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Location-based social networks (LBSNs) have recently attracted a lot of attention due to the number of novel
services they can offer. Prior work on analysis of LBSNs has mainly focused on the social part of these systems.
Even though it is important to know how different the structure of the social graph of an LBSN is as compared
to the friendship-based social networks (SNs), it raises the interesting question of what kinds of linkages exist
between locations and friendships. The main problem we are investigating is to identify such connections
between the social and the spatial planes of an LBSN. In particular, in this paper we focus on answering the
following general question “What are the bonds between the social and spatial information in an LBSN and
what are the metrics that can reveal them?” In order to tackle this problem, we employ the idea of affiliation
networks. Analyzing a dataset from a specific LBSN (Gowalla), we make two main interesting observations; (i)
the social network exhibits signs of homophily with regards to the “places/venues” visited by the users, and
(ii) the “nature” of the visited venues that are common to users is powerful and informative in revealing the
social/spatial linkages. We further show that the “entropy” of a venue can be used to better connect spatial
information with the existing social relations. The entropy records the diversity of a venue and requires only
location history of users (it does not need temporal history). Finally, we provide a simple application of our
findings for predicting existing friendship relations based on users’ historic spatial information. We show
that even with simple unsupervised or supervised learning models we can achieve significant improvement
in prediction when we consider features that capture the “nature” of the venue as compared to the case
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where only apparent properties of the location history are used (e.g., number of common visits).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last few years, boosted by advancements in mobile
handheld devices (e.g., smartphones), a new class of digital social net-
works, namely location-based social networks (LBSNs), has emerged.
It is now possible to bring into the equation of online social networks
(OSNs) another dimension, that of location, due to the significantly
improved ability of mobile devices to accurately estimate their posi-
tion or location. The underlying communities not only have social ties
(e.g., friendship) and/or interests in common (e.g., sports), but they
are also “connected” with regards to their geographic locations (of-
ten mapped into “venues” as described later). In other words, LBSNs
bond the online and physical social ties through location information.

This bond can enable a number of novel, convenient, and appeal-
ing services making LBSNs popular. People can now track their chil-
dren’s locations. By tracking friends, applications such as better co-
ordination for scheduled meetings can be enabled. Applications can
also include exploring new places through a list of venues that are
within the proximity of the current location. This list can now be
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accompanied by tips and recommendations from people/friends that
have visited these places. Even simply the number of people that
have visited a locale in the past or are present at the moment might
be helpful and informative. Other systems can also offer Groupon-
like deals, providing additional monetary incentives for someone to
adopt their usage. A recent study has also shown that “gaming” as-
pects of LBSNs form an important motivation for people to start using
them [15].

With LBSNs becoming prevalent, it becomes critical to compre-
hend and discriminate the types of knowledge we can obtain from
the bond between locations and social ties. For example, what corre-
lations exist between users’ spatial trails and their social behaviors as
expressed through their friendships and do the spatial trails provide
any information about social ties? Our primary objective in this work
is to identify the existing correlations and the metrics that can best
capture them. Using the knowledge we obtain from our study we fur-
ther examine whether we can use these correlations and metrics to infer
social information only from users’ locations. Going forward this can
stimulate our ability to deconstruct the interplay between the social
and the spatial information plane and apply it to new applications.

Interactions in an LBSN: An LBSN has two distinct components; a
social network and a location log for each member. The social part of
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Fig. 2. Check-in based LBSN.

the system resembles any other existing online social network, where
friendships are declared and people can interact with their friends.
What differentiates LBSNs from other OSNs are the type of interac-
tions that are feasible between the members of the network. The
main feature of this interaction is location sharing. While the “visible”
interactions in a traditional OSN are restricted to the virtual world,
we can observe interactions within an LBSN in the physical world as
well. This is especially important for our study since it can shed light
on patterns that are otherwise difficult to identify.

Location sharing can be realized either through continuous track-
ing, in the form of a temporal latitude/longitude trajectory (e.g., Loopt
- see Fig. 1) or via “check-ins”, where users announce their presence
in a place or venue at their convenience (e.g., Gowalla, Foursquare etc.
- see Fig. 2). Clearly, the second approach, where location is tagged
with semantic information as compared to a flat geographic trajec-
tory, offers a richer set of information, but with coarse location gran-
ularity. All major LBSNs follow this latter approach and consequently,
in this work we consider systems in which spatial information is cre-
ated via check-ins. We note here that using “check-in” history can be
challenging since fine grained temporal information is absent (e.g.,
users do not “check-out” etc.).

Hence, we now have two types of information - the social ties
between members and check-ins of members of the LBSN. To ana-
lyze socio-spatial interactions within an LBSN, we model it as an “af-
filiation network”, where the members are nodes of one type and
venues/places are nodes of the second type (see Fig. 3). Using a
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Fig. 3. LBSN as affiliation network.

dataset from Gowalla [2], we analyze how the number and type of
users’ common affiliations (as measured through the number of com-
mon locales visited by them) are related to the affinities in the under-
lying social graph. The main findings of our study can be summarized
as follows:

» We identify clear signs of location homophily, that is, members
of the LBSN that are friends are more similar compared to those
that are non-friends. “Similarity” here refers to the percentage of
visited places that are common between two users (to be formally
defined later).

o While simply the number of common places visited by two users
does not provide rich social knowledge, the user similarity as well
as the “type” of their common venues is a very descriptive feature.

Using the affiliation network model we are able to define the clus-
tering coefficient (cc) of a venue, which can capture the nature of a
place in a variety of ways to be elaborated on later. As we will see
later, this cc has a strong correlation with the social relations in the
graph; exactly what we are looking for! However, its computation
utilizes knowledge from the friendship graph, resulting in the prob-
lem of circular reasoning. Hence, we examine other metrics, and in
particular we show that the entropy of a venue is very informative
and helpful for dealing with our problem.

