
Computer Communications 73 (2016) 251–262

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Socio-spatial affiliation networks

Konstantinos Pelechrinis∗, Prashant Krishnamurthy

University of Pittsburgh, Pittsburgh, PA 15260, USA

a r t i c l e i n f o

Article history:

Available online 11 June 2015

Keywords:

Location-based social networks

Affiliation networks

Friendship inference

a b s t r a c t

Location-based social networks (LBSNs) have recently attracted a lot of attention due to the number of novel

services they can offer. Prior work on analysis of LBSNs has mainly focused on the social part of these systems.

Even though it is important to know how different the structure of the social graph of an LBSN is as compared

to the friendship-based social networks (SNs), it raises the interesting question of what kinds of linkages exist

between locations and friendships. The main problem we are investigating is to identify such connections

between the social and the spatial planes of an LBSN. In particular, in this paper we focus on answering the

following general question “What are the bonds between the social and spatial information in an LBSN and

what are the metrics that can reveal them?” In order to tackle this problem, we employ the idea of affiliation

networks. Analyzing a dataset from a specific LBSN (Gowalla), we make two main interesting observations; (i)

the social network exhibits signs of homophily with regards to the “places/venues” visited by the users, and

(ii) the “nature” of the visited venues that are common to users is powerful and informative in revealing the

social/spatial linkages. We further show that the “entropy” of a venue can be used to better connect spatial

information with the existing social relations. The entropy records the diversity of a venue and requires only

location history of users (it does not need temporal history). Finally, we provide a simple application of our

findings for predicting existing friendship relations based on users’ historic spatial information. We show

that even with simple unsupervised or supervised learning models we can achieve significant improvement

in prediction when we consider features that capture the “nature” of the venue as compared to the case

where only apparent properties of the location history are used (e.g., number of common visits).

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

During the last few years, boosted by advancements in mobile

andheld devices (e.g., smartphones), a new class of digital social net-

orks, namely location-based social networks (LBSNs), has emerged.

t is now possible to bring into the equation of online social networks

OSNs) another dimension, that of location, due to the significantly

mproved ability of mobile devices to accurately estimate their posi-

ion or location. The underlying communities not only have social ties

e.g., friendship) and/or interests in common (e.g., sports), but they

re also “connected” with regards to their geographic locations (of-

en mapped into “venues” as described later). In other words, LBSNs

ond the online and physical social ties through location information.

This bond can enable a number of novel, convenient, and appeal-

ng services making LBSNs popular. People can now track their chil-

ren’s locations. By tracking friends, applications such as better co-

rdination for scheduled meetings can be enabled. Applications can

lso include exploring new places through a list of venues that are

ithin the proximity of the current location. This list can now be
∗ Corresponding author. Tel.: +1 4126249417.
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ccompanied by tips and recommendations from people/friends that

ave visited these places. Even simply the number of people that

ave visited a locale in the past or are present at the moment might

e helpful and informative. Other systems can also offer Groupon-

ike deals, providing additional monetary incentives for someone to

dopt their usage. A recent study has also shown that “gaming” as-

ects of LBSNs form an important motivation for people to start using

hem [15].

With LBSNs becoming prevalent, it becomes critical to compre-

end and discriminate the types of knowledge we can obtain from

he bond between locations and social ties. For example, what corre-

ations exist between users’ spatial trails and their social behaviors as

xpressed through their friendships and do the spatial trails provide

ny information about social ties? Our primary objective in this work

s to identify the existing correlations and the metrics that can best

apture them. Using the knowledge we obtain from our study we fur-

her examine whether we can use these correlations and metrics to infer

ocial information only from users’ locations. Going forward this can

timulate our ability to deconstruct the interplay between the social

nd the spatial information plane and apply it to new applications.

Interactions in an LBSN: An LBSN has two distinct components; a

ocial network and a location log for each member. The social part of

http://dx.doi.org/10.1016/j.comcom.2015.06.002
http://www.ScienceDirect.com
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Fig. 1. Trajectory-based LBSN.

Fig. 2. Check-in based LBSN.

Fig. 3. LBSN as affiliation network.
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the system resembles any other existing online social network, where

friendships are declared and people can interact with their friends.

What differentiates LBSNs from other OSNs are the type of interac-

tions that are feasible between the members of the network. The

main feature of this interaction is location sharing. While the “visible”

interactions in a traditional OSN are restricted to the virtual world,

we can observe interactions within an LBSN in the physical world as

well. This is especially important for our study since it can shed light

on patterns that are otherwise difficult to identify.

Location sharing can be realized either through continuous track-

ing, in the form of a temporal latitude/longitude trajectory (e.g., Loopt

- see Fig. 1) or via “check-ins”, where users announce their presence

in a place or venue at their convenience (e.g., Gowalla, Foursquare etc.

- see Fig. 2). Clearly, the second approach, where location is tagged

with semantic information as compared to a flat geographic trajec-

tory, offers a richer set of information, but with coarse location gran-

ularity. All major LBSNs follow this latter approach and consequently,

in this work we consider systems in which spatial information is cre-

ated via check-ins. We note here that using “check-in” history can be

challenging since fine grained temporal information is absent (e.g.,

users do not “check-out” etc.).

Hence, we now have two types of information – the social ties

between members and check-ins of members of the LBSN. To ana-

lyze socio-spatial interactions within an LBSN, we model it as an “af-

filiation network”, where the members are nodes of one type and

venues/places are nodes of the second type (see Fig. 3). Using a
ataset from Gowalla [2], we analyze how the number and type of

sers’ common affiliations (as measured through the number of com-

on locales visited by them) are related to the affinities in the under-

ying social graph. The main findings of our study can be summarized

s follows:

• We identify clear signs of location homophily, that is, members

of the LBSN that are friends are more similar compared to those

that are non-friends. “Similarity” here refers to the percentage of

visited places that are common between two users (to be formally

defined later).
• While simply the number of common places visited by two users

does not provide rich social knowledge, the user similarity as well

as the “type” of their common venues is a very descriptive feature.

