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While direct social ties have been intensely studied in the context of computer-mediated social networks,
indirect ties (e.g., friends of friends) have seen little attention. Yet in real life, we often rely on friends of
our friends for recommendations (of good doctors, good schools, or good babysitters), for introduction to
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applications on two examples. We quantify social strength of indirect ties using a measure of the strength of
the direct ties that connect two people and the intuition provided by the sociology literature. We evaluate the
proposed metric by framing it as a link prediction problem and experimentally demonstrate that our metric
accurately (up to 87.2%) predicts link’s formation. We show via data-driven experiments that the proposed
metric for social strength can be used successfully for social applications. Specifically, we show that it can be
used for predicting the effects of information diffusion with an accuracy of up to 0.753. We also show that
it alleviates known problems in friend-to-friend storage systems by addressing two previously documented
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shortcomings: reduced set of storage candidates and data availability correlations.
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1. Introduction

Mining the huge corpus of social data now available in digital
format has led to significant advances of our understanding of social
relationships and behavior [1] and confirmed long standing results
from sociology on larger datasets. In addition, social information
(mainly relating people via declared relationships on online social
networks or via computer-mediated interactions) has been success-
fully used for a variety of applications, from spam filtering [2] to
recommendations [3] and peer-to-peer backup systems [4].

All these efforts, however, focused mainly on direct ties. Direct
social ties (that is, who is directly connected to whom in the social
graph) are natural to observe and reasonably easy to classify as strong
or weak [5,6]. Indirect social ties, though, defined as a relationship be-
tween two individuals who have no direct relation but are connected
through a third person in their social network [ 7], carry a significantly
larger potential as they facilitate better information dissemination
then direct ties [8] and enable significantly better opportunities [9].
Computer-mediated applications, we conjecture, have a significantly
higher potential in mining and exploiting indirect ties, as the direct
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ties are likely to be used via the traditional channels through which
were used for thousands of years.

However, not all indirect ties are valuable or useful, even at short
distances (i.e., 2 hops). For example, a distant acquaintance of a mere
acquaintance is unlikely to have a social incentive for performing a
personal favor, such as sharing available storage on his personal com-
puter. Moreover, trust is likely diluted under such conditions. Why
would a weak distant social contact trust that the data he is asked to
store is not illegal or malicious? In addition, what works for a user
or an application might not work for another user or another appli-
cation: the indirect tie A — X — B may be strong enough for A to use,
but not enough for B to use; or it may be strong enough to use for a
backup application, but not for a social contagion. Therefore, quanti-
fying the strength of an indirect tie is both necessary and non-trivial.

In this paper, we build upon and further adapt a metric called
social strength, which we introduced in [10,11], that quantitatively es-
timates the strength of an indirect tie. Our metric uses various ob-
servations from sociology and builds on the current opportunities
of quantifying the strength of direct ties from computer or phone-
recorded interactions. We rely on the sociology literature to define
the requirements of such a metric (Section 2). First, since social re-
lationships are asymmetrically reciprocal [12], the social strength of
an indirect tie consequently needs to be asymmetrical as well. Sec-
ond, a friend of many of one’s friends — thus connected via multiple
2-hop paths — can potentially be more socially “close” than the friend
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of a friend, connected via only one 2-hop path. Third, the strength of
an indirect tie decreases with the length of the shortest path [13]. In
Section 4 we validate the social strength metric using real datasets.

We demonstrate the usefulness of our metric on two proof-of-
concept applications. First, in Section 5, we show that the social
strength metric can be used for inferring, and in effect, predicting
information diffusion paths, which further implies the influence of
indirect ties on information flow in network dynamics. Second, in
Section 6, we experimentally show that two main issues identified in
friend-to-friend storage systems, namely reduced candidate sets [4]
and low availability due to time synchronization among friends [14],
are significantly alleviated by employing our social strength metric
for the recruitment of socially close indirect contacts as storage can-
didates. We discuss our findings and conclude in Section 8.

2. Social strength definition

We want to define a metric that quantifies the strength of a social
connection between indirectly connected nodes in a social network.
The need for such a metric is supported by many sociological studies
and is also intuitively understood from daily life: friends of friends
are an important resource for information and useful social contacts.

In our attempt to quantify an indirect social tie, we use the follow-
ing observations from sociology and from recent data-driven studies
on computer-mediated social relationships:

01: The strength of a direct social relationship is related to the
amount of interactions, as shown in [8,15]: the more frequently
persons interact with one another, the more likely they will
form strong relationships. Moreover, interactions among OSN
users were shown to represent more meaningful relations than
just declared relationships [16]. Consequently, in the quantifi-
cation of an indirect social tie, we rely on a numerical represen-
tation of the strength of a direct social tie that can be expressed
as number of interactions, number of shared interests, or other
recordable outcomes, depending on the semantics of the rela-
tionship.

02: The strength of an indirect tie decreases with the length of
shortest path between the two individuals. This has been
quantitatively observed by Friedkin [13], who concluded that
people’s awareness of others’ performance decreases be-
yond 2 hops. Three degrees of influence theory, proposed by
Christakis et al. [17] states that social influence does not end
with people who are directly connected but also continues to
2- and 3-hop relationships, albeit with diminishing returns.
This theory has held true in various social networks exam-
ined [18,19]. In accordance with these observations, the social
strength metric we propose focuses on 2- and 3-hop relation-
ships with a decreasing value as a function of distance.

03: Multiple types of social interactions (for example, both profes-
sional collaboration and playing tennis after work) result into a
stronger (direct) relationship than only one type of interaction
[20]. Furthermore, sociology studies [13] observed that the re-
lationship strength of indirectly connected individuals greatly
depends on the number of different direct or indirect paths
connecting them. Therefore, we consider the strength of mul-
tiple shortest paths in our definition of the strength of an indi-
rect social tie.

04: Typically, social ties between individuals are asymmetrically
reciprocal [21]. Thus, for the directly connected users Alice and
Bob, the importance of their mutual relationship may be dra-
matically different. We want to preserve this asymmetry in
quantifying indirect ties, such that Alice and Charlie, indirectly
connected via Bob, are entitled to have different views about
their indirect tie.