Finally, we investigate the importance of the different features
we consider through simple unsupervised and supervised friendship
prediction models. In particular, we seek to infer the existing affin-
ity relations using only the users’ location history. Our evaluations
reveal that features that account for the type of a venue, can signifi-
cantly improve the estimations as compared to features that consider
all venues equal.

Scope of our study: We would like to emphasize that our work
is a study of the interplay between the social and spatial information
present in an LBSN. Even though this connection can enable many
new applications, such as location prediction, this study is not fo-
cused on any specific one of them. Despite the fact that we examine
some simple friendship inference models utilizing our findings, our
objective in this study is not to provide a social affinity classifier but
to provide insights into the value of the location information present
in an LBSN and its ability towards predicting social ties. For instance,
the relation between spatial and social data can have significant



K. Pelechrinis, P. Krishnamurthy / Computer Communications 73 (2016) 251-262 253

implications on users’ privacy. Privacy policies that avoid informa-
tion leakage from one component of the network to the other should
be designed and be in place. We believe that this work can stimulate
further research and enhance existing - or even enable new - func-
tionalities within an LBSN.

The rest of the paper is organized as follows. Section 2 describes
our affiliation network model for an LBSN and the dataset, while
Section 3 briefly presents the analysis of the social graph of Gowalla.
Our study on the relation between users’ location information and
their social ties is presented in Section 4. Section 5 presents our
friendship inference model, while. Section 6 discusses work related
to our study. Finally, in Section 7 we discuss some of the limitations
of our work, while Section 8 concludes our work.

2. Network model and analysis setup

In this section we will briefly describe the data set and the affilia-
tion network model we consider in this paper.

2.1. Gowalla dataset

The dataset consists of 6,442,892 public check-in data performed
by 196,591 Gowalla users in 1,280,969 distinct places, during the pe-
riod between February 2009 and October 2010. Gowalla users also
participate in a friendship network with reciprocal relations, which
consists of 950,327 links. The public dataset [2] includes only an ID
for the spot of the check-in. We have further crawled the web in order
to obtain a mapping between this id and the actual locale (or “spot”
in the terminology of Gowalla'). Note here that since the acquisition
of Gowalla from Facebook, its public website is offline. However, we
were able to obtain a subset of the required information through the
Internet Archive Wayback Machine and Google Cache.

User’s home location: The dataset does not include explicit home
location information for the users. In order to infer the home loca-
tions of the users, which will be needed for part of our analysis, we
apply a density clustering algorithm (DBSCAN [9]) on the check-in
history of each user. The check-in points are then grouped into clus-
ters each of which is in general of different size. We select the dom-
inant cluster (say C;), i.e., the one that includes the majority of the
points, and we re-apply DBSCAN on C; to improve the estimation ac-
curacy. Finally, we pick again the dominant cluster (say C;;) and we
estimate the home location of the user as the centroid of the data
points (lat/lon) in Cy;.

2.2. Location affiliation network

Social relations can be formed due to a variety of reasons. For in-
stance, it has been observed that people tend to relate to others with
similar characteristics/interests (homophily) [12]. When we refer to
immutable characteristics it is clear that the main reason behind ho-
mophily is the mechanism of selection [ 11]. For instance, people pre-
fer in general to socialize with people of the same nationality. How-
ever, when we consider mutable characteristics (e.g., political views)
it is not clear whether selection or social influence [10] leads to ho-
mophily. With social influence, friendships are first created due to a
number of plausible reasons - possibly unrelated with the character-
istic under examination. Then people influence each other and be-
come similar.

Based on the above, link creation is affected by contextual factors
related to the similarity between the users. This similarity can refer to
characteristics, activities, or behaviors. However, the representation
of a social network as a flat affinity graph is not capable of captur-
ing these surrounding contexts. Affiliation networks integrate “focal

T We will use the terms locale, place, venue, spot and affiliation interchangeably.

points” (foci) of social interactions with the pure social graph [18].
An affiliation network is essentially a bipartite graph with two sets of
nodes, Sand F. S is the set of nodes that represents the members/users
of the network, while F represents the activities (affiliations or foci)
into which users engage. An edge {(s, f): s € S A f € F} exists, iff s is
participating in focus f. Two users u and v are said to be affiliated if
they participate in the same activity f. Hence, the affiliation network
becomes the layer on which the actual social network is created. As
Watts states, “without any affiliations, the chance that two people
will be connected is negligible” [26].

If we further connect members of S based on their social relations,
we obtain a socio-affiliation network (see Fig. 3). Using this structure
we can analyze the co-evolution of both the social and the affilia-
tion networks. A new friendship might be created due to a common
friend (triadic closure), or due to a common affiliation (focal clo-
sure). Furthermore, a new affiliation can be created due to a friend
already affiliated with it (membership closure). Focal closure is an
artifact of the selection process, while membership closure is a type
of social influence. Based on the above, LBSNs that we consider in this
work, can be modeled as a social-affiliation network where the set F
consists of the locations/places that people in S can check-in. An affil-
iation edge is created as long as a user has checked-in to the specific
spot. For instance, in Fig. 3, Bob has checked-into the “School of Infor-
mation Sciences” and hence there is an affiliation edge that connects
him with the corresponding focus. We refer to this network structure
as socio-spatial affiliation network.