Using the affiliation network model we are able to define the clus-

ering coefficient (cc) of a venue, which can capture the nature of a

lace in a variety of ways to be elaborated on later. As we will see

ater, this cc has a strong correlation with the social relations in the

raph; exactly what we are looking for! However, its computation

tilizes knowledge from the friendship graph, resulting in the prob-

em of circular reasoning. Hence, we examine other metrics, and in

articular we show that the entropy of a venue is very informative

nd helpful for dealing with our problem.

Finally, we investigate the importance of the different features

e consider through simple unsupervised and supervised friendship

rediction models. In particular, we seek to infer the existing affin-

ty relations using only the users’ location history. Our evaluations

eveal that features that account for the type of a venue, can signifi-

antly improve the estimations as compared to features that consider

ll venues equal.

Scope of our study: We would like to emphasize that our work

s a study of the interplay between the social and spatial information

resent in an LBSN. Even though this connection can enable many

ew applications, such as location prediction, this study is not fo-

used on any specific one of them. Despite the fact that we examine

ome simple friendship inference models utilizing our findings, our

bjective in this study is not to provide a social affinity classifier but

o provide insights into the value of the location information present

n an LBSN and its ability towards predicting social ties. For instance,

he relation between spatial and social data can have significant
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mplications on users’ privacy. Privacy policies that avoid informa-

ion leakage from one component of the network to the other should

e designed and be in place. We believe that this work can stimulate

urther research and enhance existing – or even enable new – func-

ionalities within an LBSN.

The rest of the paper is organized as follows. Section 2 describes

ur affiliation network model for an LBSN and the dataset, while

ection 3 briefly presents the analysis of the social graph of Gowalla.

ur study on the relation between users’ location information and

heir social ties is presented in Section 4. Section 5 presents our

riendship inference model, while. Section 6 discusses work related

o our study. Finally, in Section 7 we discuss some of the limitations

f our work, while Section 8 concludes our work.

. Network model and analysis setup

In this section we will briefly describe the data set and the affilia-

ion network model we consider in this paper.

.1. Gowalla dataset

The dataset consists of 6,442,892 public check-in data performed

y 196,591 Gowalla users in 1,280,969 distinct places, during the pe-

iod between February 2009 and October 2010. Gowalla users also

articipate in a friendship network with reciprocal relations, which

onsists of 950,327 links. The public dataset [2] includes only an ID

or the spot of the check-in. We have further crawled the web in order

o obtain a mapping between this id and the actual locale (or “spot”

n the terminology of Gowalla1). Note here that since the acquisition

f Gowalla from Facebook, its public website is offline. However, we

ere able to obtain a subset of the required information through the

nternet Archive Wayback Machine and Google Cache.

User’s home location: The dataset does not include explicit home

ocation information for the users. In order to infer the home loca-

ions of the users, which will be needed for part of our analysis, we

pply a density clustering algorithm (DBSCAN [9]) on the check-in

istory of each user. The check-in points are then grouped into clus-

ers each of which is in general of different size. We select the dom-

nant cluster (say C1), i.e., the one that includes the majority of the

oints, and we re-apply DBSCAN on C1 to improve the estimation ac-

uracy. Finally, we pick again the dominant cluster (say C1,1) and we

stimate the home location of the user as the centroid of the data

oints (lat/lon) in C1,1.

.2. Location affiliation network

Social relations can be formed due to a variety of reasons. For in-

tance, it has been observed that people tend to relate to others with

imilar characteristics/interests (homophily) [12]. When we refer to

mmutable characteristics it is clear that the main reason behind ho-

ophily is the mechanism of selection [11]. For instance, people pre-

er in general to socialize with people of the same nationality. How-

ver, when we consider mutable characteristics (e.g., political views)

t is not clear whether selection or social influence [10] leads to ho-

ophily. With social influence, friendships are first created due to a

umber of plausible reasons - possibly unrelated with the character-

stic under examination. Then people influence each other and be-

ome similar.

Based on the above, link creation is affected by contextual factors

elated to the similarity between the users. This similarity can refer to

haracteristics, activities, or behaviors. However, the representation

f a social network as a flat affinity graph is not capable of captur-

ng these surrounding contexts. Affiliation networks integrate “focal
1 We will use the terms locale, place, venue, spot and affiliation interchangeably.
oints” (foci) of social interactions with the pure social graph [18].

n affiliation network is essentially a bipartite graph with two sets of

odes, S and F. S is the set of nodes that represents the members/users

f the network, while F represents the activities (affiliations or foci)

nto which users engage. An edge {(s, f ): s ∈ S ∧ f ∈ F} exists, iff s is

articipating in focus f. Two users u and v are said to be affiliated if

hey participate in the same activity f. Hence, the affiliation network

ecomes the layer on which the actual social network is created. As

atts states, “without any affiliations, the chance that two people

ill be connected is negligible” [26].

If we further connect members of S based on their social relations,

e obtain a socio-affiliation network (see Fig. 3). Using this structure

e can analyze the co-evolution of both the social and the affilia-

ion networks. A new friendship might be created due to a common

riend (triadic closure), or due to a common affiliation (focal clo-

ure). Furthermore, a new affiliation can be created due to a friend

lready affiliated with it (membership closure). Focal closure is an

rtifact of the selection process, while membership closure is a type

f social influence. Based on the above, LBSNs that we consider in this

ork, can be modeled as a social-affiliation network where the set F

onsists of the locations/places that people in S can check-in. An affil-

ation edge is created as long as a user has checked-in to the specific

pot. For instance, in Fig. 3, Bob has checked-into the “School of Infor-

ation Sciences” and hence there is an affiliation edge that connects

im with the corresponding focus. We refer to this network structure

s socio-spatial affiliation network.

