ denote the stock volatility de-

ived from the log returns from day t + 1 to t + τ . Both σ−
τ and σ+

τ

re empirical volatility that are obtained using (5). We use paired t-

est to compare σ−
τ and σ+

τ for all 3288 Twitter volume spikes. The

ull hypothesis is σ−
τ ≤ σ+

τ . Table 4 shows the p-values of the t-tests

hen varying τ from 15 to 30. The very small p-values indicate that

e can reject the null hypothesis, indicating that there is strong evi-

ence that σ−
τ > σ+

τ . For comparison, we also show the t-test results

on for the days around a Twitter volume spike.

ted for comparison.

τ = 30

y Twitter volume spike Random day

45.8% 59.4%

60.4% 73.7%

74.6% 76.6%

on after excluding days from t − 2 to t + 3. The

or comparison.

τ = 30

y Twitter volume spike Random day

77.5% 75.9%

78.1% 77.8%
and stock options pricing, Computer Communications (2015),
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Table 4

p-values of the t-tests for σ−
τ > σ+

τ .

τ Twitter volume spike Random day

15 2.5 × 10−71 0.6

20 7.1 × 10−66 0.5

25 5.5 × 10−60 0.5

30 2.1 × 10−46 0.4

hen choosing a random day, which exhibit large p-values, indicating

o strong evidence that σ−
τ > σ+

τ .

The above observation (i.e., σ−
τ > σ+

τ ) indicates that we may need

o use different parameters for the two time periods before and after

he Twitter volume spike. In the following, we consider three models.

he first model uses two parameters for drift and volatility respec-

ively, denoted as μ2τ and σ 2τ , that are estimated from the entire

ime period (i.e., 2τ days, indicated by the subscripts) using (5), re-

pectively. The second model estimates three parameters, μ2τ , σ−
τ

nd σ+
τ , where μ2τ is the drift estimated using the entire time pe-

iod, and σ−
τ , σ+

τ are the volatilities that are estimated using the first

and last τ days, respectively. The third model uses four parameters,
−
τ , μ+

τ , σ−
τ and σ+

τ , where μ−
τ and σ−

τ are estimated using the first

days, and μ+
τ and σ+

τ are estimated using the last τ days.

To decide which model is the best, we use AICc [3], i.e., Akaike

nformation criterion (AIC) with a correction for finite sample sizes,

s a measure of the relative quality of each model. Specifically, for a

iven statistical model for m samples, AICc is defined as

ICc = AIC + 2k(k + 1)

m − k − 1
,

AIC = 2k − 2 ln L,

here k is the number of parameters in the model and L is the maxi-

ized value of the likelihood function for the model. A smaller value

f AICc indicates the model is preferred. As shown above, AIC is a

easure that deals with the trade-off between the goodness of fit of

he model and the complexity of the model; AICc enhances AIC by

dding greater penalty for extra parameters.

For each Twitter volume spike, we calculate the AICc values for

he three models described above, denoted as AICc2, AICc3 and AICc4,

espectively, where the subscript corresponds to the number of pa-

ameters in a model. The value of τ is chosen to be 15, 20, 25 and

0. After that, we use paired t-test to pairwise compare the AICc val-

es for the three models. We find that, for all the settings that we

onsider, there is strong evidence that AICc2 > AICc3, AICc2 > AICc4

nd AICc4 > AICc3. That is, AICc2 > AICc4 > AICc3. This is consistent

ith the earlier results that the volatilities before and after a Twit-

er volume spike differ significantly, which justifies that they should

e estimated separately. On the other hand, the result that the model

ith three parameters outperforms that with four parameters indi-

ates that it is undesirable to use too many parameters.

Last, we investigate the gain obtained when using a proper model.

et L2, L3 and L4 denote the maximized value of the likelihood func-

ion for the three model (the subscript represents the number of pa-

ameters in a model). Define the likelihood improvement when using

hree parameters over using two parameters as I3 = L3/L2 − 1. Sim-

larly, define I4 = L4/L2 − 1 for the improvement using four parame-

ers over using two parameters. For comparison, we also investigate

randomly chosen time period [t − τ + 1, t + τ ], when t is chosen

andomly, and denote the likelihood improvements as I′3 and I′4, re-

pectively (in this case, our t-tests also indicate that AICc2 > AICc4 >

ICc3). We find that the gain when t is a random day is less significant

han that when there is a Twitter volume spike on day t. Specifically,

e perform t-tests to compare I3 and I′
3
, and compare I4 and I′

4
. The

ull hypotheses are I3 ≤ I′
3

and I4 ≤ I′
4
. Table 5 shows the p-values of

he t-tests when varying τ from 15 to 30. The very small p-values in-

icate that we can reject the null hypothesis. That is, there is strong
Please cite this article as: W. Wei et al., Twitter volume spikes
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Table 5

p-values of the t-tests for likelihood

improvement.