The socio-affiliation network as described above is a static net-
work structure. In other words, it does not encode any information
with regards to temporal information. Temporal information can fur-
ther enable the study of fine-grained spatio-temporal behavior, by
examining for instance the co-locations (in space and time) of users.
While, in our dataset every check-in is timestamped, we choose to
ignore this parameter in our analysis. The main reason for this is
the fact the check-in time itself is not enough to accurately estimate
the existence and duration of a co-location across time and space.
This would require a check-out time as well. As we will discuss in
more detail in Section 6 in more detail, there exist studies that uti-
lize fine-grained temporal information (e.g., through cellular network
data [25]). Our work is complementary to these studies. In particular,
even if we do not know whether two friends’ affiliations were cre-
ated at the same time or with a time lag, their common affiliation is
an indicator of a possible relation, and hence a socio-spatial tie. In
this case the number of common affiliations might not be a strong
predictor (as it has been shown to be the case when considering co-
locations [5]), but as we will show there are other metrics computed
on these common affiliations that are extremely informative.

Using the terminology introduced to restate our main objective,
we seek to identify patterns/correlations in the socio-affiliation net-
work that can reveal ties between the pure social and pure affilia-
tion network. Note again that when we have a static snapshot of a
network, we do not know whether an affiliation or a friendship was
created first. However, to reiterate, the actual underlying mechanism
that caused the closure between two users and a group is irrelevant
and what matters is the existence of a triangle that connects users
and locales.

2.3. Definitions

In this section we summarize the terminology/definitions used
through the rest of the paper. In particular:

o Location or Affiliation or Foci refers to specific venues that ap-
pear in the Gowalla dataset.

o Social edge refers to a connection between two Gowalla users
(i.e., represents declared, two-way, friendships between the
users).
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Table 1
Notations used.
Le Set of venues that user c has visited/checked-in
s(u, v) Similarity measure between users u and v
Py(u) Fraction of check-ins in affiliation I contributed by user u
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Fig. 4. Node degree distribution.

o Affiliation edge or User-Affiliation link refers to a connection
between a Gowalla user and an affiliation node (i.e., represents
check-ins in the system).

o Degree or Social degree of a Gowalla user refers to the number of
(social) edges that this user has.

» Affiliation degree of a location refers to the number of (affiliation)
edges that the location has.

Finally, Table 1 provides a summary of the notations that will be
used through the paper.

3. Social network analysis

In this section, we will briefly present our analysis of the social
(friendship) graph of Gowalla. There exist similar efforts in the lit-
erature for other online social networks and hence this is not the
main focus of our study. However, we are presenting these results for
completeness.

Degree distribution: First, we examine the degree distribution of
the network. In particular, we compute the empirical probability den-
sity function of a user’s degree (Fig. 4). As we can observe, the degree
distribution of Gowalla users exhibits a power law tail. This has been
found to be true for other social networks as well [17], and implies
that the majority of the users have very few friends, while very few
users have many friends. Formally, the probability of a node u having
a degree of k obeys the following rule:

Pr{deg, = k} kl“ (1)

We have also calculated the Maximum Likelihood Estimator for
the power law exponent at the tail of the distribution. In particular,
we have o = 2.1933, while the statistical error of the estimation is
o = 0.0057. In Fig. 4 we have plotted the estimated degree distribu-
tion on top of the empirical PDF. Note that the fit is much better at
the tail of the distribution as it is true for the vast majority of social
networks. The average node degree is also computed to be 9.66.

Local clustering coefficient: Local clustering coefficient (cc for
short) is tightly related to the notion of triadic closure. In particular,
the (local) clustering coefficient of Bob is an indicator of how many
triangles he participates in. Given that the clustering coefficient of
Bob is the ratio between the pair of his friends that are friends with
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Fig. 6. Average neighbor degree.

each other, over all the possible pairs between them, it is useful to be
presented as a function of the node degree. Fig. 5 presents the (aver-
age) clustering coefficient of a user with respect to his degree. As we
can see, Gowalla users in general exhibit high coefficients, with the
average clustering coefficient being equal to 0.237. This means that
on average there is a 23.7% probability that two randomly selected
friends of Bob will also be friends. This number is significantly higher
from the expected 0.0491 clustering coefficient in a random network
with the same degree distribution as Gowalla. The latter is computed
using the random configuration model and is given by [17]

() - ]’

1
- 2
CRRNTEE (2)

Crand =

This transitivity, in conjunction with the small average path
length, are strong indications that the social component of Gowalla
is a small world network.

Average neighbor degree: The average neighbor degree d(k) is a
summary statistic of the joint degree distribution. It is simply the av-
erage neighbor degree of the (average) k-degree node. Fig. 6 shows
d(k). As we can see there is no preference of users to connect to peers
with dissimilar or similar degrees. This can be also captured from the
assortativity coefficient of the graph which is close to 0 (—0.029). The
slight negative value indicates a very small level of disassortativity;
there are slightly more links connecting nodes of dissimilar degrees.
This can be partially attributed to the actual structure of the network.
In particular, there are a few only nodes with high degrees and hence
there is a limited number of possible edges between high degree
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Table 2

Quantilies of similarity for the different classes of user pairs.
- 80% 85% 90% 95% 99%
Friends 0.0192  0.0270  0.039 0.0636 0.16
Near non-friends 0 0.006 0.0115  0.02 0.04

nodes. Hence, the rest of the edges of these hub-vertices need to con-
nect low and high degree nodes, leading to a slight disassortativity.

4. The richness of location information

In this section we will analyze the structure of the spatial compo-
nent of the LBSN. Our goal is to identify existing correlations, if any,
between location information or spatial behavior (represented by the
affiliations or checkins at various venues) and the social structure of
the network. We are mainly interested in both direct and indirect in-
formation derived from location history. For instance, the number of
common venues visited by users belongs to the first category. How-
ever, information related to the nature of the venue is not directly
observable from the trails, but it can be inferred.