The socio-affiliation network as described above is a static net-

ork structure. In other words, it does not encode any information

ith regards to temporal information. Temporal information can fur-

her enable the study of fine-grained spatio-temporal behavior, by

xamining for instance the co-locations (in space and time) of users.

hile, in our dataset every check-in is timestamped, we choose to

gnore this parameter in our analysis. The main reason for this is

he fact the check-in time itself is not enough to accurately estimate

he existence and duration of a co-location across time and space.

his would require a check-out time as well. As we will discuss in

ore detail in Section 6 in more detail, there exist studies that uti-

ize fine-grained temporal information (e.g., through cellular network

ata [25]). Our work is complementary to these studies. In particular,

ven if we do not know whether two friends’ affiliations were cre-

ted at the same time or with a time lag, their common affiliation is

n indicator of a possible relation, and hence a socio-spatial tie. In

his case the number of common affiliations might not be a strong

redictor (as it has been shown to be the case when considering co-

ocations [5]), but as we will show there are other metrics computed

n these common affiliations that are extremely informative.

Using the terminology introduced to restate our main objective,

e seek to identify patterns/correlations in the socio-affiliation net-

ork that can reveal ties between the pure social and pure affilia-

ion network. Note again that when we have a static snapshot of a

etwork, we do not know whether an affiliation or a friendship was

reated first. However, to reiterate, the actual underlying mechanism

hat caused the closure between two users and a group is irrelevant

nd what matters is the existence of a triangle that connects users

nd locales.

.3. Definitions

In this section we summarize the terminology/definitions used

hrough the rest of the paper. In particular:

• Location or Affiliation or Foci refers to specific venues that ap-

pear in the Gowalla dataset.
• Social edge refers to a connection between two Gowalla users

(i.e., represents declared, two-way, friendships between the

users).
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Table 1

Notations used.

Lc Set of venues that user c has visited/checked-in

s(u, v) Similarity measure between users u and v

Pl(u) Fraction of check-ins in affiliation l contributed by user u
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• Affiliation edge or User-Affiliation link refers to a connection

between a Gowalla user and an affiliation node (i.e., represents

check-ins in the system).
• Degree or Social degree of a Gowalla user refers to the number of

(social) edges that this user has.
• Affiliation degree of a location refers to the number of (affiliation)

edges that the location has.

Finally, Table 1 provides a summary of the notations that will be

used through the paper.

3. Social network analysis

In this section, we will briefly present our analysis of the social

(friendship) graph of Gowalla. There exist similar efforts in the lit-

erature for other online social networks and hence this is not the

main focus of our study. However, we are presenting these results for

completeness.

Degree distribution: First, we examine the degree distribution of

the network. In particular, we compute the empirical probability den-

sity function of a user’s degree (Fig. 4). As we can observe, the degree

distribution of Gowalla users exhibits a power law tail. This has been

found to be true for other social networks as well [17], and implies

that the majority of the users have very few friends, while very few

users have many friends. Formally, the probability of a node u having

a degree of k obeys the following rule:

Pr{degu = k} ∝ 1

kα
(1)

We have also calculated the Maximum Likelihood Estimator for

the power law exponent at the tail of the distribution. In particular,

we have α = 2.1933, while the statistical error of the estimation is

σ = 0.0057. In Fig. 4 we have plotted the estimated degree distribu-

tion on top of the empirical PDF. Note that the fit is much better at

the tail of the distribution as it is true for the vast majority of social

networks. The average node degree is also computed to be 9.66.

Local clustering coefficient: Local clustering coefficient (cc for

short) is tightly related to the notion of triadic closure. In particular,

the (local) clustering coefficient of Bob is an indicator of how many

triangles he participates in. Given that the clustering coefficient of

Bob is the ratio between the pair of his friends that are friends with
ach other, over all the possible pairs between them, it is useful to be

resented as a function of the node degree. Fig. 5 presents the (aver-

ge) clustering coefficient of a user with respect to his degree. As we

an see, Gowalla users in general exhibit high coefficients, with the

verage clustering coefficient being equal to 0.237. This means that

n average there is a 23.7% probability that two randomly selected

riends of Bob will also be friends. This number is significantly higher

rom the expected 0.0491 clustering coefficient in a random network

ith the same degree distribution as Gowalla. The latter is computed

sing the random configuration model and is given by [17]

rand = 1

n

[〈
k2

〉
− 〈k〉]2

〈k〉3
(2)

This transitivity, in conjunction with the small average path

ength, are strong indications that the social component of Gowalla

s a small world network.

Average neighbor degree: The average neighbor degree d(k) is a

ummary statistic of the joint degree distribution. It is simply the av-

rage neighbor degree of the (average) k-degree node. Fig. 6 shows

(k). As we can see there is no preference of users to connect to peers

ith dissimilar or similar degrees. This can be also captured from the

ssortativity coefficient of the graph which is close to 0 (−0.029). The

light negative value indicates a very small level of disassortativity;

here are slightly more links connecting nodes of dissimilar degrees.

his can be partially attributed to the actual structure of the network.

n particular, there are a few only nodes with high degrees and hence

here is a limited number of possible edges between high degree
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Table 2

Quantilies of similarity for the different classes of user pairs.

- 80% 85% 90% 95% 99%

Friends 0.0192 0.0270 0.039 0.0636 0.16

Near non-friends 0 0.006 0.0115 0.02 0.04
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Fig. 8. Similarity tends to decrease with an increase in home distance.

T

t

t

f

t

w

h

n

s

t

w

t

o

c

i

h

f

o

t

e

o

s

c

fi

t

i

s

n

v

t

odes. Hence, the rest of the edges of these hub-vertices need to con-

ect low and high degree nodes, leading to a slight disassortativity.

. The richness of location information

In this section we will analyze the structure of the spatial compo-

ent of the LBSN. Our goal is to identify existing correlations, if any,

etween location information or spatial behavior (represented by the

ffiliations or checkins at various venues) and the social structure of

he network. We are mainly interested in both direct and indirect in-

ormation derived from location history. For instance, the number of

ommon venues visited by users belongs to the first category. How-

ver, information related to the nature of the venue is not directly

bservable from the trails, but it can be inferred.