Therefore, to quantify the social strength of an indirect social tie
between users i and m, we consider relationships at n social hops
(n =2 or 3), where n is the shortest path between i and m. We assume
a weighted interaction graph model that connects users with edges
weighted based on any type of signal (information) that can repre-
sent tie strength of their direct relationships. Assuming that P}fm is
the set of different shortest paths of length n joining two indirectly
connected users i and m and N(p) is the set of nodes on the shortest
path p, p e P, we define the social strength between i and m from
i’'s perspective over an n-hop shortest path as:

~min  [NW(, j), ..., NW(k,m)]
SSn(i, m) —1-— l—[ (l _ Jo-skeN (p)
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This definition uses the normalized direct social weight NW(i, j)
between two directly connected users i and j, defined as follows:
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NW(i, j) calculates the strength of a direct relationship by consid-
ering all types of interactions A € A between the users i and j such as
phone calls, interactions in online games or number of co-authored
papers (observation 03). These interactions are normalized to the to-
tal amount of interactions of type A that i has with other individuals.
This approach ensures the asymmetry of social weight (observation
04) in two ways: first, it captures the cases where w(i, j, ) # w(j, i, 1)
(such as in a phone call graph). Second, by normalizing to the num-
ber of interactions within one’s own social circle, even in undirected
social graphs, the relative weight of the mutual tie will be different
from the perspective of each user.

The observations O1, 03 and 04 were incorporated in the defi-
nition of the NW function and naturally carry over in the definition
of social strength from SS,(i, m). Moreover, O3 is additionally imple-
mented by considering the product over all shortest paths p that con-
nect two users. 02 is implemented by considering the weakest link
(minimum normalized weight of all direct ties on each path) and by
dividing it with the distance n between the users. The proposed social
strength measure can:

NW(, j) =

(2)

» Quantify the indirect tie strength for nodes indirectly connected
at any social distance.

o Treat indirect ties between two nodes as possibly asymmetric in
strength rather than constraining the values to be equal.

* Be more sensitive to strength differences because it uses both
edge weights and number of paths to calculate a value.

« Be calculated without graph’s global information.

3. Datasets

In this paper we use several datasets from different domains.
Our datasets vary from fast, non-profound dynamics to slow pro-
fessional networks and more traditional social networks augmented
with heavy interactions.

Team fortress 2 (TF2) is an objective-oriented first person shooter
game released in 2007. We collected more than 10 months of game-
play interactions (from April 1, 2011 to February 3, 2012) on a TF2
server [22]. The dataset includes game-based interactions among
players, timestamp information of each interaction, declared rela-
tionship in the associated gaming OSN, Steam Community [23], and
the time when the declared friendship was recorded. The resulting
TF2 network is thus composed of edges between players who had at
least one in-game interaction while playing together on this particu-
lar server, and also have a declared friendship in Steam Community.
This dataset has several advantages over the Steam declared OSN:
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Table 1
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Characteristics of the social networks used in our experiments. APL: average path length, CC: clustering coefficient, EW:

range of edge weights, OT: observation time.

Networks ~ Nodes Edges APL  Density CC Assortativity ~ Diameter  EW oT

TF2 2,406 9,720 4.2 0.0034 0.21 0.028 12 [1-21,767] 300 days
IE 410 2,765 3.6 0.0330 045  0.225 9 [1-191] 90 days
CA-1 348 595 6.1 0.0098 028 0173 14 [1-52] N/A
CA-II 1,127 6,690 34 0.0100 033  0.211 11 [1-127] N/A

First, it provides the number of in-game interactions that can be used
to quantify the strength of a social tie. Second, it provides players’ on-
line/offline status that we use later in the experiments in Section 6.
Third, each interaction and friendship formation is annotated with
a timestamp, which is helpful for examining the dynamics of links
under formation. Fourth, over a pure in-game interaction network, it
has the advantage of selecting the most representative social ties, as
proven in [22]. In this network of 2.4k nodes and 9.7k edges, edge
weights represent the number of in-game interactions.

Infectious exhibition (IE) held at the Science Gallery in Dublin,
Ireland, from April 17th to July 17th in 2009 was an event where par-
ticipants explored the mechanisms behind contagion and its contain-
ment. Data were collected via radio-frequency identification (RFID)
devices that recorded face-to-face proximity relations of individuals
wearing badges [24]. Each interaction was annotated with a times-
tamp. We translated the number of interactions into edge weights.

Co-authorship networks (CA-I and CA-II) are extracted from Ar-
netMiner! and are based on papers co-authored by Computer Science
researchers [25]. Nodes in these graphs represent authors and edges
between two nodes are weighted with the number of papers co-
authored by the two authors. From this dataset we extracted the two
largest connected components (see Table 1 for details). Co-authorship
I (CA-I) is a small connected component and a relatively low den-
sity. Co-authorship II (CA-II) is the largest connected component of
the ArnetMiner co-authorship network, having a density one order
of magnitude higher than CA-I. Because the dataset does not include
time publication information, the observation window is unspecified
in Table 1.

A brief characterization of the networks appears in Table 1. Fig. 1
plots the degree, edge weight, and clustering coefficient distributions
for each network. We note that IE is a smaller but much denser net-
work, while TF2's interactions frequency is much higher than the
other networks’, as shown by the range of edge weights. Even though
CA-I and CA-II are extracted from the same OSNs, they have differ-
ent degree and clustering coefficient distributions. Since they contain
timestamps of the links formed and interactions between users, we
use TF2 and IE networks to validate our proposed social strength met-
ric by studying link formation in Section 4. We use the TF2 and CA
networks to study diffusion and peer expansion in Sections 5 and 6,
respectively, as they are larger, sparser and based on longer lasting
relationships compared to IE’s ad-hoc interactions.

4. Social strength evaluation

In sociology, the theory of homophily [26] postulates that people
tend to form ties with others who have similar characteristics. More-
over, a stronger relationship implies greater similarity [8]. Therefore,
a number of link prediction models that estimate tie strength from
graph structure [27] or interaction frequency and users’ declared pro-
files similarities [28] have been proposed.

To verify that social strength is in fact quantifying the strength
of social ties, we frame it as a link prediction problem. Simply put,
given a pair of users, the link prediction problem asks whether the

1 http://arnetminer.org/
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Fig. 1. CDF of the degree, weight and clustering coefficient for the four networks used.

strength of the tie is strong enough to form a social relationship be-
tween them. Specifically, given a snapshot of a social network, we use
social strength values to infer which new relationships or interactions
among users are likely to occur in the near future. Granovetter put
forth the idea of the “forbidden triad” [8], i.e., a triad where there is a
strong tie between say u and v as well as a strong tie between v and
w, but no tie between u and w is extremely unlikely to exist. Under
the theory of triadic closure, forbidden triads will quickly close be-
cause a relationship will form between u and w. Thus, if we can effec-
tively predict edge formations based on the value of social strength,
the implication is that social strength is capturing the strength of ties
between distant nodes. We compare our results with three other met-
rics used for link prediction.