τ I3 > I′3 I4 > I′4

15 8.6 × 10−13 5.7 × 10−8

20 2.5 × 10−12 1.1 × 10−9

25 5.1 × 10−10 1.8 × 10−8

30 3.9 × 10−8 2.1 × 10−7

vidence that the likelihood improvement corresponding to the case

f Twitter volume spike is larger than that of a random day.

In summary, the above results demonstrate that it is important to

ake Twitter volume spikes into account while studying and mod-

ling stock prices. Specifically, the behavior of stock prices differs

ignificantly before and after a Twitter volume spike: the empirical

olatility is lower after a Twitter volume spike, and a three-parameter

odel that provides separate estimation of the volatilities before and

fter a Twitter volume spike provides the highest gain in the likeli-

ood value.

. Twitter volume spikes and stock options pricing

Having investigated the relationship of Twitter volume spikes and

he lognormal stock price model, we now investigate the relation-

hip of Twitter volume spikes and the Black–Scholes model for stock

ptions pricing. Using the Black–Scholes model, one can derive im-

lied volatility (IV) of an option contract, which is an estimate of the

olatility. In the following, we first investigate IV around a Twitter

olume spike, and then investigate volatility around a Twitter volume

pike.

.1. IV around a Twitter volume spike

We only consider short term options that will expire in around

0 days after a Twitter volume spike since such short-term options

re more likely affected by a Twitter volume spike, while long term

ptions are less affected by a Twitter volume spike. Consider a stock.

n day t, for a given option price, a given strike price with an expira-

ion date, and the current stock price, we can use (7) to solve for σ to

btain the IV corresponding to the call option; similarly, we can use

10) to obtain the IV corresponding to the put option. We obtain IV at

he end of a trading day. The stock price is the daily closing price. The

rice of an option is taken as the average of the ask and bid prices to

ake account of ask-bid spread (ask price is the lowest price for which

seller is willing to sell, bid price is the highest price that a buyer is

illing to pay for, and these two prices can be very different).

We next investigate the IV around a Twitter volume spike. For con-

enience, we represent time as relative to when a Twitter volume

pike happens; negative values correspond to days before a Twitter

olume spike, while positive values correspond to days after a Twit-

er volume spike. Suppose that one Twitter volume spike is for a par-

icular stock, and happens on day t0. We consider all the strikes (that

ill expire in around 30 days after t0) for this stock on day t (relative

o t0), and obtain the IVs for the put and call options for each strike

n day t. After doing the above for all the Twitter volume spikes, we

an obtain the average IV for day t over all the Twitter volume spikes,

enoted as σt . Specifically, σt is a weighted sum of all the IVs (for each

witter volume spike, we obtain a set of IVs, one IV for one option),

here the weight for an IV is the trading volume of its correspond-

ng option at the end of the trading day. We further obtain two more

uantities that are similar to σt , denoted as σ c
t and σ p

t , which differ

rom σt in that σ c
t is obtained by only considering call options, while

p
is obtained by only considering put options.
t
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Fig. 1. (a) The average IV for each of the 30 days before and after a Twitter volume spi

options, are plotted in the figure. (b) The corresponding results for randomly chosen da

We next investigate how σt , σ c
t , and σ p

t change with t. Fig. 1(a)

plots these three quantities for t ∈ [−30, 30]. In the figure, for each of

these three quantities, the value for day t is an average value that is

obtained considering all the instances of Twitter volume spikes, ex-

cluding those for which we cannot obtain one of the three quantities

(e.g., there may not exist a call or put option with short-term expira-

tion date). We observe that all the three quantities, σt , σ c
t , and σ p

t ,

increase sharply before a Twitter volume spike and decrease quickly

afterwards. The IV is still high right after a Twitter volume spike, and

then decreases to a low value. For comparison, we also investigate

how IV changes before and after a day that is chosen randomly. The

results are shown in Fig. 1(b). Different from the results in Fig. 1(a),

the results in Fig. 1(b) do not indicate a significant increase in IV be-

fore a random day or a significant decrease in IV after a random day.