Location-based user similarity: As previously mentioned, ho-

ophily is a phenomenon that is very often observed in social net-

orks. For instance, empirical studies have shown that teenagers

end to create friendships with other teenagers with similar scholas-

ic performance and delinquent behavior (e.g., drug use) [11]. In an-

ther study, Christakis and Fowler [3], a social network consisting of

pproximately 12,000 people, found that social relationships exhibit

igns of homophily with regards to the obesity level. Regardless, of

he reasons behind homophily, awareness of its existence can help

owards revealing possible social links by observations of people’s

haracteristics and/or behaviors and vice versa. In what follows, we

ake a first step towards examining homophily related to the loca-

ions visited by people. Our analysis indicates that there are signs of

omophily with regards to the spatial behavior of the users. How-

ver, we would like to particularly emphasize that we do not claim to

ave completely answered this question. Identifying homophily in a

ocial network is an extremely challenging task, which would require

he study of longitudinal data, possibly from different networks, on

much larger scale. We hope though, that our work will encourage

urther research on this topic, which becomes increasingly important

owadays more than ever, with the prevalence of mobile devices with

ositioning capabilities and the availability of huge volumes of spatial

ata.

Let us define Lc, to be the set of venues that user c has checked-in.

hen we define the similarity s(u, v) between u and v (who have each

isited at least one venue) as the following ratio:

(u, v) = |Lu ∩ Lv|
|Lu ∪ Lv| (3)

The numerator is the number of common places visited by the two

sers, while the denominator is the number of places visited by at

east one of them. The above ratio is the Jaccard similarity coefficient.

e have calculated this ratio for pairs of users that are friends and

airs of users that are not friends. We have also further distinguished

he latter pairs (of non-friends) as being in geographic proximity or

ot, based on their “home” locations. We have set up a threshold of

0 miles for defining pairs that are “nearby” or “distant”.

Fig. 7 presents the cumulative distribution function (CDF) for

(u, v) for pairs of friends and nearby pairs of non-friends. Clearly,

riends have the highest similarity scores as compared to non-

riends pairs even if the latter live within 40 miles from each other.

able 2 presents the quantiles of the corresponding empirical data. As

e can see, 10% of the nearby friends have coefficients approximately

%, which means that 4% of the places they have visited are common.
his number might seem small, but it is actually fairly large if we

hink of the number of places we visit every day. The importance of

his value becomes even more clear when we see the similarity index

or nearby pairs of non-friends, which is practically 0 even though

hey are in geographic proximity! Note here that, in our friends pairs

e have not distinguished them with regards to nearby or distant

ome locations. Even distant friends exhibit similarity higher than

earby pairs of users that are not friends. This is an important result

ince it implies evidence of homophily in the network with regards

o the places visited. Users that are friends will visit the same spots,

hile users that are not friends, even if they are in proximity (e.g., in

he same city) are unlikely to visit the same places.

Next, Fig. 8 shows the similarity values for friends as a function

f the distance between home locations. Each point on the figure

orresponds to a pair of friends. As we can see, there is a decreas-

ng trend of the similarity value with distance between the friends’

ome location. This might have been expected, since people that live

ar away, even if friends, have less opportunities to “follow” the trails

f each others. However, even for large distances (e.g., 1000 miles)

he similarity is still non-negligible, since most possibly friends visit

ach other occasionally. Fig. 9 presents the same information for pairs

f nearby non-friends. As we can see the similarity values are fairly

table over the span of the 40 miles considered, with a very slight de-

reasing trend. These values can be possibly attributed to common af-

liations that users create because they live nearby (e.g., transporta-

ion hubs etc.) and not because of actual similarity in interests. It is

nteresting to note that friends living 2000 miles apart exhibit the

ame levels of similarity with non-friends that are within 40 miles.

Note here that in the definition of users similarity (Eq. 3), we have

ot considered any temporal information. We consider all common

enues that have been visited by two users, regardless of whether

hey visited them at the same time or not. The reason for this, is that
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Fig. 9. Nearby non-friends’ similarity.

Fig. 10. Similarity as a function of the users distinct affiliations.

Fig. 11. Similarity as a function of the users checkins.
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Fig. 12. Affiliation degree distribution.
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people can be similar in ways that do not dictate co-location. For in-

stance, if the selection process is responsible for the high similarity

values, people with the same affiliations (captured from the places

they visit) will tend to create friendships. On the other hand, if social

influence is responsible for the high similarity coefficient, people will

tend to visit places that they have heard from their friends (however,

not necessarily with them). Hence, the Jaccard similarity index can be

quite helpful in bonding social and location information, even with-

out the fine grained temporal information used in previous works and

discussed in Section 6. The importance of this finding is that it indi-

cates that the characteristics of location information can be substan-

tially different between friends and non-friends. We would also like

to note here that there exist pairs of non-friends with high similarity

values as well. For instance, there are 974,749 pairs (≈ 1%) of non-

friends that live within 40 miles, that have similarity values greater

than 0.04! However, to reiterate, this high values for s(u, v) can in-

clude “trivial” similarities, due to the fact that people need to visit

some spots regardless of their actual preferences (e.g., airports, trans-

portation hubs, etc.). In other words, all venues are treated equally in

the definition of Eq. 3. Later, we will examine features/metrics of the

spots visited from people that will be able to quantify how accidental

a common affiliation can be considered.

Figs. 10 and 11 present the similarity of two friends as a function

of the number of their distinct affiliations and their check-in counts

respectively. Even though our data consist of a static snapshot, this

figure can be seen as an “emulation” of the temporal evolution of

the similarity value of two nearby friends. Higher levels of activity

represent later points in time, when users have been using the sys-

tem for longer periods and thus, have more affiliations and check-ins.