4.1. Compared metrics

We compare three well-established link prediction metrics with
the social strength metric to demonstrate how effective is in link pre-
diction. Many approaches are based on the idea that if two nodes i
and j have large overlap in their neighbors, they have higher likeli-
hood to form a link in the future. In the following definition, let I'(i)
denote the set of node i’s neighbors.

Jaccard coefficient (J) is a commonly used similarity metric that
was proposed by Salton and McGill [29]:

INOIINE)]
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Adamic-Adar (AA) is a metric that only counts common features by
inverting log frequency of their occurrence [30]:

1
MG = Y e
zel' ()N () logIT@)|
Katz defined a metric that sums all possible paths between two nodes
[31]:

Katz(i, j) =Y p'- P
=1

Pl’J is the set of all length — I paths between i and j. Paths are expo-
nentially damped by length, so that shorter paths count more heav-
ily. B (B > 0) is a parameter that if set at a very small number, the
measurement is similar to the common neighbors metric that directly
counts the common friends between two nodes, since more than 2-
hop path lengths contribute little to the summation. According to the
experimental results in [32] (Fig. 3), B = 0.0005 gives better predic-
tion performance than other values. Thus, in the following experi-
ments we set the parameter 8 to 0.0005. Note that even if a weighted
Katz metric is discussed in [32], it is only applicable to 1-hop social
distance that is not suitable to our problem (2- and 3-hop distance),
thus, in this paper, we only conduct comparisons with unweighted
Katz metric as described below.

All these metrics give a score that quantifies the strength of the
social tie between two nodes. Jaccard and Adamic-Adar are based on
node neighborhoods while Katz uses the ensemble of all paths be-
tween two nodes. Therefore, Jaccard and Adamic-Adar restrict their
measurements to nodes that are 2-hops away while Katz can be ap-
plied to n-hop (n > 1) social distance, which is comparable to our
social strength metric on longer path lengths.

4.2. Experiments

As we explained in Section 2, people can be aware of others’ be-
haviors within 2 hops and be influenced by indirect ties up to 3 hops.
Thus, we focus our experiments on 2- and 3-hop social distance.

4.2.1. Experimental setup

We formalize the link prediction task as a binary classification
problem that predicts whether an edge exists in the graph or not,
when two users are 2- or 3-hops away from each other. First, for all
pairs of users u and v, we label them with the timestamp of their re-
lationship (tyy), or ¢ in the case that there was no relationship by the
end of our observation period. Next, we compute the 2- and 3-hop
social strength between each u, v pair based on the state of the graph
at time t,;, — 1, or in the case of ¢, the final state of the graph.

For example, Fig. 2a indicates the state of the subgraph of nodes
A, B, and C at the end of the observation period. When given the pair
B, C, whose relationship formed at t3, the calculation of their social

® ©
(a) (b) (c) (d)

Fig. 2. Demonstration of a pair of nodes’ relationship status: (a) a pair of nodes, B and
C, have a relationship in 2-hop social distance before t3, where t; < t3 and t; < t3, and
they formed a direct relation at t3. (b) a pair of nodes, B and C, have a relationship in
2-hop social distance and no direct relation formed (#) by the end of our observation
period. (c) a pair of nodes, C and D, have a relationship in 3-hop social distance before
ty, where t; < ty, t < tg, and t3 < t, and they formed a direct relation at t4. (d) a pair
of nodes, C and D, have a relationship in 3-hop social distance and no direct relation
formed (#) by the end of our observation period.

strength includes the edges AB and AC since they both formed prior
to t3. Conversely, when given the pair A, B, none of the edges are in-
cluded in the social strength calculation. A similar scenario of a 3-hop
prediction is depicted in Fig. 2c.

The TF2 network has a timestamp of when a declared relationship
was created, but the IE network only has the timestamp of the first
recorded face-to-face interaction between two individuals. Thus, for
IE, we use this timestamp as a proxy for the creation of a relationship.

For 2-hop social distance, there are 5, 984 pairs in TF2 with t,, #
@, i.e., that had a relationship form prior to the end of the observa-
tion period, and 161,561 pairs with t,, = ¢; 2,475 with t,, # ¢ and
676, 863 with t,;, = ¢ for 3-hop distant users. IE has 1,886 formed re-
lations and 4,111 unformed for 2 hops, and 484 formed relations and
24, 631 unformed for 3 hops. In other words, our datasets are im-
balanced with respect to formed relationships and no relationships
(¥). There are two common approaches for dealing with imbalanced
data classifications: under-sampling [33] and over-sampling [34]. We
chose to under-sample users with no relationships, thus in our ex-
periment they appear at the same empirical frequency as the formed
relationships.

4.2.2. Results

In our prediction tasks, we use a classic tree-structured machine
learning classifier, Decision Tree (J48), and the scores calculated from
evaluation metrics as features. Note that because we treat social
relationships asymmetrically, social strength outputs two different
scores, each coming from the node’s own perspective. We compare
the performance of our social strength to the three tie strength met-
rics introduced in Section 4.1. Four evaluators — Precision, Recall,
F-Measure and Area Under Curve (AUC) — are used to evaluate the
prediction performance. Table 2 shows the link prediction results of
nodes 2 hops away. We run 10-fold cross validation [35]. Among all
evaluations and classifiers, social strength outperforms other metrics
in predicting link existence between pairs of users. We note that the
AUC arrives up to 0.765 for the TF2 network and reaches 0.872 for
the IE network when using social strength, greatly outperforming the
other predictor metrics.

Next, we test the social strength viability at predicting link exis-
tence from 3-hops away as people are influenced by others within
3-hop social distance [17]. However, both Jaccard and Adamic-Adar
metrics are restricted to predictions within 2 hops, thus, only social
strength and Katz results appear in Table 2. Social strength outper-
forms Katz might relate to two factors in theory. First, social strength
considers edge weights and values ties asymmetrically. Second, in
Katz, the same parameter is set for every pair of nodes, which is
not accurate to capture the difference of tie strength among different
pairwise nodes. We note that while social strength’s effectiveness is
reduced, it still manages to properly discriminate between existing
and non-existing links up to ~64.5% of the time in TF2 and 67.1% of
the time in IE. While it is expected to see a decrease in performance
when we cross the horizon of observability of 2 hops [13], our results
show that social strength preserves a quantification of the strength of
indirect social ties.