We also observe from Fig. 1 (a) that σ p
t is larger than σ c

t for all of

the 61 days, which indicates that put options may be priced higher

compared to call options. We next use t-test to further confirm the

above results. The null hypothesis is σ p
t ≤ σ c

t for t ∈ [−30, 30]. For all

of the 61 days, 55 days have p-value less than 0.05. The very small

p-values on most days indicate that we can reject the null hypothesis,

that is, there is strong evidence that σ p
t > σ c

t , further confirming the

results we observe from Fig. 1(a). For a randomly chosen day, Fig. 1
(b) also shows that σ p
t > σ c

t , which is also confirmed by t-test.

We next further explore the relationship between the IV obtained

from put options and the IV obtained from call options. For each Twit-

ter volume spike, for day t, we compare the average IV obtained from

put options (again, the average is a weighted sum, where the weight

for an IV is the trading volume of its corresponding option at the end

of the trading day) and that obtained from call options. We then ob-

tain the percentage that the former is larger than the latter consid-

ering all the instances of Twitter volume spikes for day t. The results

are presented in Fig. 2(a), t ∈ [−30, 30]. We see that the percentage is

above 60% for all 61 days. For the 2 days immediately before a Twitter

volume spike, the percentages are particularly high, and then the per-

centage drops quickly afterwards. For comparison, Fig. 2(a) also plots

the corresponding results for randomly chosen days, which shows

that the percentages are also above 60%. On the other hand, we ob-

serve a more significant increase and a more significant decrease in

percentage right before and after a Twitter volume spike, compared

to the case of random days. The above results again confirm that IV of

put options is larger than that of call options. To further illustrate the

m
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ree cases, when only consider call options, only consider put options, and consider all

bove points, we obtain the ratio of the average IV obtained from put

ptions over the average IV obtained from call options for each in-

tance of Twitter volume spike on day t, and then obtain the average

atio over all the instances for day t. Fig. 2(b) plots the average ratio

or each of the 30 days before and after a Twitter volume spike. The

5% confidence intervals are also plotted in the figure. We can see

hat ratios are above 1.03 for most days, providing further evidence

hat IV of put options is larger than that of call options.

In summary, we observe that the IV is still high right after a Twit-

er volume spike. A natural question is whether it accurately pre-

icts the actual volatility. In addition, we observe that put options

re priced higher than call options. A natural question is whether it is

ational, or it is due to people’s tendency of loss aversion (i.e., people

end to strongly prefer avoiding losses to acquiring gains) [14,15]. We

ext answer these two questions by investigating volatility around a

witter volume spike.

.2. Volatility around a Twitter volume spike

When investigating volatility around a Twitter volume spike, to

ain insights, we make a simplifying assumption that the price of

stock follows a Brownian motion (instead of Geometric Brownian
otion). That is, we ignore the deterministic term in the right hand 503

ide of (2). This is reasonable since we are only interested in short- 504

erm (i.e., within 60 days) behavior. Under this assumption, we have 505

og return on day t as 506

t = ln
St

St−1

= σ(Wt − Wt−1),

here Wt is a Brownian motion. From the above, we see that, under 507

he simplifying assumption, Rt/σ follows a standard normal distribu- 508

ion. 509

We next explore Rt/σ for t around a Twitter volume spike, where 510

is relative to the day when a Twitter volume happens, t ∈ [−29, 30]. 511

ince we do not know the real σ , we use the IV on day −30 to ap- 512

roximate σ . Specifically, for a stock, the IV on a day is a weighted 513

verage considering all the strikes (both call and put options) for the 514

tock (again we only consider options that will expire in around 30 515

ays), where the weight is the trading volume of an option at the 516

nd of the trading day. We only consider Twitter volume spikes for 517

hich we can obtain the IV on day −30. For each such Twitter vol- 518

me spike, we can obtain one instance of Rt/σ for day t ∈ [−29, 30]. 519

and stock options pricing, Computer Communications (2015),
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Fig. 3. Variance of normalized log returns around a Twitter volume spike.

e then use the sample variance to approximate the variance of Rt/σ
or t ∈ [−29, 30]. Fig. 3 plots the results. For comparison, Fig. 3 also

lots the corresponding results for randomly chosen days. We see

hat for the case of Twitter volume spikes, the variances from day

1 to day 1 are much larger than the corresponding values for the

ase of randomly chosen days. The difference is most significant on

ay 0 (the former is 6 times of the latter). On the other hand, for most

f the days after 0, i.e., 28 out of 30 days, the variances of the former

re lower than those in the latter. The results indicate that the price

f a stock is very volatile around a Twitter volume spike (related to

his stock), particularly for the days immediately before and after the

witter volume spike (i.e., for days −1 to +1). After that, the volatility

s even lower than usual.