Further, the similarity scores take their maximum values for pairs

of users with low levels of activity (i.e., small number of affiliations

and check-ins). Based on the above “temporal emulation” this corre-

sponds to early stages of system adoption. This behavior can be at-

tributed to the fact that the denominator of Eq. 3 increases faster as
ompared to the enumerator. One possible reason that can cause this

s as follows. Consider Bob and his friend Alice. Bob will hear from

lice about a few places and he will tend to visit some of them, in-

reasing the numerator of s(Bob, Alice). However, he will hear about

ther spots from his friends Jack and Jill (who might have no relation

ith Alice). Hence, he might be tempted to visit some of these spots

s well, increasing the denominator faster and overall reducing the

accard index as his (and Alice’s) level of activity increases. Therefore,

ven friends might exhibit low(er) similarity scores after some time,

nd for this reason the absolute number of common foci might be a

ore robust metric over longer time spans. Later in Section 5 we will

se |Lu ∩ Lv| as the feature of our baseline social link prediction. The

imilarity of a pair of users, balances the above quantity, by consider-

ng the activity of both users. Such a balancing, in essence, captures

he diversity of the two users; the larger the denominator, the more

laces they visit (more diverse user pair). As we will see in our eval-

ations, this balancing can provide better connection between social

nd spatial information. We note here that similarity values of non-

riends are small regardless their level of activity.

Focal closure: In an affiliation network, the foci are also nodes of

he network. Hence, we can define metrics such as the degree dis-

ribution and the clustering coefficient for venues. The degree of an

ffiliation-node l (i.e., a venue) is the number of distinct users that

ave visited it. In other words, it is the number of user-affiliation links

hose one endpoint is l. Fig. 12 shows the affiliation degree distribu-

ion, which as we can see exhibits a power law tail as well, with ex-

onent α = 2.5953 (σ = 0.0067). There are a few places with many

isitors, while there are many venues with few visitors. The average

ocus degree is 3.11. Table 3 has the top and bottom 5 venues with

egards to their degree. Note here that the bottom 5 venues were
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Table 3

Top and bottom 5 venues based on their degree.

Top-5 spots Bottom-5 spots

SFO airport “Room”

Stockholm Central Station Farmer’s Market

AUS airport Gas station

DFW airport Apparel store

LAX airport Convenient store
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Fig. 13. No clear correlation exists between # of common foci and friendship proba-

bility.
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Fig. 14. Venues with lower degree tend to have lower clustering coefficient as well.
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Fig. 15. Common venues of friends have larger clustering coefficient as compared to
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Fig. 16. Positive correlation between avg cc of common venues and friendship proba-

bility.
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andomly selected since there are many venues (almost half) with

egree of 1. The top spots are all major transportation hubs (air-

orts or train stations), while the less popular places are more lo-

alized/personal venues (e.g., “room”, which most probably refers to

home, office etc.). The top degree spots are expected to increase the

umber of common affiliations for many users; the higher the degree

f a locale more user pairs will exhibit an increased number of com-

on foci. However, as one can imagine, common affiliations such as a

ig airport happen rather randomly than due to actual similarity. On

he contrary, if Bob and Jack have a local food joint as common affili-

tion it is highly possible that this is due to their similarity (e.g., they

ave the same gastronomical preferences).

If our above claim does not hold and all affiliations are equal one

hould expect that the more common foci two people have, the more

robable it is for them to be friends. However, our data indicate that

his is not the case. Fig. 13 presents the friendship probability be-

ween a pair of users with respect to the number of common venues

isited by them. As we can see there is no clear connection between

he two quantities. For small values of common venues there seems

o be a linear relationship, but as the number of common affiliations

ncreases, there is little (if any) correlation. In particular, for a num-

er of common venues smaller than 100, the correlation coefficient

s fairly high (0.61). However, for larger number of common venues,

his coefficients drops to just 0.2. This further supports our previous

laim, that the actual affiliation, rather than just the number of the

ommon affiliations, plays an important role in predicting the social

elations.

In order to further examine the role of the type of a venue on the

ocial relationships we examine the clustering coefficient of a focus.

et us consider venue l which has a degree of k > 1. All the possible

ocial links between the users affiliated with l are k(k − 1)/2. If n of

hem exist then the clustering coefficient, CC(l) is defined as

C(l) = n

k(k − 1)/2
(4)

his clustering coefficient captures the nature of the place in many

ays. It expresses how tightly connected are the people that visit this
enue. The higher the cc is, the more connected are the people affili-

ted with it.

Fig. 14 shows the clustering coefficient as a function of the venue’s

egree. As we can see venues with lower degree have a higher aver-

ge clustering coefficient. This is a sign that venues with lower degree

ight venture socialization. Delving more into this issue we present

n Fig. 15 the CDF of the average clustering coefficient of the com-

on venues for user pairs that are friends and those who are not.

or friends, the average clustering coefficient of their common affil-

ations is much higher (mean value is 0.068) as compared to those

f non friends (mean value is 0.019). Finally, Fig. 16 plots the proba-

ility of friendship between two users as a function of the average
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Fig. 17. The majority of the venus exhibit low entropy.

Fig. 18. The entropy of a spot increases with its degree.

Fig. 19. Venues with higher clustering coefficient tend to have lower entropy.
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clustering coefficient of their common spots. As we see there is a

clear positive correlation between the two quantities, which is also

revealed from the high correlation coefficient between the two vari-

ables (calculated equal to 0.89). The higher the average cc of the com-

mon foci, the larger the friendship probability.

Especially, the last result clearly indicates that the actual nature of

the venue plays an important role to whether affiliated users are re-

lated through a friendship or not. On the one hand, places with high

clustering coefficient, attract sets of people that are more tightly con-

nected in the social plane. In addition these sets are usually small, if

we recall the connection between affiliation cc and affiliation degree.

On the other hand, spots with low clustering coefficient attract many

people that are not socially related, just because these places have

special features (e.g., large hub-airports, train stations, large depart-

ment store etc.). One could arguably compute the average cc of the

common affiliation of two people and find the probability of friend-

ship through a simple linear regression model (Fig. 16).

However, there is a problem with the above approach. In order

to calculate the average cc of a venue, the social relationships need

to be known! Hence, the cc does not provide an independent socio-

spatial information linkage. Therefore, we need to find a feature of

the affiliations, that (i) captures the nature of the venue, (ii) does not

require the knowledge social relationships in order to be computed

and (iii) is correlated with the friendship probability. This feature is

the affiliation’s entropy as we will describe in what follows.