4.3. Relevant information for measuring indirect ties

As Table 2 shows, the social strength metric SS outperforms the
other three metrics in both 2- and 3-hop social distance. Two ways in
which SS differs from the other three metrics is that it considers the
following attributes that the other metrics do not:

 SS considers the strength of direct ties, that is, the weights on the
edges. More importantly, SS includes edge weight even in a longer
social distance that is seldom taken into account by other metrics.
 SS considers that relationships are inherently asymmetric. Specif-
ically, SS uses in its calculation the fact that for a direct tie A-B,



192

Table 2

X. Zuo et al./ Computer Communications 73 (2016) 188-199

Results of link prediction between pairs of n-hop distant users. Adamic-Adar: AA, Jaccard: ], Social Strength: SS. Only

the SS and Katz metrics are applicable ton = 3.

Classifier n  Network  Metric  Precision Recall F-measure AUC
Decisiontree 2 TF2 SS 0.746 + 0.01 0.741 £ 0.08  0.744 + 0.06  0.765 =+ 0.09
AA 0.714 +£ 0.02 0708 + 0.03  0.710 + 0.04  0.712 + 0.08
] 0.511 + 0.01 0.514 + 0.06  0.502 + 0.07 0.510 + 0.08
Katz 0.697 £ 0.01  0.692 + 0.01 0.691 £+ 0.02  0.684 + 0.05
IE SS 0.843 + 0.01  0.840 + 0.02  0.837 + 0.02  0.872 + 0.01
AA 0.697 + 0.01  0.693 £ 0.02  0.692 + 0.06  0.695 + 0.04
] 0.698 + 0.01 0.687 + 0.04 0.682 + 0.04  0.690 + 0.07
Katz 0.663 + 0.03  0.660 + 0.02  0.659 + 0.02  0.659 + 0.01
Decisiontree 3 TF2 SS 0.630 + 0.02  0.627 + 0.01  0.624 + 0.01  0.644 + 0.03
Katz 0.518 + 0.07  0.621 &+ 0.05 0.542 + 0.03  0.537 + 0.03
IE SS 0.659 + 0.01  0.650 + 0.01  0.646 + 0.01  0.664 + 0.01
Katz 0.628 = 0.05 0.609 + 0.06  0.601 + 0.06  0.623 + 0.07

Table 3

Results of link prediction between pairs of n-hop distant users. Symmetric Social Strength: SymSS, Unweighted
Social Strength: UWSS. Results of SS are copied from Table 2 for comparison convenience.

Classifier n Network Metric  Precision Recall F-measure AUC
Decisiontree 2 TF2 SS 0.746 + 0.01  0.741 + 0.08  0.744 + 0.06  0.765 + 0.09
UWSS 0703 £ 0.04 0702 +£ 0.04 0.702 £ 0.05 0.739 + 0.06
SymSS  0.687 + 0.02  0.681 + 0.03  0.679 + 0.04  0.676 + 0.08
IE SS 0.843 + 0.01 0.840 + 0.02  0.837 £ 0.02  0.872 + 0.01
UWSS  0.686 + 0.01 0.681 + 0.06 0.678 + 0.04 0.703 + 0.01
SymSS  0.666 + 0.01  0.664 + 0.02 0.664 + 0.06  0.668 + 0.04
Decisiontree 3 TF2 SS 0.630 + 0.02  0.627 £ 0.01  0.624 + 0.01  0.644 + 0.03
UWSS  0.638 +£ 0.03 0611 £ 0.03 0.561 + 0.04 0.625 + 0.03
SymSS  0.609 + 0.05 0.580 + 0.05 0550 + 0.08  0.585 + 0.06
IE SS 0.659 + 0.01  0.650 + 0.01 0.646 + 0.01  0.664 + 0.01
UWSS  0.671 + 0.01  0.650 + 0.03  0.638 + 0.04  0.641 + 0.04
SymSS  0.640 + 0.05 0.634 + 0.06 0.634 + 0.06  0.637 + 0.07

where A has a degree d4 and B has a degree dg, with dg <<dj,
A is more important to B than B may be for A. This asymmetry
translates easily to larger distances as well.

Next we investigate empirically how each of these two attributes
affects the accuracy in quantifying the indirect tie strength between
two nodes.

4.3.1. Experiments

To isolate the effects of edge weights and asymmetry, we intro-
duce two modifications to the social strength metric SS in the follow-
ing ways:

» We consider an unweighted social graph for the definition of SS in
Eq. 1. Consequently, all edge weights are set to 1. We refer to this
modified, unweighted social strength measure as UWSS.

We consider a further modification of USS in which the asymme-
try is removed. Note that asymmetry in the definition of the social
strength metric is caused by normalization, that is, a user’s inter-
actions are normalized to the total number of interactions that
the user has with other individuals (Eq. 2). To isolate the effect
of asymmetry, we define the metric SymSS based on SS, in which
NW =1.

We repeat the previous experiments with the simplified metrics
UWSS and SymsSS using the same experimental setup as described
earlier in Section 4.2.1. However, instead of SS, we use the scores cal-
culated from UWSS and SymsSS as features in the prediction task.

4.3.2. Results

The results shown in Table 3 allow us to make the following two
observations. First, compared to the prediction results of SS in Table 2,
the prediction performance of unweighted social strength’s (UWSS)
declines throughout both datasets and in both 2- and 3-hop social

distance, and the reduction in performance reaches 20.4% (2 hops link
prediction of IE). This fact confirms that edge weight, as a good social
relationship proxy, is useful for evaluating social ties more accurately.

Second, for both datasets and social distances, predictions based
on asymmetric social relationships (UWSS) achieve better perfor-
mance than SymsSS that simply treats social relationships equally.
Consequently, using local graph topology information, as captured in
UWSS, improves the estimation of indirect tie strength.

To conclude, compared to the social strength metric (SS) that uses
the edge weights and in an asymmetrical, normalized way, the de-
creased performance of the unweighted version (UWSS) and the sym-
metrical version (SymSS) verifies that edge weights and asymmetry
should be considered in a tie strength measurement. These are the
very merits of our social strength metric and they lead to increased
accuracy of link prediction.