The above considers the variance of log returns. We next consider

he variance of cumulative log return. Consider a stock. Define Rt+n,t

s the cumulative log return on day t + n relative to day t, n ≥ 1. Then

nder the simplifying assumption that stock price follows a Brownian

otion, we have

t+n,t = ln
St+n

St
= σ(Wt+n − Wt).

herefore, Rt+n,t/σ follows a normal distribution with variance n.
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or comparison, the corresponding results for randomly chosen days are also plotted

n the figure.

We now investigate Rt+n,t/σ around a Twitter volume spike.

gain, t is relative to the day when a Twitter volume happens. We

onsider t ∈ [−30, 30]. Based on the earlier observation that the vari-

nce of log return on a day with a Twitter volume spike is significantly

arger than the variances of other days, we divide the time period into

wo parts, one from day −30 to 0 and the other from day 1 to 30. For

he first part, the cumulative log return on day i is ln
Si

S−30
, i ∈ [−29, 0],

here Si is the stock price on day i, and we normalize it by the aver-

ge IV on day −30. For the second part, the cumulative log return on

ay i is ln
Si
S1

, i ∈ [2, 30] and we normalize it by the average IV on

ay 1.

Fig. 4 plots the results for t ∈ [−30, 30], where the value for t is

he average over all the instance of Twitter volume spikes. Specifi-

ally, for each t, we have 2955 samples (excluding 333 Twitter volume

pikes for which we cannot obtain the IV on day −30 or day 1). For

oth parts, we use the sample variance of the normalized cumulative

og returns to approximate the variance. If the Brownian motion as-

umption holds, the variance of the normalized cumulative log return

ill increase linearly with time. For comparison, the corresponding
and stock options pricing, Computer Communications (2015),
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results for randomly chosen days are also plotted in the figure. For the558

case of randomly chosen days, for both parts (i.e., days [−30, 0] and [1,559

30]), the variance of cumulative log returns indeed increases approx-560

imately linearly with time. For the case of Twitter volume spikes, for561

both parts, the variance increases linearly with time except for days562

−2, −1 and 0, which have particularly large variance. We use least563

squares estimation to estimate the slopes of all the linear curves (for564

the case of Twitter volume spike, days −2, −1 and 0 are omitted in565

the estimation). For the case of Twitter volume spikes, the slopes of566

the two parts are 0.73 and 0.58, respectively, while for the case of567

random chosen days, the slopes of the two parts are 0.82 and 0.76,568

respectively. The significantly lower slope of the second part when569

there are Twitter volume spikes compared to that for randomly cho-570

sen days (i.e., 0.58 versus 0.76) indicates that the IV of day 1 (i.e., the571

day immediately a Twitter volume spike, which is used to normal-572

ize ln
Si
S1

, i ∈ [2, 30]) may still be higher than usual, and hence option573

prices on that day may still be overpriced. This indicates that we can574

use Twitter volume spike as a trading signal: right after a Twitter vol-575

ume spike, we can utilize the overpriced options to gain profit, which576

will be descried in detail in Section 7.577

7. Application in stock option trading578

Our earlier analysis indicates that put options tends to be priced579
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higher than call options, and option prices may still be overpriced

right after a Twitter volume spike. Based on the above results, we

conjecture that selling put options right after a Twitter volume spike

can be a profitable trading strategy. In the following, we first describe

one such strategy and then evaluate its performance.

7.1. Put spread selling strategy

Before describing the strategy, we first describe put option selling

in more detail. As described earlier, put option is a financial contract

between a buyer and seller of the option. It gives the buyer the right to

sell a stock at the strike price on the option expiration day. As an ex-

ample, suppose that a seller sells a put, which gives a buyer the right

to sell 100 shares of the stock of a company, say XYZ, at the strike price

of $80 at expiration (i.e., on the expiration day). To purchase the op-

tion, the buyer pays the premium of $2 per share (premium is paid to

the seller of the option and is quoted on a per-share basis). If the stock

price is $82 at expiration, which is higher than the strike price, then

the seller can keep the premium, gaining a profit of 2 × 100 = $200.