The entropy of a place: Cranshaw et al. [6] were the first to intro-

duce the notion of entropy of a location as a measure of its diversity.

If Pl(u) is the fraction of check-ins in affiliation l contributed by user

u, then the entropy of l is given by

e(l) = −
∑

u:u∈S∧Pl (u)>0

Pl(u)log(Pl(u)) (5)

From Eq. 5 we can see that when a place is visited by many peo-

ple in equal (and thus, small) proportions, its entropy will be high.

In other words, high entropy corresponds to places like airports that

exhibit large diversity. On the other hand, when the mass of Pl(u) is

concentrated only to a few people, the diversity in this location is

small and so is the entropy.

Fig. 17shows a histogram of the entropy values for all the venues in

our dataset. As we see most of the venues have small entropy values,

while there are some that exhibit high entropy values. It is interesting

to see that there is an increasing trend of the entropy of a place with

its degree (Fig. 18). Furthermore, the top-5 degree places are also the

top-5 entropy places (with different ranking) as it can be seen in the

red solid ellipse. A number of (the many) bottom-5 degree places are

still bottom-5 entropy places. However, if we notice more carefully in
he dashed, black ellipse in Fig. 18, some venues with the lowest de-

ree, do not exhibit the lowest entropy (although still smaller than 1).

Previously, we observed that there is a positive correlation be-

ween the average clustering coefficient of the common venues of

wo users and their friendship probability. To examine whether en-

ropy is a good candidate for a similar correlation, we first examine its

elation to cc. Fig. 19 shows the entropy of a venue as a function of its

lustering coefficient. As we can see, the entropy tends to be lower as

he clustering coefficient increases. High entropy translates to more

andom co-visits to the venue, and therefore a lower clustering coef-

cient. Hence, there appears to be a negative relation between these

wo measures (we expect a similar negative relation between the av-

rage entropy of common venues and friendship probability).

Since entropy appears to have similar characteristics with the af-

liation clustering coefficient we want to further examine its ability

o bond affiliation and social information. In Fig. 13 we identified that

he number of common affiliations is not very useful in terms of in-

erring the existing social relations especially when the number of

ommon affiliations is growing (e.g., > 100). We seek to further ex-

mine if we can obtain any additional knowledge by utilizing the in-

ormation about the entropy. Using the same data, we consider pairs

f users that have the same number of common foci. We divide them

nto two categories, friends and non-friends. For each one of these

ategories we compute the average entropy of the common spots vis-

ted and we plot the results in Fig. 20. It is clear now that the average

ntropy of the common affiliations for the case of pairs of friends is

ndeed lower compared to the case of non-friends and appears to be

good candidate for bridging the social and spatial components of an

BSN.
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Fig. 20. The common affiliations of friends exhibit lower (average) entropy.
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Fig. 21. Negative correlation between the avg entropy of common foci and friendship

probability.
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Next, we compute the average friendship probability between two

sers as a function of the average entropy of their common affilia-

ions. The results presented in Fig. 21 are promising. There appears

o be a significant (negative) correlation between these two variables

correlation coefficient is equal to −0.7). Their relation is not linear

s it was the case for the average cc of the common venues and the

riendship probability (Fig. 16). Using least square we have fitted a

ower law with exponent α = −1.69. This last result, further sup-

orts our above argument that the entropy of a place can be used to

ie the two information planes and drive applications such as reveal-

ng social affinities from location histories. We will further examine

his in the following section.

. Revealing friendships

In the previous section, we have examined the user similarity and

arious venue-related metrics and their correlation with the users’

ocial relations. To summarize, the feature that appears to be able to

apture the best the interplay between the social and spatial com-

onents of an LBSN is the cc. However, as explained in Section 4, its

trong correlation might be illusive, since its calculation explicitly uti-

izes the social relationships. We further found that the entropy of the

ommon places visited by two users appears to be correlated with

heir probability of friendship as well and that friends tend to have

igher similarity scores. Our analysis therefore implies that similar

etrics can be used to make an educated judgment with regards to

he social relationship between two randomly selected users whose

patial behaviors are known in terms of the common venues and

heir entropy. Alternatively, by utilizing a mix of social and partial
patial/location information it might be possible to estimate future

isits of users. The list of possible applications realized through the

onds between social and spatial information in an LBSN is long and

ot the focus of our study.

In this section, we want to examine the importance of the metrics

e considered for estimating the existing users’ affinity relations. In

ther words, considering the graph in Fig. 3 and assuming we are only

ware of the solid edges, can we estimate the dashed ones? To reit-

rate, our goal is not to be able to provide a full fledged classification

lgorithm on the possible affinities/ties of the social graph; we only

ant to examine the strength of the explored metrics in estimating

ocial relations and showcase some aspects of the importance of our

nalysis.

We first consider a simple unsupervised, threshold-based, infer-

nce model. In particular, for every pair of users, we compute the fol-

owing metrics, (i) number of common venues (our baseline), (ii) user

imilarity, (iii) average/min/max entropy of common venues, and (iv)

verage/min/max cc of common venues. Then, based on a threshold

omparison we classify the pair as being friends or not and we ob-

ain the (fitted) ROC curves for the positive instances presented in

ig. 22. We focus on the positive (friends) instances, since there is a

trong unbalanced distribution of the friends/non-friends instances

n the network (only 3% of all possible social edges exist). Hence even

simple classifier that states every pair as non-friends, would exhibit

very good overall performance (i.e., 97% accuracy), but it would per-

orm very poorly in the classification of the instances of friends. The

able on the left also provides the area under the curve (AUC); the

arger the AUC, the better is the quality we have in our assessments

lower false positives and higher true positives on average). As we ex-

ected, the average and min cc provide the best performance, while

he entropy metrics together with the user similarity come right after,

erforming better than the baseline of simply the number of common

enues. Establishments that are less diverse in terms of people that

ocialize there tend to be better indicators of bonds, and this infor-

ation can be used to accurately infer social relations. Furthermore,

alancing the number of common venues between two users with

heir activity improves the prediction, since it accounts for the user

air’s diversity as explained earlier.