5. Predicting information diffusion paths

Information diffusion is a fundamental process in social networks
and has been extensively studied in the past (e.g., [36-40]). In fact,
some studies have shown that the evolution of a network is affected
by the diffusion of information in the network [39] and vice versa
[38]. Our results from the previous study showed that indirect ties
affect the process of network evolution [41]. In this section we go a
step further and investigate if the strength of indirect ties can predict
diffusion paths between distant nodes in the graph. That is, depart-
ing from the step-wise diffusion processes examined in the past, and
given that a user received a piece of information at time t, can we pre-
dict which other users will receive this information at t +n (n > 2)?
Predictions over such longer intervals could help OSN providers cus-
tomize strategies for preventing or accelerating information spread-
ing. For example, to contain rumors, OSN providers could block
related messages sent to the susceptible users several time steps
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before the rumor arrives, or disseminate official anti-rumor messages
in advance. Similarly, marketers could accelerate their advertise-
ments spreading in the network by discovering who will be the next
susceptible to infection. This n-hop path prediction can supply more
time for decision makers to contain harmful disseminations, and to
choose users who are pivotal in information spreading for targeted
advertisements.

This section describes our experiments of applying the social
strength metric to information diffusion path prediction.

5.1. The Higgs-Twitter dataset

The Higgs dataset includes a 7-day scientific rumor diffusion pro-
cess on Twitter in 2012 [42]. The announcement of the discovery of
Higgs boson on Twitter triggered a large-scale information propa-
gation about this topic. The dataset was collected between 1st and
7th July 2012, including four diffusion periods (before, during and af-
ter the announcement) of the event. Only the messages posted on
Twitter about this discovery containing keywords or hashtags re-
lated to the Higgs event are considered as spread information. As
retweets are highly relevant for the viral propagation of information
[43], we use them to capture the process of diffusion. Additionally,
our social strength is based on social ties thus follower-followee (FF)
relationships are necessary to estimate the strength of social ties be-
tween users. We combine this relationship information with retweet-
ing information and construct a follower-followee-retweet (FF-RT)
network, which is the intersection of follower-followee and retweet
networks. We apply our social strength on the FF-RT network to pre-
dict information diffusion paths. The statistics of all three networks
are shown in Table 4.

5.1.1. Predicting diffusion paths via social strength

The strength of an indirect tie decreases with the length of the
shortest path between the two individuals and people can be influ-
enced up to 3 hops. Thus, we set our experiments up to 3 hops. A
single node is chosen as the original source of information at t;. We
then predict the nodes that will accept the information at t, (n = 2 or
3) with the knowledge from t.

In information diffusion, users are classified into three categories:
seeds, information spreaders and non-spreaders. Thus, we divided all
users in the Higgs-Twitter dataset into seeds who are the source of
diffusion and never retweeted other users’ messages during the dif-
fusion process; information spreaders are users who retweeted other
users’ messages after exposure to them; non-spreaders are users who
exposed to the information but did not retweet messages. Based on
the classification of users, we extracted 2-hop and 3-hop diffusion
paths from the dataset as ground truth, i.e., each directed 2(3)-hop
diffusion path begins from a seed and ends with a spreader. Note that
on the diffusion paths all users are spreaders. To do a binary classi-
fication (i.e., diffused or not), we also extracted 2- and 3-hop non-
diffusion paths, which begin from seeds but end with non-spreaders
and not all users on the path are spreaders. In our problem, we try
to use indirect ties to predict end recipients status, without know-
ing the status of intermediary nodes. Thus, intermediary nodes could
have two statuses (spread the information or not), i.e., nodes between
seeds and end users could be either spreaders or non-spreaders. Once
we extracted the ground truth, we then use social strength to predict

Table 4

whether a path is a diffusion path or a non-diffusion one. We calcu-
late social strength values between seed and its n-hop nodes, then
use the value as a feature for prediction.

In the Higgs-Twitter dataset, 22,262 users are seeds, and
204,709,636 are 2-hop non-diffusion paths while only 10,619 are dif-
fusion paths. For 3-hop paths, 290,553,709 are non-diffusion paths
and 215,445 are diffusion paths. To handle this imbalance, we under
sample non-diffusion paths to make both types of paths appear with
the same frequency.

5.2. Results

We compare the prediction results with the ground truth ob-
tained from the Higgs event diffusion process to verify the effective-
ness of the social strength in predicting diffusion paths. We eval-
uate our method using accuracy, sensitivity and specificity [44]. To
better demonstrate social strength’s effective power on inferring dif-
fusion processes, we compare the social strength prediction perfor-
mance with the three other metrics (Jaccard Coefficient, Adamic-Adar
and Katz) introduced in Section 4.1. Note that in the Higgs-Twitter
dataset, users’ retweet behavior happened during the diffusion pro-
cess, and users’ interaction information before diffusion is not avail-
able, which means all graphs are unweighted graphs. Therefore, we
use the unweighted social strength (UWSS) metric introduced in
Section 4.3 instead of the weighted one. Table 5 presents the pre-
diction results in a 2- and 3-hop social distance, respectively. As both
Jaccard Coefficient and Adamic-Adar metrics are restricted to predict
within 2 hops, thus, only social strength and Katz results appear for
3 hops. We see that for both 2- and 3-hop path predictions, overall
the accuracies of the social strength metric are higher than the other
three metrics’ in most of the scenarios, reaching a maximum of 0.753
with social strength metric in the 2-hop path prediction. The only ex-
ception occurs with 3-hop paths prediction where Katz shows minor
advantage than social strength. Although 3-hop predictions show de-
creased accuracy compared to 2-hop results, they remain above 0.50.

From all these results, we conclude that indirect ties have poten-
tial in controlling the flow of information in the network that should
not be ignored. More importantly, our social strength, as an indirect
tie measurement, is useful to predict who will be the spreader, or
along which paths information propagates, at least 2-3 steps before
a susceptible node is even in contact with a spreading node.

6. Using social strength in friend-to-friend storage systems

F2F systems are distributed systems where social incentives en-
courage users to provide resources from their local machines to their
friends. For example, Tribler [45] is a friend-based P2P file sharing
system, which relies on friends’ similar taste in content to encour-
age altruistic behavior; Turtle [46] leverages users’ pre-existent trust
relationships to supply safe sharing of sensitive data.

Although a promising alternative to cloud-based data backup, F2F
storage systems were shown to suffer from two significant limita-
tions. First, users with a small set of friends are penalized by lack
of available storage for their needs, resulting in low resource utiliza-
tion [4]. Second, friends are typically in close geographical proximity,
and thus their online times are synchronized, leading to high unavail-
ability to their friends’ data [14]. These concerns can intuitively be

The statistics of networks for diffusion paths predictions. ACC: average clustering coefficient and OT:

observation time.