Location-based user similarity: As previously mentioned, ho-
mophily is a phenomenon that is very often observed in social net-
works. For instance, empirical studies have shown that teenagers
tend to create friendships with other teenagers with similar scholas-
tic performance and delinquent behavior (e.g., drug use) [11]. In an-
other study, Christakis and Fowler [3], a social network consisting of
approximately 12,000 people, found that social relationships exhibit
signs of homophily with regards to the obesity level. Regardless, of
the reasons behind homophily, awareness of its existence can help
towards revealing possible social links by observations of people’s
characteristics and/or behaviors and vice versa. In what follows, we
take a first step towards examining homophily related to the loca-
tions visited by people. Our analysis indicates that there are signs of
homophily with regards to the spatial behavior of the users. How-
ever, we would like to particularly emphasize that we do not claim to
have completely answered this question. Identifying homophily in a
social network is an extremely challenging task, which would require
the study of longitudinal data, possibly from different networks, on
a much larger scale. We hope though, that our work will encourage
further research on this topic, which becomes increasingly important
nowadays more than ever, with the prevalence of mobile devices with
positioning capabilities and the availability of huge volumes of spatial
data.

Let us define L, to be the set of venues that user ¢ has checked-in.
Then we define the similarity s(u, v) between u and v (who have each
visited at least one venue) as the following ratio:

|Ly MLy
|Ly ULy

The numerator is the number of common places visited by the two
users, while the denominator is the number of places visited by at
least one of them. The above ratio is the Jaccard similarity coefficient.
We have calculated this ratio for pairs of users that are friends and
pairs of users that are not friends. We have also further distinguished
the latter pairs (of non-friends) as being in geographic proximity or
not, based on their “home” locations. We have set up a threshold of
40 miles for defining pairs that are “nearby” or “distant”.

Fig. 7 presents the cumulative distribution function (CDF) for
s(u, v) for pairs of friends and nearby pairs of non-friends. Clearly,
friends have the highest similarity scores as compared to non-
friends pairs even if the latter live within 40 miles from each other.
Table 2 presents the quantiles of the corresponding empirical data. As
we can see, 10% of the nearby friends have coefficients approximately
4%, which means that 4% of the places they have visited are common.

s(u,v) =

(3)
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Fig. 7. Empirical CDF for user similarity.
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Fig. 8. Similarity tends to decrease with an increase in home distance.

This number might seem small, but it is actually fairly large if we
think of the number of places we visit every day. The importance of
this value becomes even more clear when we see the similarity index
for nearby pairs of non-friends, which is practically 0 even though
they are in geographic proximity! Note here that, in our friends pairs
we have not distinguished them with regards to nearby or distant
home locations. Even distant friends exhibit similarity higher than
nearby pairs of users that are not friends. This is an important result
since it implies evidence of homophily in the network with regards
to the places visited. Users that are friends will visit the same spots,
while users that are not friends, even if they are in proximity (e.g., in
the same city) are unlikely to visit the same places.

Next, Fig. 8 shows the similarity values for friends as a function
of the distance between home locations. Each point on the figure
corresponds to a pair of friends. As we can see, there is a decreas-
ing trend of the similarity value with distance between the friends’
home location. This might have been expected, since people that live
far away, even if friends, have less opportunities to “follow” the trails
of each others. However, even for large distances (e.g., 1000 miles)
the similarity is still non-negligible, since most possibly friends visit
each other occasionally. Fig. 9 presents the same information for pairs
of nearby non-friends. As we can see the similarity values are fairly
stable over the span of the 40 miles considered, with a very slight de-
creasing trend. These values can be possibly attributed to common af-
filiations that users create because they live nearby (e.g., transporta-
tion hubs etc.) and not because of actual similarity in interests. It is
interesting to note that friends living 2000 miles apart exhibit the
same levels of similarity with non-friends that are within 40 miles.

Note here that in the definition of users similarity (Eq. 3), we have
not considered any temporal information. We consider all common
venues that have been visited by two users, regardless of whether
they visited them at the same time or not. The reason for this, is that
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Fig. 10. Similarity as a function of the users distinct affiliations.

people can be similar in ways that do not dictate co-location. For in-
stance, if the selection process is responsible for the high similarity
values, people with the same affiliations (captured from the places
they visit) will tend to create friendships. On the other hand, if social
influence is responsible for the high similarity coefficient, people will
tend to visit places that they have heard from their friends (however,
not necessarily with them). Hence, the Jaccard similarity index can be
quite helpful in bonding social and location information, even with-
out the fine grained temporal information used in previous works and
discussed in Section 6. The importance of this finding is that it indi-
cates that the characteristics of location information can be substan-
tially different between friends and non-friends. We would also like
to note here that there exist pairs of non-friends with high similarity
values as well. For instance, there are 974,749 pairs (~ 1%) of non-
friends that live within 40 miles, that have similarity values greater
than 0.04! However, to reiterate, this high values for s(u, v) can in-
clude “trivial” similarities, due to the fact that people need to visit
some spots regardless of their actual preferences (e.g., airports, trans-
portation hubs, etc.). In other words, all venues are treated equally in
the definition of Eq. 3. Later, we will examine features/metrics of the
spots visited from people that will be able to quantify how accidental
a common affiliation can be considered.