On the other hand, if the stock price drops to $70 at expiration, then

the profit of the buyer is (80 − 70 − 2) × 100 = $800, while the seller

loses $800. In other words, for a buyer, one of the purposes of buying

put option is similar to buying an insurance: it limits the loss of the

buyer during unfavorable events with the payment of the premium.

For a seller, selling put option can lead to profits through the pre-

mium. On the other hand, when the stock price drops significantly,

then a seller can lose a substantial amount of money. For instance, in

the previous example, if the stock price falls to zero (XYZ bankrupts),

then the loss of the seller will be (80 − 2) × 100 = $7800.

Options spread is widely considered as an option trading strat-

egy to limit the risk. In this paper, we consider one type of option

spread strategy, called put spread selling. Specifically, the put spread

strategy is bull spread [23]. It is established with put options by buy-

ing a put with a lower strike price and simultaneously selling a put

with a higher strike price; the two puts have the same expiration

date. This strategy limits the amount of loss. For instance, in the

previous example, suppose that a trader buys a put option with the

strike price of $75 at the premium of $1 per share and sells a put

with the strike price of $80 at the premium of $2 per share. Then

even if the stock price falls to zero, the loss of the trader is limited

to (80 − 2 − 75 + 1) × 100 = $400. Fig. 5 illustrates the maximum

profit and loss (in a negative value) using the above strategy. When
Please cite this article as: W. Wei et al., Twitter volume spikes

http://dx.doi.org/10.1016/j.comcom.2015.06.018
he stock price at expiration is no less than $80, the trader earns

profit of (2 − 1) × 100 = $100; when the stock at expiration is no

ore than $75, the trader has a loss of $400; and when the stock

rice at expiration is between $75 and $80, the profit of the trader is

etween −$400 and $100, and is a linear function of the stock price

t expiration.

Based on our observations in earlier sections, we propose the fol-

owing put spread selling strategy. Suppose that for a stock, a Twitter

olume spike happens on day t. Then a trader uses a put spread strat-

gy on a day right after t. Specifically, he will choose a put spread that

ill expire in a few weeks after t, and buy and sell puts with δ value in

ifferent ranges (δ represents the rate of change of option value with

espect to changes in the stock price [28]. For put options, δ values

re negative, from −1 to 0. As a rough example, a put option with a δ
f −0.5 will decrease by $0.50 for every $1 increase in the underlying

tock price).

.2. Performance evaluation

We next evaluate the performance of the above strategy. We first

onsider a simplified simulation scenario, and then consider realistic

imulation settings.

.2.1. Simplified trading simulation

In the simplified scenario, we do not consider commission. In ad-

ition, the price of an option is set to be the average of the ask and

id prices. The performance metric we use are premium retention ra-

io and fraction of winning trades. The premium retention ratio is the

mount of profit divided by the amount of premium collected for all

raded options. For instance, in the earlier example on bull spread,

hen the stock price is $82 at expiration, the premium retention ra-

io is 1; while when the stock price is $75 at expiration, the premium

etention ratio is −400/(200 − 100) = −4. The fraction of winning

rades is defined as the ratio of trades that have positive profit.

Table 6 shows the results, where the trade is on t, t + 1 or t + 2 (a

witter volume spike happens on day t) and the expiration date is 4

eeks after t. For simplicity, we only sell put options with δ between

0.5 and 0. For the put options that we buy, it is only sensible to

hoose options with strike prices lower than those of the put options

hat we sell (see the example in Fig. 5). In addition, to control the risk
and stock options pricing, Computer Communications (2015),
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Table 6

Performance of the put spread selling strategy in simplified trading simulation. Q3