Networks Nodes Edges ACC Diameter  OT
Follower-followee (FF) 456,631 14,855,842 0.1887 9 N/A
Retweet (RT) 256,491 328,132 0.0156 19 7 days
Follower-followee-retweet (FF-RT) 254,872 320,467 0.0155 19 N/A
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Table 5

Results of link prediction between pairs of n-hop distant users. Adamic-Adar: AA, Jaccard: ], Unweighted Social Strength: UWSS. Only

the UWSS and Katz metrics are applicable to n = 3.

Network n  Classifier Metric  Precision Recall F-measure AUC
Higgs-Twitter 2 Decision tree UWSS 0.692 + 0.001 0.651 + 0.003  0.631 + 0.004  0.653 + 0.006
AA 0.616 + 0.005  0.585 + 0.008  0.555 & 0.005  0.642 + 0.004
] 0.621 + 0.001 0.621 + 0.001 0.620 + 0.004  0.621 + 0.002
Katz 0.500 + 0.000  0.500 + 0.000  0.405 & 0.000  0.500 =+ 0.000
Logistic regression ~ UWSS 0.695 + 0.002  0.674 + 0.002  0.664 + 0.002  0.753 + 0.001
AA 0.521 + 0.001 0.515 &+ 0.001  0.480 =+ 0.001 0.510 + 0.002
] 0.619 + 0.001 0.611 £ 0.001 0.604 + 0.001 0.678 + 0.001
Katz 0.726 + 0.004  0.502 + 0.000  0.339 + 0.000  0.502 + 0.000
3 Decision tree UWSS 0.695 + 0.037  0.566 + 0.026  0.471 + 0.049  0.578 + 0.029
Katz 0.500 + 0.001 0.50 + 0.001 0.405 + 0.001  0.500 =+ 0.001
Logistic regression ~ UWSS 0.637 + 0.126 0.609 + 0.103 0.581 + 0.114 0.623 + 0.120
Katz 0.606 + 0.073  0.589 + 0.070  0.552 + 0.102 0.628 + 0.063

addressed by leveraging social strength (SS;) to expand the set of re-
sources while still using a measure of social incentives.

In this section, we verify whether our social strength metric can
improve the service performance in F2F storage systems. To maintain
a meaningful value of social incentives, we restrict our evaluations to
n =2 and n = 3. Our objectives are:

o To understand if SS, expands the size of candidate sets.
o To evaluate the benefits of using SS, to improve data availability
in F2F systems.

6.1. Social strength expands users’ friendsets

In the following, we experimentally show how social strength can
be used for expanding users’ friendsets in the system.

6.1.1. Friendset expansion algorithm

Some socially aware systems have explored indirect ties among
users in the design of their systems. Some previous work directly in-
volves all of a user’s friends-of-friends (or even longer distant rela-
tionships) [45]. This naive friend sets expansion scheme could en-
large many users’ friend sets, specifically in networks where most
of their nodes’ shortest paths are larger than the length of the ex-
pansion. However, not every 2- or 3-hop distant friend has enough
incentives, for example, for storing data, hosting computation tasks,
or routing messages. Therefore, instead of directly involving all of a
user’s indirect ties within some radius, we use the quantitative power
of the social strength metric, SS;, to select socially “close” distant
nodes, that is, indirect connections with comparable social strength
with the user’s direct (1-hop) friends. However, even a user’s indi-
rect contacts could have no willingness to share their resource. To
consider this uncertainty of resource sharing among indirect ties, we
introduce a degree of uncertainty u (u € [0, 1]) into the estimation of
trust based on the expansion algorithm in [47].

The expansion algorithm follows three steps:

o For each user i, find the weakest direct social contact p such
that NW (i, p) = min [NW(, j)]. Let this minimum normalized
jeNeigh(i)

weight be referred to as 6;.

e For each m of i’s n-hop friends, if SSy(i, m) > 6;, the user m is in-
serted in the candidate peer set of i. Intuitively, this ensures that
the social strength between i and m, located at distance n in the
social graph, is at least as strong as i's weakest direct tie.

o For each users’ n-hop friend peer set, only 1-u of this set’s peers
are randomly selected as trust candidates for resource sharing.

We note that the algorithm expands each candidate set using a
user-specific, thus local, threshold. Such local thresholds are needed
in the distributed setting of a F2F system.
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Fig. 3. Candidate set expansion via SS, (only 2-hop friends) and SS; (only 3-hop
friends): percentage of expanded users with different values of uncertainty in CA-I,
CA-Il and TF2.

6.2. Datasets

The online game interacting friends network, TF2 (introduced
in Section 3) also supplies each player’s online/offline status that
can be used for the data availability experiments presented later, in
Section 6.4. However, the face-to-face contact network of Infectious
Exhibition (IE) (used in Section 3) is an ephemeral offline social net-
work, which does not include any users’ online activities. Thus, the
IE network is not suitable for our later experiments, and thus we
did not use it for the evaluation of the friendset expansion. Instead,
we use two co-authorship networks CA-I and CA-II. Nodes in this
graph represent authors and are labeled with the author’s affiliation.
We map each author’s affiliation information to a timezone, which
can be further used in simulating users’ online/offline behaviors in
Section 6.4.1. To expand users’ peer sets with uncertainty, we tested a
wide range of uncertainty to cover possible cases in trust estimation,
ie,u=0.1-0.28.

6.3. Expansion results

Since the most intuitive advantage of our mechanism is an in-
crease in the number of storage candidates, we begin by evaluating
how much the candidate set is expanded. We thus implemented SSy(i,
m) presented in Section 2 and report the size of the candidate set se-
lected based on the expansion algorithm presented in Section 6.1.1 on
the three networks described in Section 6.2.

Fig. 3 shows how candidate sets are expanded with 2- and
3-hop social distance respectively in each of our three networks. For
2-hop expansion without uncertainty, 63.62% users in CA-1l and 36.6%
of players in TF2 expanded their candidate sets. Even in the sparse
CA-1, 34.19% users augmented their friend sets. After adding uncer-
tainties in the friendset expansion algorithm, the percentage of ex-
panded users decreases. But this only happens when the degree of



X. Zuo et al. / Computer Communications 73 (2016) 188-199 195

uncertainty (u) is larger than 0.6, that is more than 60% of selected
peers refuse to share their resource. The degree of uncertainty barely
influences expansions when the uncertainty value is smaller than 0.6.