Figs. 10 and 11 present the similarity of two friends as a function
of the number of their distinct affiliations and their check-in counts
respectively. Even though our data consist of a static snapshot, this
figure can be seen as an “emulation” of the temporal evolution of
the similarity value of two nearby friends. Higher levels of activity
represent later points in time, when users have been using the sys-
tem for longer periods and thus, have more affiliations and check-ins.
Further, the similarity scores take their maximum values for pairs
of users with low levels of activity (i.e., small number of affiliations
and check-ins). Based on the above “temporal emulation” this corre-
sponds to early stages of system adoption. This behavior can be at-
tributed to the fact that the denominator of Eq. 3 increases faster as
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Fig. 11. Similarity as a function of the users checkins.
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compared to the enumerator. One possible reason that can cause this
is as follows. Consider Bob and his friend Alice. Bob will hear from
Alice about a few places and he will tend to visit some of them, in-
creasing the numerator of s(Bob, Alice). However, he will hear about
other spots from his friends Jack and Jill (who might have no relation
with Alice). Hence, he might be tempted to visit some of these spots
as well, increasing the denominator faster and overall reducing the
Jaccard index as his (and Alice’s) level of activity increases. Therefore,
even friends might exhibit low(er) similarity scores after some time,
and for this reason the absolute number of common foci might be a
more robust metric over longer time spans. Later in Section 5 we will
use |L, N Ly| as the feature of our baseline social link prediction. The
similarity of a pair of users, balances the above quantity, by consider-
ing the activity of both users. Such a balancing, in essence, captures
the diversity of the two users; the larger the denominator, the more
places they visit (more diverse user pair). As we will see in our eval-
uations, this balancing can provide better connection between social
and spatial information. We note here that similarity values of non-
friends are small regardless their level of activity.

Focal closure: In an affiliation network, the foci are also nodes of
the network. Hence, we can define metrics such as the degree dis-
tribution and the clustering coefficient for venues. The degree of an
affiliation-node [ (i.e., a venue) is the number of distinct users that
have visited it. In other words, it is the number of user-affiliation links
whose one endpoint is . Fig. 12 shows the affiliation degree distribu-
tion, which as we can see exhibits a power law tail as well, with ex-
ponent o = 2.5953 (o0 = 0.0067). There are a few places with many
visitors, while there are many venues with few visitors. The average
focus degree is 3.11. Table 3 has the top and bottom 5 venues with
regards to their degree. Note here that the bottom 5 venues were
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Top and bottom 5 venues based on their degree.

Top-5 spots Bottom-5 spots
SFO airport “Room”
Stockholm Central Station Farmer’s Market
AUS airport Gas station
DFW airport Apparel store
LAX airport Convenient store
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Fig. 13. No clear correlation exists between # of common foci and friendship proba-
bility.

randomly selected since there are many venues (almost half) with
degree of 1. The top spots are all major transportation hubs (air-
ports or train stations), while the less popular places are more lo-
calized/personal venues (e.g., “room”, which most probably refers to
a home, office etc.). The top degree spots are expected to increase the
number of common affiliations for many users; the higher the degree
of a locale more user pairs will exhibit an increased number of com-
mon foci. However, as one can imagine, common affiliations such as a
big airport happen rather randomly than due to actual similarity. On
the contrary, if Bob and Jack have a local food joint as common affili-
ation it is highly possible that this is due to their similarity (e.g., they
have the same gastronomical preferences).

If our above claim does not hold and all affiliations are equal one
should expect that the more common foci two people have, the more
probable it is for them to be friends. However, our data indicate that
this is not the case. Fig. 13 presents the friendship probability be-
tween a pair of users with respect to the number of common venues
visited by them. As we can see there is no clear connection between
the two quantities. For small values of common venues there seems
to be a linear relationship, but as the number of common affiliations
increases, there is little (if any) correlation. In particular, for a num-
ber of common venues smaller than 100, the correlation coefficient
is fairly high (0.61). However, for larger number of common venues,
this coefficients drops to just 0.2. This further supports our previous
claim, that the actual affiliation, rather than just the number of the
common affiliations, plays an important role in predicting the social
relations.

In order to further examine the role of the type of a venue on the
social relationships we examine the clustering coefficient of a focus.
Let us consider venue [ which has a degree of k > 1. All the possible
social links between the users affiliated with [ are k(k — 1) /2. If n of
them exist then the clustering coefficient, CC((l) is defined as

n

“O=t@nn

(4)

This clustering coefficient captures the nature of the place in many
ways. It expresses how tightly connected are the people that visit this
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Fig. 14. Venues with lower degree tend to have lower clustering coefficient as well.
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Fig. 15. Common venues of friends have larger clustering coefficient as compared to
non-friends.
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Fig. 16. Positive correlation between avg cc of common venues and friendship proba-
bility.

venue. The higher the cc is, the more connected are the people affili-
ated with it.

Fig. 14 shows the clustering coefficient as a function of the venue’s
degree. As we can see venues with lower degree have a higher aver-
age clustering coefficient. This is a sign that venues with lower degree
might venture socialization. Delving more into this issue we present
in Fig. 15 the CDF of the average clustering coefficient of the com-
mon venues for user pairs that are friends and those who are not.
For friends, the average clustering coefficient of their common affil-
iations is much higher (mean value is 0.068) as compared to those
of non friends (mean value is 0.019). Finally, Fig. 16 plots the proba-
bility of friendship between two users as a function of the average
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Fig. 17. The majority of the venus exhibit low entropy.

clustering coefficient of their common spots. As we see there is a
clear positive correlation between the two quantities, which is also
revealed from the high correlation coefficient between the two vari-
ables (calculated equal to 0.89). The higher the average cc of the com-
mon foci, the larger the friendship probability.

Especially, the last result clearly indicates that the actual nature of
the venue plays an important role to whether affiliated users are re-
lated through a friendship or not. On the one hand, places with high
clustering coefficient, attract sets of people that are more tightly con-
nected in the social plane. In addition these sets are usually small, if
we recall the connection between affiliation cc and affiliation degree.
On the other hand, spots with low clustering coefficient attract many
people that are not socially related, just because these places have
special features (e.g., large hub-airports, train stations, large depart-
ment store etc.). One could arguably compute the average cc of the
common affiliation of two people and find the probability of friend-
ship through a simple linear regression model (Fig. 16).

However, there is a problem with the above approach. In order
to calculate the average cc of a venue, the social relationships need
to be known! Hence, the cc does not provide an independent socio-
spatial information linkage. Therefore, we need to find a feature of
the affiliations, that (i) captures the nature of the venue, (ii) does not
require the knowledge social relationships in order to be computed
and (iii) is correlated with the friendship probability. This feature is
the affiliation’s entropy as we will describe in what follows.