δ range Premium retention ratio Fraction of winning trades

Sell Buy t t + 1 t + 2 t t + 1 t + 2

[−0.5,−0.4] [−0.3,−0.2] 32.6% 31.5% 33.6% 74.2% 74.3% 74.6%

[−0.4,−0.3] [−0.2,−0.1] 44.9% 50.9% 47.0% 82.5% 85.6% 84.4%

[−0.3,−0.2] [−0.1,0] 48.0% 59.8% 54.3% 88.9% 91.4% 91.1%

level, we let the δ level of the options that we buy to be roughly 0.2657

lower than that of the options that we sell. Summarizing the above,658

we have the three settings of δ listed in Table 6. That is, δ for the659

options that we sell is chosen to be in [−0.5,−0.4], [−0.4,−0.3], or660

[−0.3,−0.2]. Correspondingly, the δ for the options that we buy is661

chosen to be in [−0.3,−0.2], [−0.2,−0.1], or [−0.1, 0], respectively.662

For the options that we sell or buy, if the δ is chosen to be in range [a,663

b] and there are multiple candidate options in the range, we choose664

the option whose δ value is closest to b. From Table 6, we see that665

the strategy gains profit in all the settings. Specifically, the average666

premium retention ratio varies from 31.5% to 59.8%, and the fraction667

of winning trades varies from 74.2% to 91.4%.668

7.2.2. Realistic trading simulation669

We next evaluate the performance of the put spread strategy670

through realistic trading simulation. In the simulation, we use a port-671

folio that can have up to 20 spread positions. Initially, the cash bal-672

ance is $100,000, the number of open positions is 0, and the num-673

ber of available positions is 20. After we apply put spread strategy674

for a stock (i.e., sell a put at a high strike price and buy a put at a low675

strike price), the number of available positions is reduced by one until 676

these options are settled on their expiration day. During the simula- 677

tion, we try to keep the amount of cash that is allocated to a position 678

to be balanced. Specifically, if c is the current cash balance and n is the 679

number of available positions, then the maximum amount of cash to 680

a position is c/n. For instance, at the beginning, the amount of cash 681

that can be allocated to a position is 100,000/20. Suppose at a later 682

time, there are already two open positions and the amount of cash is 683

90,000. Then the number of available positions becomes 18, and the 684

maximum amount of cash to a position is 90,000/18. For one position, 685

the number of put spread is 
c/(nb)�, where b is the margin require- 686

ment of the put spread (i.e., 100 times the difference of the two strike 687

prices, e.g., in the example in Section 7.1, the margin requirement is 688

(80 − 75) × 100 = $500). For each put spread, we assume the com- 689

mission is $2 ($1 for selling and $1 for buying a put). In addition, to 690

be realistic, we take ask-bid spread into account, that is, we buy an 691

option at the ask price and sell an option at the bid price. At any point 692

of time, the number of open positions is no more than 20. 693

The performance metric is percentage gain, that is, the relative 694

difference of the cash balance from the beginning to the end of the 695
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upper figure shows the value of the asset (available cash plus value of the options) on e

Table 7

Performance of the put spread selling strategy in realistic trading

simulation.

δ range Trading day

Sell Buy t t + 1 t + 2

[−0.5,−0.4] [−0.3,−0.2] −18.3% −32.5% 10.6%

[−0.4,−0.3] [−0.2,−0.1] 19.9% 50.6% 37.4%

[−0.3,−0.2] [−0.1,0] −0.8% 34.3% 33.8%

simulation. Table 7 shows the simulation results. This strategy

achieves 50.6% gain when selling options with δ ∈ [−0.4,−0.3] and

buying options with δ ∈ [−0.2,−0.1] on the day following a Twitter

volume spike. Although this setting achieves high rate of return, the

stock volatilities for this setting are also relatively large, indicating

that the trading risk for this setting is large. When selling options

with δ ∈ [−0.3,−0.2] and buying options with δ ∈ [−0.1, 0], which

is a lower risk setting, the strategy still achieves 34.3% gain. Fig. 6

plots the simulation result for this setting. The upper figure shows

the value of the asset (available cash plus value of the options) on

each day, and the lower figure shows the number of open positions

on each day. We observe that both quantities change in a stable fash-

ion. Last, of all 180 trades, only 17 trades lose money. The fraction of

winning trades is 90.6%.

The above results are for the data collected from August 1, 2013

to August 6, 2014. We also repeat the above evaluation for the data

collected from April 21, 2014 to April 20, 2015, and observe similar

results. Table 8 shows the simulation results, which are consistent

with the results in Table 7. Fig. 7 plots the value of the asset (avail-

able cash plus value of the options) and the number of occupied trad-
Please cite this article as: W. Wei et al., Twitter volume spikes
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ay; the lower figure shows the number of open positions in the portfolio.

Table 8

Performance of the put spread selling strategy in realistic trading

simulation (using data collected from April 21, 2014 to April 20,

2015).