When considering the expansion (no uncertainty is considered)
brought in by 3-hop distant nodes p who satisfy the requirement that
SS5(i, p) > 6(i) the expansion is still taking place in all three networks:
even in the sparse network CA-I, 10.6% users augment their friendsets
and about 1% users have expanded their candidates with more than
five friends. The denser network CA-II has more than 50% of users
expanding their candidate sets, and TF2 has 27.2% (with the num-
ber of expanded 3-hop friends being 1,032). With the increase of un-
certainty, the sparse CA-I has more percentage of users reduce their
expanded peers, from 10.67% with zero uncertainty to 6.4% with un-
certainty value of 0.8, compared to denser CA-II and TF2. However, 3
hops’ expansion declines slower than 2 hops. This is because a user
could be expanded with more candidates in 3 hops than 2 hops then
even a high degree of uncertainty is added, the user still has at least
one peer to expand his friendset.

All in all, as expected, 3-hop augmentation is not as strong as 2
hops’ since as the social distance increases, the social strength weak-
ens. Yet a number of users can still recruit more peers when increas-
ing the social distance. In addition, if users have a large number of
peers for resource sharing, a small (or median) degree of uncertainty
seldom affects friendset expansions. Thus, using social strength for
recruiting peers indirectly connected in the social graph augments
users’ peer-sets and potentially solves problems caused by the lim-
ited number of friends in F2F systems.

6.4. Expanded friendsets improve data availability

Expanding the candidate set is a necessary but insufficient solu-
tion for improving the performance of F2F systems. In particular, as
shown in the context of F2F storage systems, F2F service availability
depends on user online activity patterns [14,48].

In this section we show that a larger resource candidate set can
significantly improve data availability in F2F systems. We stress that
we do not propose a cohesive mechanism that improves the perfor-
mance of F2F systems. Instead, we focus on exploring the potential
of using social strength (via the expansion algorithm) in F2F solu-
tions. Thus, the following sections show that data availability under a
previously proposed replica allocation strategy increases significantly
compared with “traditional” 1-hop F2F. In the following section, our
augmented candidate (friends) sets refer to users that have expanded
their friend sets with our expansion algorithm up to 3-hop social
distance.

6.4.1. Online presence behavior

We simulate users’ online presence and data placement to esti-
mate file availability in F2F storage systems with service candidate
sets augmented by social strength. To estimate peer availability, we
augment each network with online presence empirically deduced
from real traces. For CA-I and CA-II, we fit a distribution to online
presence information extracted from empirical Skype traces pre-
sented in [14]. The distribution was applied to each author by shifting
it to match the timezone of his or her affiliation. As seen in Fig. 4,
which plots the percentage of users online per hour of the day, at least
25% of nodes are online at any given time, with the peak and valley
occurring at about 1:00 AM and noon, respectively. For the TF2 net-
work, we use one month of recorded playing times. We plot the cor-
responding aggregate distribution in Fig. 5, which shows each week’s
online presence per hour for May 2011. The distribution shows clear
diurnal and domain-specific activity patterns. As noted in [22], gam-
ing is not an activity conducive to multi-tasking. Therefore, we see
an elevated level of presence on weekends and during non-working
hours. Although peak presence occurs consistently in the early
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Fig. 4. Online behavior of nodes in empirical traces of Skype.

20 The first week of May

online users (%)
S}
S

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

30 The second week of May

20 1
10

online users (%)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

The third week of May

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

30 The fourth week of May

0 L L L L L L
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

Hour

online users (%) online users (%)

Fig. 5. Online behavior of players per hour of the week in May for TF2.

morning with more than 20% of users online, there are almost no
users online at noon.

To determine whether the social strength selection mechanism
improves the availability of storage resources, we measure the per-
centage of a node’s selected candidates available throughout the day,
by binning online presence into 1 hour time slots. We also map each
user’s affiliation to a timezone, then match the timezone to an hour of
a day. If a user is online at some point during a time slot, we mark him
as available for that time slot. For CA-I and CA-II networks, in each
time slot, we randomly select users to be online but keep the same
percentage of online users from the Skype trace. We repeat this ran-
dom sampling process for multiple iterations to obtain stable results.
Methods that store files in a distributed fashion such as erasure codes
require k storage sites to be available for retrieving a file [49]. Thus,
we also vary the number of friends necessary for a node’s storage
needs to be met under such storage schemes. We then measure the
fraction of nodes who have enough candidates online to meet their
needs when selected by either the pure F2F approach or the social
strength mechanism.

6.4.2. Data placement

Replicating data across all friends allows a user to get maximum
achievable data coverage but results in high costs for storing and
transferring data to multiple copies, in particular for users with a
large number of friends. So we adopt the greedy heuristic data place-
ment algorithm proposed in [48] to backup files with a subset of
friends who can cover the maximum online time. In this heuristic,
to get maximum possible time slots coverage (e.g., 24 hours), users
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Fig. 6. Average fraction of available candidates per hour for CA-I, and u is the parameter for uncertainty. For brevity, only results of u = 0.2 are presented since u = 0.4 performs

similarly with 0.2.

first pick a set of friends who are able to cover at least one unique
time slot that other friends cannot cover. If this set of friends cannot
cover all the time slots, then select other friends to cover the remain-
ing uncovered time slots and keep doing this until all the time slots
are covered or no friends can cover the uncovered time slots.

6.4.3. Data availability

Some methods store files in a distributed fashion such as erasure
codes that require k storage sites to be available for retrieving a file
[21]. We vary the number of friends necessary for a node’s storage
needs to be met under such storage schemes. We measure the frac-
tion of nodes who have enough candidates online to meet their needs
when selected by either the pure F2F approach or the social strength
mechanism. We compare three scenarios: 1) storage candidates se-
lected only from direct social contacts; 2) storage candidates selected
from the SS;-based expanded candidate set,withn =2 and 3) n = 3.
Figs. 6, 7 and 8 plot the average fraction of users whose storage needs
are met with the requirement that at least k < {1, 3, 6} candidates
are online at a given time for the co-authorship networks and TF2,
respectively. Error bars represent the 95% confidence interval on av-
erage. Three scenarios are compared: 1) storage candidates selected
only from direct social contacts, storage candidates selected from the
SSn-based expanded candidate set, with2)n = 2 and 3) n = 3. Arange
of different degrees of uncertainty (u) is considered, i.e., u = 0.1 - 0.8.

Using the expanded candidate set results in higher service avail-
ability. In particular, when 6 friends are needed to cooperate on com-
pleting a storage task, about 4 times higher data availability can be
reached in CA-I, 1.6 times higher in CA-Il and 6.5 times higher in TF2.
Further, the social strength mechanism does not degrade as quickly
as the 1-hop selection when increasing the number of friends that
are required to be online simultaneously. We also see that for sparse

networks like CA-I, social strength over larger distance n improves
data availability, especially when larger number of friends are re-
quired to be online simultaneously.