The entropy of a place: Cranshaw et al. [6] were the first to intro-
duce the notion of entropy of a location as a measure of its diversity.
If Pj(u) is the fraction of check-ins in affiliation I contributed by user
u, then the entropy of [ is given by

ey=— > RwlogP(u)) (5)

u:ueSAP (u)=0

From Eq. 5 we can see that when a place is visited by many peo-
ple in equal (and thus, small) proportions, its entropy will be high.
In other words, high entropy corresponds to places like airports that
exhibit large diversity. On the other hand, when the mass of Pj(u) is
concentrated only to a few people, the diversity in this location is
small and so is the entropy.

Fig. 17shows a histogram of the entropy values for all the venues in
our dataset. As we see most of the venues have small entropy values,
while there are some that exhibit high entropy values. It is interesting
to see that there is an increasing trend of the entropy of a place with
its degree (Fig. 18). Furthermore, the top-5 degree places are also the
top-5 entropy places (with different ranking) as it can be seen in the
red solid ellipse. A number of (the many) bottom-5 degree places are
still bottom-5 entropy places. However, if we notice more carefully in
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Fig. 18. The entropy of a spot increases with its degree.

Entropy of a venue

bt | ’ 1
0.2 0.4 0.6 0.8
Clustering coefficient of a venue

Fig. 19. Venues with higher clustering coefficient tend to have lower entropy.

the dashed, black ellipse in Fig. 18, some venues with the lowest de-
gree, do not exhibit the lowest entropy (although still smaller than 1).

Previously, we observed that there is a positive correlation be-
tween the average clustering coefficient of the common venues of
two users and their friendship probability. To examine whether en-
tropy is a good candidate for a similar correlation, we first examine its
relation to cc. Fig. 19 shows the entropy of a venue as a function of its
clustering coefficient. As we can see, the entropy tends to be lower as
the clustering coefficient increases. High entropy translates to more
random co-visits to the venue, and therefore a lower clustering coef-
ficient. Hence, there appears to be a negative relation between these
two measures (we expect a similar negative relation between the av-
erage entropy of common venues and friendship probability).

Since entropy appears to have similar characteristics with the af-
filiation clustering coefficient we want to further examine its ability
to bond affiliation and social information. In Fig. 13 we identified that
the number of common affiliations is not very useful in terms of in-
ferring the existing social relations especially when the number of
common affiliations is growing (e.g., > 100). We seek to further ex-
amine if we can obtain any additional knowledge by utilizing the in-
formation about the entropy. Using the same data, we consider pairs
of users that have the same number of common foci. We divide them
into two categories, friends and non-friends. For each one of these
categories we compute the average entropy of the common spots vis-
ited and we plot the results in Fig. 20. It is clear now that the average
entropy of the common affiliations for the case of pairs of friends is
indeed lower compared to the case of non-friends and appears to be
a good candidate for bridging the social and spatial components of an
LBSN.
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Fig. 21. Negative correlation between the avg entropy of common foci and friendship
probability.

Next, we compute the average friendship probability between two
users as a function of the average entropy of their common affilia-
tions. The results presented in Fig. 21 are promising. There appears
to be a significant (negative) correlation between these two variables
(correlation coefficient is equal to —0.7). Their relation is not linear
as it was the case for the average cc of the common venues and the
friendship probability (Fig. 16). Using least square we have fitted a
power law with exponent o = —1.69. This last result, further sup-
ports our above argument that the entropy of a place can be used to
tie the two information planes and drive applications such as reveal-
ing social affinities from location histories. We will further examine
this in the following section.

5. Revealing friendships

In the previous section, we have examined the user similarity and
various venue-related metrics and their correlation with the users’
social relations. To summarize, the feature that appears to be able to
capture the best the interplay between the social and spatial com-
ponents of an LBSN is the cc. However, as explained in Section 4, its
strong correlation might be illusive, since its calculation explicitly uti-
lizes the social relationships. We further found that the entropy of the
common places visited by two users appears to be correlated with
their probability of friendship as well and that friends tend to have
higher similarity scores. Our analysis therefore implies that similar
metrics can be used to make an educated judgment with regards to
the social relationship between two randomly selected users whose
spatial behaviors are known in terms of the common venues and
their entropy. Alternatively, by utilizing a mix of social and partial
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Fig. 22. The predictive power of each considered feature using a simple, threshold-
based, unsupervised learning algorithm.

spatial/location information it might be possible to estimate future
visits of users. The list of possible applications realized through the
bonds between social and spatial information in an LBSN is long and
not the focus of our study.

In this section, we want to examine the importance of the metrics
we considered for estimating the existing users’ affinity relations. In
other words, considering the graph in Fig. 3 and assuming we are only
aware of the solid edges, can we estimate the dashed ones? To reit-
erate, our goal is not to be able to provide a full fledged classification
algorithm on the possible affinities/ties of the social graph; we only
want to examine the strength of the explored metrics in estimating
social relations and showcase some aspects of the importance of our
analysis.

We first consider a simple unsupervised, threshold-based, infer-
ence model. In particular, for every pair of users, we compute the fol-
lowing metrics, (i) number of common venues (our baseline), (ii) user
similarity, (iii) average/min/max entropy of common venues, and (iv)
average/min/max cc of common venues. Then, based on a threshold
comparison we classify the pair as being friends or not and we ob-
tain the (fitted) ROC curves for the positive instances presented in
Fig. 22. We focus on the positive (friends) instances, since there is a
strong unbalanced distribution of the friends/non-friends instances
in the network (only 3% of all possible social edges exist). Hence even
a simple classifier that states every pair as non-friends, would exhibit
avery good overall performance (i.e., 97% accuracy), but it would per-
form very poorly in the classification of the instances of friends. The
table on the left also provides the area under the curve (AUC); the
larger the AUC, the better is the quality we have in our assessments
(lower false positives and higher true positives on average). As we ex-
pected, the average and min cc provide the best performance, while
the entropy metrics together with the user similarity come right after,
performing better than the baseline of simply the number of common
venues. Establishments that are less diverse in terms of people that
socialize there tend to be better indicators of bonds, and this infor-
mation can be used to accurately infer social relations. Furthermore,
balancing the number of common venues between two users with
their activity improves the prediction, since it accounts for the user
pair’s diversity as explained earlier.