δ range Trading day

Sell Buy t t + 1 t + 2

[−0.5,−0.4] [−0.3,−0.2] −17.6% 15.9% 11.5%

[−0.4,−0.3] [−0.2,−0.1] 24.0% 36.7% 13.6%

[−0.3,−0.2] [−0.1,0] 10.8% 29.7% 27.3%

ng positions on each day. We observe that both of them change in

stable fashion. Last, of all 190 trades in this setting (selling options

ith δ ∈ [−0.3,−0.2] and buying options with δ ∈ [−0.1, 0]), only 23

rades lose money. The fraction of winning trade is 87.9%.

. Choice of threshold

So far, we have used threshold K = 3 when identifying Twitter vol-

me spikes (see Section 3.3). In this section, we investigate how to

hoose K. The approach we use is based on the insights on how aver-

ge IV changes around a Twitter volume spike. Let D denote the set of

witter volume spikes that are identified using K = 3. Let D′ denote

he set of Twitter volume spikes that are identified using K′ �= K. It is

lear that D ⊆ D′ when K′ < K. When K = 3, let σt denote the aver-

ge IV over all the instances of Twitter volume spikes as calculated in

ection 6.1, where t is relative to the day when a Twitter volume spike

appens, t ∈ [−30, 30]. For K′ < K, let σ ′
t denote the average IV over

ll the instances of Twitter volume spikes in D′, and let σ ′′
t denote the

verage IV over all the instances of Twitter volume spikes in D′ \D,
and stock options pricing, Computer Communications (2015),
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ume spike and found that a three-parameter model that uses the 763

same drift and different volatilities before and after a Twitter volume 764

spike provides the highest gain in the likelihood value. We also found 765

a clear pattern in IV around a Twitter volume spike: IV increases 766

sharply before a Twitter volume spike and decreases quickly after- 767

wards. In addition, put options tend to be priced higher than call op- 768

tions. Last, we found that right after a Twitter volume spike, options 769

may still be overpriced. Based on the above findings, we propose a 770

put spread selling strategy. Realistic simulation using one year stock 771
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ig. 8. The distance between σt and σ ′
t (the lower curve with triangles) and the

istance between σt and σ ′′
t (the upper curve with circles) when K′ decreases from 2.9

o 2.

hat is, σ ′′
t is the average IV from the additional Twitter volume spikes

hen choosing a smaller K′.
Define the distance between σt and σ ′

t as the normalized Eu-

lidean distance. Similarly, define the distance between σt and σ ′′
t .
hat is,

D
(
σt , σ ′

t

)
=

√∑30
t=−30

(
σt − σ ′

t

)2

61
,

(
σt , σ ′′

t

)
=

√∑30
t=−30

(
σt − σ ′′

t

)2

61

ig. 8 plots the distances defined above when K′ decreases from 2.9

o 2. As expected, D

(
σt , σ ′

t

)
increases when K′ decreases (i.e., devi-

tes more from 3). The slope of the increase is lower at the beginning

nd becomes larger afterwards. The distance D

(
σt , σ ′′

t

)
is the mini-

um when K′ = 2.7. The larger distance when K′ is larger than 2.7 is

ue to a small number of samples in D′ \D. When K′ is smaller than

.7, more Twitter volume spikes are identified; on the other hand, σ ′′
t

eviate more from σt , leading to larger distances. The above results

ndicate that the threshold can be chosen from 2.7 to 3, which may

chieve similar performance as that when choosing the threshold

o 3.

To further confirm this, we use K = 2.7 and the same thresholds

or the number of unique users and user diversity index to identify

witter volume spikes. In this case, we identify 4088 Twitter volume

pikes (24.3% higher than that when using K = 3). We then repeat the

nalysis presented in Section 5–7 using the new set of Twitter volume

pikes. Indeed, we find that the observations on stock price, IV and

olatility are similar as those when K = 3, and the performance of

he put spread trading strategy is similar as that when K = 3.

. Conclusion and future work

In this paper, we have investigated the relationship between Twit-

er volume spikes and stock options pricing. We started with the un-

erlying assumption of the Black–Scholes model, and investigated

hen this assumption holds for stocks that have Twitter volume

pikes. We next investigated stock volatility around a Twitter vol-

[

[

[

[

[

[

[

[
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arket data demonstrates that, even in a conservative setting, this

trategy achieves a 34.3% gain when taking account of commissions

nd ask-bid spread, while S&P 500 increases 12.8% in the same period.

As future work, we are looking into the content of tweets to under-

tand their impact on stock options pricing. The results will be shown
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