Finally, CA-II shows higher levels of availability than CA-I under
the same conditions. This is likely because CA-II has more users with
larger expanded candidate sets under the social strength mechanism
than CA-I (Fig. 1). Moreover, we note that CA-I shows better perfor-
mance than TF2 under the same requirements. In the scenario that
requires at least one friend online, 73% of users in CA-I have candi-
dates available at midnight, compared to only 20% of TF2 users. One
explanation could be the limited number of concurrent players the
gaming server supports (at most 32 simultaneous players). Another
explanation is that CA-I users are spread out over multiple timezones,
while most of the TF2 users are geographically close to the server to
minimize latency, and thus are time synchronized in their gaming
patterns.

For scenarios with uncertainty, when uncertainty is 0.2 and 0.4,
data availability experiences almost no change in all three datasets.
Even when the uncertainty increases to 0.6, less than 15% of data
availability is reduced. With the uncertainty degree increased to 0.8,
data availability is reduced at most by 23%.

To conclude, using datasets from co-authorship networks and a
video gaming community, we show that the social strength-based al-
gorithm more than doubles the set of storage candidates potentially
motivated by social incentives, and increases data availability by up
to three times compared to the pure F2F approach.

7. Related work

In sociology, two theories are closely related to the properties of
social ties. First, the theory of homophily [26] postulates that people
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Fig. 7. Average fraction of available candidates per hour for CA-II, and u is the parameter for uncertainty. For brevity, only results of u = 0.2 are presented since u = 0.4 performs
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tend to form ties with others who have similar characteristics. More-
over, a stronger relationship implies greater similarity [8]. Second, the
principle of triadic closure [50] states that two users with a common
friend are likely to become friends in the near future. The triadic clo-
sure has been demonstrated as a fundamental principle for social net-
work dynamics. For example, Kossinets and Watts [51] showed how
it amplifies homophily patterns by studying the triadic closure in e-
mail relations among college student. Kleinbaum [52] found that per-
sons with a typical careers in a large firm tend to lack triadic closure
in their email communication network and so have their brokerage
opportunities enhanced.

Since Granovetter [8] introduced the notion of strength of ties
in social networks, there have been many studies on tie strength
measurement. Gilbert and Karahalios [6] modeled tie strength as a
combination of social dimensions such as intensity, intimacy, du-
ration, and structure. Crandall et al. [53] investigated the exis-
tence of social ties between people from co-occurrence in time and
space on Flickr and discovered that even a small number of co-
occurrences indicate a high probability of an existing tie between
two users. Likewise, Kahanda and Neville [5] developed a super-
vised learning predictor that classifies a link in OSNs as either a
weak or strong tie via features from user profiles, graph topology,
transactional connectivity and network-transactional connectivity
features.

However, these methods either need extra information (e.g., users’
profiles, the message content or users’ geo-locations) or adopt com-
plex models that cannot be implemented in a decentralized fash-
ion. More importantly, most previous methodologies simply treat
users’ relationships symmetrically. Without asymmetric discrimi-
nation, it is difficult to accurately capture the strength of social
ties [21].

Social networks as a channel for people to share information have
been studied extensively in the context of information diffusion, es-
pecially the role of tie strength in diffusion. Aral et at. [ 54| pointed out
that whether or not information is delivered through a tie depends on
the tradeoff between structure diversity and “bandwidth” (interac-
tion frequency). Grabowicz [55] empirically observed that intermedi-
ary social ties are a vital component in information diffusion of online
social networks. Bakshy et al. [56] compared the role of strong and
weak ties in information propagation and found that weak ties dom-
inate the propagation process instead of strong ties that were orig-
inally believed. Levin et al. [57] surveyed three companies to prove
that weak ties, providing access to non-redundant information, are
more useful for information diffusion. Although most of these stud-
ies concentrated on directly connected social ties, they provide foun-
dations for our study and motivate us to investigate the relationship
between indirect ties and information diffusion.

This work provides an indirect tie metric that only needs graph
topology information and can be implemented in a decentralized
fashion. Most importantly, this work contributes the validation of the
social metric and demonstrates its value via proof-of-concepts appli-
cations that use it.

8. Summary and discussions

In this paper, we introduced a social strength metric to measure
the strength of indirect social ties by considering both the intensity of
interactions and the number of connected paths. We showed that our
metric is effective in predicting links formation (can achieve 0.881
prediction accuracy), indicating that it is an accurate quantification
of the intensity of an indirect social relationship.
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Data Availability for TF2
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Fig. 8. Average fraction of available candidates per hour of the week for TF2, and u is the parameter for uncertainty.

Further, we proved our proposed metric’s applicability to two so-
cially informed applications: predicting information diffusion in a so-
cial graph and friend-to-friend storage sharing systems. Based on em-
pirical data, our experimental evaluations demonstrate that using the
social strength metric is beneficial in both cases. First, social strength
accurately predicts information diffusion paths at least 2 steps ahead,
which enables intervention mechanisms for rumor squelching and
targeted information injection. Second, for the average user in the so-
cial graph, it helps identify indirectly connected peers with whom the
user has a significant social strength that could act as social incentive
in a resource sharing environment, thus significantly increasing the
pool of resources available to the user. Third, because indirect ties di-
versify the pool of users (in this case, by covering more time zones),
resource availability increases significantly.

A variety of socially aware applications can benefit from the social
strength metric. For example, link prediction based on social strength
could discover more potentially useful contacts and improve link rec-
ommendation accuracy. Automatically setting default privacy con-
trols based on social strength is likely to be more accurate than using
graph distance alone. Employing social strength in graph partitioning
will have the benefits of relying on local computation, thus allowing
for more decentralized and scalable algorithms. Finally, in decentral-
ized OSNs, users’ augmented social strength-based friendsets could
provide a more efficient and privacy-guaranteed technique to propa-
gate updates in the presence of churn.

This work is a first step in understanding the value of and the
methodology for quantifying the strength of indirect social ties. In ad-
dition to exploring the applicability space, there are aspects related
to privacy and security that need to be understood. Intuitively, be-
cause of the local exploration of one’s social neighborhood for com-
puting social strength, the risks are contained, especially compared to

approaches that require the global graph. However, a formal study of
this topic is required for building a practical framework that enables
the implementation and adoption of the social strength metric for in-
direct ties.
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