We further examine two unsupervised clustering algorithm, that
operates on the same set of features. First, we use a simple k-means
algorithm for clustering. In particular, applying k-means clustering on
each class (friends and non-friends) of our training set we compute
r prototypes for each class (r = 3 in our case). The prototypes are es-
sentially the centers of the clusters that k-means identified. Since in
our case we have 2 classes, we have in total 2 -r = 6 labeled proto-
types. In the test phase, we assign every test instance x to the class
of the closest prototype. We evaluate the performance of this simple
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Table 4
Performance of a simple k-means-based classifier.
s(u,v) Mine Maxe Avg.e Mincc Maxcc Avgcc  #foci  F-measure  Precision  Recall
v v v v v v v v 0.36 0.48 0.29
v X X X X X X X 0.35 0.51 0.27
X v X X X X X X 0.56 0.52 0.6
X X v X X X X X 0.52 0.56 049
X X X v X X X X 0.54 0.51 0.57
X X X X v X X X 0.32 0.55 0.22
X X X X X v X X 0.47 0.69 0.35
X X X X X X v X 0.45 0.70 0.33
X X X X X X X v 0.33 0.49 0.25
X v v v X X X X 0.53 0.51 0.57
X X X X v v v X 0.44 0.76 0.31
X X v X X v X X 0.51 0.54 0.49
v X v X X X X X 0.52 0.56 0.49
X X v X X X X v 0.31 0.34 0.28
Table 5
Performance of an svm classifier with linear kernel.
s(u,v) Mine Maxe Avg.e Mincc Maxcc Avgcc  #foci  F-measure  Precision  Recall
v v v v v v v v 0.68 0.90 0.54
v X X X X X X X 0.47 0.75 0.34
X v X X X X X X 0.67 0.70 0.65
X X ' X X X X X 0.56 0.66 0.49
X X X v X X X X 0.65 0.72 0.59
X X X X v X X X 0.39 0.84 0.26
X X X X X v X X 0.65 0.90 0.50
X X X X X X v X 0.65 0.88 0.51
X X X X X X X v 0.23 0.69 0.14
X v v v X X X X 0.67 0.71 0.64
X X X X v v v X 0.66 0.89 0.52
X X v X X v X X 0.65 0.90 0.51
v X v X X X X X 0.63 0.78 0.53
X X v X X X X v 0.62 0.71 0.55
supervised classifier through precision, recall and f-measure: functionalities such as social relationship inference, location predic-
.. TP tion etc. While our study does not aim into providing a state-of-the-
precision = TP+ FP (6) art social link classifier, we showed that even with simple schemes
one can achieve very good performance. More advanced algorithms
recall — TP 7) can further boost the performance, but it is beyond the scope of our
TP+ FN work.
f— measure =2 . precision - recall (8) 6. Related work

precision + recall

where TP stands for true positive, FP stands for false positive and FN
stands for false negative. Briefly, precision is the fraction of friend-
ship predictions that are correct, while recall is the fraction of actual
friendships that the algorithm was able to identify. The f~measure
is the harmonic mean of precision and recall and hence, takes high
values when both are high. If one of the two is low, the f~-measure
will tend to be low as well. Therefore, the f~measure can be thought
as evaluating the overall performance of the classifier. Using 10-fold
cross validation we obtain the results presented in Table 4. Each row
corresponds to a different set of features used for the classification. As
we can see again, when we include in the features attributes related
with the entropy or the cc of the common affiliations the correspond-
ing f-measure is higher. For example, by using the average entropy of
the common venues visited by two people we are able to recover 49%
of the actual friendships, while from all our friendship predictions,
56% of them are correct (f~-measure=0.54). When using only the num-
ber of common affiliations we obtain a value for the f~-measure of only
0.33. We have further examined an svm classifier with linear kernel
on exactly the same combinations of features (see Table 5). As one
might have expected the performance is further improved compared
to the simple k-means classifier.

To summarize, our results clearly indicate that metrics such as the
entropy and the cc of a venue can help towards the improvement of

The current work extends our previous study [22]. Compared to
[22] we have improved the estimation of the home location of the
users in our dataset in finer grain granularity and we have updated
the relevant results. We have also improved the social network analy-
sis (utilizing MLE for estimating the power exponent and calculating
degree assortativity). Finally, we have delved into the details of the
supervised classification algorithm that utilizes k-means, while we
have also added new performance results of an SVM classifier with a
linear kernel.

Furthermore, there is a set of studies that examine the structural
properties of existing LBSNs. In this context, structure refers not only
to the properties of the social network graph (as in OSNs) but also to
the location component (e.g., physical distance to friends, time and
type of check-ins etc.). For instance, Cheng et al. [1] use data from
Foursquare to examine (i) the spatio-temporal properties of users’
check-ins, as well as (ii) their mobility patterns. Similarly, Noulas et.
al. [20] study the spatio-temporal properties of users activities as
captured through the inter-checkin times and the inter-checkin dis-
tances. They further identify universal features for human urban mo-
bility [19]. In alignment, Cho et al. [2] use cell phone location and
LBSN data to understand the laws dictating human mobility. Li and
Chen [13] analyze data from Brightkite and after providing the struc-
tural properties of the underlying social graph they try to identify
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correlations between different user’s profile features, activity up-
dates, and mobility patterns.