We further examine two unsupervised clustering algorithm, that

perates on the same set of features. First, we use a simple k-means

lgorithm for clustering. In particular, applying k-means clustering on

ach class (friends and non-friends) of our training set we compute

prototypes for each class (r = 3 in our case). The prototypes are es-

entially the centers of the clusters that k-means identified. Since in

ur case we have 2 classes, we have in total 2 · r = 6 labeled proto-

ypes. In the test phase, we assign every test instance x to the class

f the closest prototype. We evaluate the performance of this simple
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Table 4

Performance of a simple k-means-based classifier.

s(u, v) Min e Max e Avg. e Min cc Max cc Avg cc # foci F-measure Precision Recall

� � � � � � � � 0.36 0.48 0.29

� ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.35 0.51 0.27

✗ � ✗ ✗ ✗ ✗ ✗ ✗ 0.56 0.52 0.6

✗ ✗ � ✗ ✗ ✗ ✗ ✗ 0.52 0.56 0.49

✗ ✗ ✗ � ✗ ✗ ✗ ✗ 0.54 0.51 0.57

✗ ✗ ✗ ✗ � ✗ ✗ ✗ 0.32 0.55 0.22

✗ ✗ ✗ ✗ ✗ � ✗ ✗ 0.47 0.69 0.35

✗ ✗ ✗ ✗ ✗ ✗ � ✗ 0.45 0.70 0.33

✗ ✗ ✗ ✗ ✗ ✗ ✗ � 0.33 0.49 0.25

✗ � � � ✗ ✗ ✗ ✗ 0.53 0.51 0.57

✗ ✗ ✗ ✗ � � � ✗ 0.44 0.76 0.31

✗ ✗ � ✗ ✗ � ✗ ✗ 0.51 0.54 0.49

� ✗ � ✗ ✗ ✗ ✗ ✗ 0.52 0.56 0.49

✗ ✗ � ✗ ✗ ✗ ✗ � 0.31 0.34 0.28

Table 5

Performance of an svm classifier with linear kernel.

s(u, v) Min e Max e Avg. e Min cc Max cc Avg cc # foci F-measure Precision Recall

� � � � � � � � 0.68 0.90 0.54

� ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0.47 0.75 0.34

✗ � ✗ ✗ ✗ ✗ ✗ ✗ 0.67 0.70 0.65

✗ ✗ � ✗ ✗ ✗ ✗ ✗ 0.56 0.66 0.49

✗ ✗ ✗ � ✗ ✗ ✗ ✗ 0.65 0.72 0.59

✗ ✗ ✗ ✗ � ✗ ✗ ✗ 0.39 0.84 0.26

✗ ✗ ✗ ✗ ✗ � ✗ ✗ 0.65 0.90 0.50

✗ ✗ ✗ ✗ ✗ ✗ � ✗ 0.65 0.88 0.51

✗ ✗ ✗ ✗ ✗ ✗ ✗ � 0.23 0.69 0.14

✗ � � � ✗ ✗ ✗ ✗ 0.67 0.71 0.64

✗ ✗ ✗ ✗ � � � ✗ 0.66 0.89 0.52

✗ ✗ � ✗ ✗ � ✗ ✗ 0.65 0.90 0.51

� ✗ � ✗ ✗ ✗ ✗ ✗ 0.63 0.78 0.53

✗ ✗ � ✗ ✗ ✗ ✗ � 0.62 0.71 0.55
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supervised classifier through precision, recall and f-measure:

precision = TP

TP + FP
(6)

recall = TP

TP + FN
(7)

f − measure = 2 · precision · recall

precision + recall
(8)

where TP stands for true positive, FP stands for false positive and FN

stands for false negative. Briefly, precision is the fraction of friend-

ship predictions that are correct, while recall is the fraction of actual

friendships that the algorithm was able to identify. The f-measure

is the harmonic mean of precision and recall and hence, takes high

values when both are high. If one of the two is low, the f-measure

will tend to be low as well. Therefore, the f-measure can be thought

as evaluating the overall performance of the classifier. Using 10-fold

cross validation we obtain the results presented in Table 4. Each row

corresponds to a different set of features used for the classification. As

we can see again, when we include in the features attributes related

with the entropy or the cc of the common affiliations the correspond-

ing f-measure is higher. For example, by using the average entropy of

the common venues visited by two people we are able to recover 49%

of the actual friendships, while from all our friendship predictions,

56% of them are correct (f-measure=0.54). When using only the num-

ber of common affiliations we obtain a value for the f-measure of only

0.33. We have further examined an svm classifier with linear kernel

on exactly the same combinations of features (see Table 5). As one

might have expected the performance is further improved compared

to the simple k-means classifier.

To summarize, our results clearly indicate that metrics such as the

entropy and the cc of a venue can help towards the improvement of
unctionalities such as social relationship inference, location predic-

ion etc. While our study does not aim into providing a state-of-the-

rt social link classifier, we showed that even with simple schemes

ne can achieve very good performance. More advanced algorithms

an further boost the performance, but it is beyond the scope of our

ork.

. Related work

The current work extends our previous study [22]. Compared to

22] we have improved the estimation of the home location of the

sers in our dataset in finer grain granularity and we have updated

he relevant results. We have also improved the social network analy-

is (utilizing MLE for estimating the power exponent and calculating

egree assortativity). Finally, we have delved into the details of the

upervised classification algorithm that utilizes k-means, while we

ave also added new performance results of an SVM classifier with a

inear kernel.

Furthermore, there is a set of studies that examine the structural

roperties of existing LBSNs. In this context, structure refers not only

o the properties of the social network graph (as in OSNs) but also to

he location component (e.g., physical distance to friends, time and

ype of check-ins etc.). For instance, Cheng et al. [1] use data from

oursquare to examine (i) the spatio-temporal properties of users’

heck-ins, as well as (ii) their mobility patterns. Similarly, Noulas et.

l. [20] study the spatio-temporal properties of users activities as

aptured through the inter-checkin times and the inter-checkin dis-

ances. They further identify universal features for human urban mo-

ility [19]. In alignment, Cho et al. [2] use cell phone location and

BSN data to understand the laws dictating human mobility. Li and

hen [13] analyze data from Brightkite and after providing the struc-

ural properties of the underlying social graph they try to identify
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orrelations between different user’s profile features, activity up-

ates, and mobility patterns.