The majority of these studies deal explicitly either with the so-
cial part of the system or the location component. Scellato et al. [23]
try to use information from both components to identify the relation
between friendship and geographic distance using data from three
different LBSNs (Gowalla, Foursquare and Brightkite). They find that
the socio-spatial structure of these systems cannot be explained only
by geographic factors or only by social mechanisms. In addition, there
exist a few studies in the literature that examine and analyze the lo-
cation data present in the system with the goal of revealing undi-
rect, hidden information. Noulas et al. [21] obtain a static snapshop
of Foursquare in order to analyze the activity in different neighbor-
hoods of London and New York, while Ye et al. [27] exploit social and
spatial characteristics of LBSNs for location recommendation. None
of the aforementioned works however, study the relation between
the location trace of a user and his social relationships. They are all
mainly focused on identifying patterns either in the social or in the
spatial component of an LBSN.

Eagle et al. [7] [8], as well as Li et al. [14], have developed mea-
sures to quantify similarity of users based on their mobility. This sim-
ilarity can be later used to infer the social structure of the users. They
are focused on “co-location instances,” that is, situations where two
users are at the same place at the same time. However, given the
fact that co-locations between people can happen accidentally, es-
pecially in urban areas [16], simply accounting for the number of co-
existences can be expected to not be very accurate. Recently, Wang
et al. [25] using mobile phone data have identified a positive cor-
relation between mobile homophily, network proximity and social
tie strength. Furthermore, Crandall et al. [5], using data from Flickr
developed a simple model for quantifying the probability of friend-
ship between two users given the number of their co-locations. Cran-
shaw et al. [6] introduce the notion of a location’s “entropy”, which
captures its diversity with regards to the people visiting it. Using a
small scale dataset of location trajectories obtained from 397 users of
Locaccino the authors infer co-locations between users. They exam-
ine the relation between features such as the intensity and duration
of co-locations between people, the diversity of these co-locations,
and the users’ mobility regularities, with the social structure of these
users. The latter is obtained through their Facebook accounts. Scel-
lato et al. [24] took one step further and use location information in
order to improve friend recommendations. They are focused on the
temporal evolution of the social graph and they utilize a combination
of information drawn from both the social and location component
to improve friend recommendations. Finally, Zhang et al. 28] study
the mechanisms of homophily and social selection in the context of
socio-spatial affiliation networks.

To reiterate, our work is complementary to all the aforementioned
studies. First, as it might be evident from the discussion above, the re-
lated studies deal with slightly different problems (e.g., friend and/or
location recommendations, analysis of structural properties of LB-
SNs etc.). More importantly though, the studies that are closer to
our work (i.e., [5,25]) consider also fine-grained temporal informa-
tion. For instance, the authors in [5] show that the number of co-
locations are extremely informative of the social relation of people,
while Cranshaw et al. [6] compute features such as the duration of a
co-location. Wang et al. [25] have a very detailed mobility dataset as
well (Call Detail Records) from which they can accurately and with
high confidence extract the co-locations in time. On the contrary, in
our study, we consider only spatial information, through affiliations
of users with specific venues. We do not regard the temporal dimen-
sion, since in many cases co-occurrence in time might be hard to es-
tablish with certainty as explained in Section 2. Then we delve into
the details of these common affiliations/locations. We examine many
different (network) metrics (e.g., number, average entropy, average
clustering coefficient etc. of common affiliations) and the additional

information each one of these can provide with regards to the un-
derlying social structure. We further believe that the fact that some
of the results reported in these studies appear to also hold with our
different dataset supports the conclusion that there are some strong
underlying bonds between mobility and social connections, hence,
complementing these results.

7. Discussion and limitations

While our analysis and models have been based on a dataset ob-
tained from Gowalla, we believe that the intuitive interpretation of
our results make them generic enough. Nevertheless, we acknowl-
edge that there are specific steps in our analysis that can lead to in-
accuracies. For example, given the absence of ground truth for the
home location of a user we iteratively apply DBSCAN on the check-
ins of each user. The iterative process aims at reducing the estima-
tion error. However, the method will fail if users choose to check-in
mainly during trips (e.g., as a means of keeping a travel diary). Apart
from such cases, which we expect to be a small portion of the user
base, our analysis is based on a coarse-grain view of the distance be-
tween two users - e.g., at the city level. Therefore, even if there will
definitely be errors during this estimation process, we do not expect
them to significantly alter our conclusions/models.

Furthermore, during the computation of the users similarity s(u,
v) we did not consider the temporal dynamics. In particular, one can
argue that if both users u and v visited location [ but with a large
time-gap, this should not contribute equally to their estimated simi-
larity as compared to check-ins that happened with a small time-gap
(e.g., within the same day). While, this is in principle true, applying
it to our dataset might be problematic and this is the major reason
we chose not to consider the temporal dimension. In particular, given
the voluntary nature of check-ins, users very often do not check-in to
venues every time they visit the location [4,15]. This can potentially
lead to a significant underestimation of the similarity when incorpo-
rating time in the computation of s(u, v) and consequently also affect
our models and conclusions.

8. Conclusions

In this paper we model an LBSN as a socio-spatial affiliation net-
work and by analyzing data from a commercial network we identify
bonds between the social and spatial information plane of the system.
We find that friends exhibit in general much larger similarity with
regards to the percentage of common venues visited, as compared
to non-friends. However, considering only the number of common
venues between two users, is not very helpful for strongly tying the
two components of the network. Even though user similarity can pro-
vide a better bonding, the diversity of these common venues with re-
gards to people visiting them is more informative and connect these
two components better. This is also supported by the evaluations and
results from simple, social link classifiers.
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