The majority of these studies deal explicitly either with the so-

ial part of the system or the location component. Scellato et al. [23]

ry to use information from both components to identify the relation

etween friendship and geographic distance using data from three

ifferent LBSNs (Gowalla, Foursquare and Brightkite). They find that

he socio-spatial structure of these systems cannot be explained only

y geographic factors or only by social mechanisms. In addition, there

xist a few studies in the literature that examine and analyze the lo-

ation data present in the system with the goal of revealing undi-

ect, hidden information. Noulas et al. [21] obtain a static snapshop

f Foursquare in order to analyze the activity in different neighbor-

oods of London and New York, while Ye et al. [27] exploit social and

patial characteristics of LBSNs for location recommendation. None

f the aforementioned works however, study the relation between

he location trace of a user and his social relationships. They are all

ainly focused on identifying patterns either in the social or in the

patial component of an LBSN.

Eagle et al. [7] [8], as well as Li et al. [14], have developed mea-

ures to quantify similarity of users based on their mobility. This sim-

larity can be later used to infer the social structure of the users. They

re focused on “co-location instances,” that is, situations where two

sers are at the same place at the same time. However, given the

act that co-locations between people can happen accidentally, es-

ecially in urban areas [16], simply accounting for the number of co-

xistences can be expected to not be very accurate. Recently, Wang

t al. [25] using mobile phone data have identified a positive cor-

elation between mobile homophily, network proximity and social

ie strength. Furthermore, Crandall et al. [5], using data from Flickr

eveloped a simple model for quantifying the probability of friend-

hip between two users given the number of their co-locations. Cran-

haw et al. [6] introduce the notion of a location’s “entropy”, which

aptures its diversity with regards to the people visiting it. Using a

mall scale dataset of location trajectories obtained from 397 users of

ocaccino the authors infer co-locations between users. They exam-

ne the relation between features such as the intensity and duration

f co-locations between people, the diversity of these co-locations,

nd the users’ mobility regularities, with the social structure of these

sers. The latter is obtained through their Facebook accounts. Scel-

ato et al. [24] took one step further and use location information in

rder to improve friend recommendations. They are focused on the

emporal evolution of the social graph and they utilize a combination

f information drawn from both the social and location component

o improve friend recommendations. Finally, Zhang et al. [28] study

he mechanisms of homophily and social selection in the context of

ocio-spatial affiliation networks.

To reiterate, our work is complementary to all the aforementioned

tudies. First, as it might be evident from the discussion above, the re-

ated studies deal with slightly different problems (e.g., friend and/or

ocation recommendations, analysis of structural properties of LB-

Ns etc.). More importantly though, the studies that are closer to

ur work (i.e., [5,25]) consider also fine-grained temporal informa-

ion. For instance, the authors in [5] show that the number of co-

ocations are extremely informative of the social relation of people,

hile Cranshaw et al. [6] compute features such as the duration of a

o-location. Wang et al. [25] have a very detailed mobility dataset as

ell (Call Detail Records) from which they can accurately and with

igh confidence extract the co-locations in time. On the contrary, in

ur study, we consider only spatial information, through affiliations

f users with specific venues. We do not regard the temporal dimen-

ion, since in many cases co-occurrence in time might be hard to es-

ablish with certainty as explained in Section 2. Then we delve into

he details of these common affiliations/locations. We examine many

ifferent (network) metrics (e.g., number, average entropy, average

lustering coefficient etc. of common affiliations) and the additional
nformation each one of these can provide with regards to the un-

erlying social structure. We further believe that the fact that some

f the results reported in these studies appear to also hold with our

ifferent dataset supports the conclusion that there are some strong

nderlying bonds between mobility and social connections, hence,

omplementing these results.

. Discussion and limitations

While our analysis and models have been based on a dataset ob-

ained from Gowalla, we believe that the intuitive interpretation of

ur results make them generic enough. Nevertheless, we acknowl-

dge that there are specific steps in our analysis that can lead to in-

ccuracies. For example, given the absence of ground truth for the

ome location of a user we iteratively apply DBSCAN on the check-

ns of each user. The iterative process aims at reducing the estima-

ion error. However, the method will fail if users choose to check-in

ainly during trips (e.g., as a means of keeping a travel diary). Apart

rom such cases, which we expect to be a small portion of the user

ase, our analysis is based on a coarse-grain view of the distance be-

ween two users - e.g., at the city level. Therefore, even if there will

efinitely be errors during this estimation process, we do not expect

hem to significantly alter our conclusions/models.

Furthermore, during the computation of the users similarity s(u,

) we did not consider the temporal dynamics. In particular, one can

rgue that if both users u and v visited location l but with a large

ime-gap, this should not contribute equally to their estimated simi-

arity as compared to check-ins that happened with a small time-gap

e.g., within the same day). While, this is in principle true, applying

t to our dataset might be problematic and this is the major reason

e chose not to consider the temporal dimension. In particular, given

he voluntary nature of check-ins, users very often do not check-in to

enues every time they visit the location [4,15]. This can potentially

ead to a significant underestimation of the similarity when incorpo-

ating time in the computation of s(u, v) and consequently also affect

ur models and conclusions.

. Conclusions

In this paper we model an LBSN as a socio-spatial affiliation net-

ork and by analyzing data from a commercial network we identify

onds between the social and spatial information plane of the system.

e find that friends exhibit in general much larger similarity with

egards to the percentage of common venues visited, as compared

o non-friends. However, considering only the number of common

enues between two users, is not very helpful for strongly tying the

wo components of the network. Even though user similarity can pro-

ide a better bonding, the diversity of these common venues with re-

ards to people visiting them is more informative and connect these

wo components better. This is also supported by the evaluations and

esults from simple, social link classifiers.
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