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a b s t r a c t

While direct social ties have been intensely studied in the context of computer-mediated social networks,

indirect ties (e.g., friends of friends) have seen little attention. Yet in real life, we often rely on friends of

our friends for recommendations (of good doctors, good schools, or good babysitters), for introduction to

a new job opportunity, and for many other occasional needs. In this work we attempt to 1) quantify the

strength of indirect social ties, 2) validate the quantification, and 3) empirically demonstrate its usefulness for

applications on two examples. We quantify social strength of indirect ties using a measure of the strength of

the direct ties that connect two people and the intuition provided by the sociology literature. We evaluate the

proposed metric by framing it as a link prediction problem and experimentally demonstrate that our metric

accurately (up to 87.2%) predicts link’s formation. We show via data-driven experiments that the proposed

metric for social strength can be used successfully for social applications. Specifically, we show that it can be

used for predicting the effects of information diffusion with an accuracy of up to 0.753. We also show that

it alleviates known problems in friend-to-friend storage systems by addressing two previously documented

shortcomings: reduced set of storage candidates and data availability correlations.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Mining the huge corpus of social data now available in digital

format has led to significant advances of our understanding of social

relationships and behavior [1] and confirmed long standing results

from sociology on larger datasets. In addition, social information

(mainly relating people via declared relationships on online social

networks or via computer-mediated interactions) has been success-

fully used for a variety of applications, from spam filtering [2] to

recommendations [3] and peer-to-peer backup systems [4].

All these efforts, however, focused mainly on direct ties. Direct

social ties (that is, who is directly connected to whom in the social

graph) are natural to observe and reasonably easy to classify as strong

or weak [5,6]. Indirect social ties, though, defined as a relationship be-

tween two individuals who have no direct relation but are connected

through a third person in their social network [7], carry a significantly

larger potential as they facilitate better information dissemination

then direct ties [8] and enable significantly better opportunities [9].

Computer-mediated applications, we conjecture, have a significantly

higher potential in mining and exploiting indirect ties, as the direct
∗ Corresponding author. Tel.: +18137487106.
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ies are likely to be used via the traditional channels through which

ere used for thousands of years.

However, not all indirect ties are valuable or useful, even at short

istances (i.e., 2 hops). For example, a distant acquaintance of a mere

cquaintance is unlikely to have a social incentive for performing a

ersonal favor, such as sharing available storage on his personal com-

uter. Moreover, trust is likely diluted under such conditions. Why

ould a weak distant social contact trust that the data he is asked to

tore is not illegal or malicious? In addition, what works for a user

r an application might not work for another user or another appli-

ation: the indirect tie A − X − B may be strong enough for A to use,

ut not enough for B to use; or it may be strong enough to use for a

ackup application, but not for a social contagion. Therefore, quanti-

ying the strength of an indirect tie is both necessary and non-trivial.

In this paper, we build upon and further adapt a metric called

ocial strength, which we introduced in [10,11], that quantitatively es-

imates the strength of an indirect tie. Our metric uses various ob-

ervations from sociology and builds on the current opportunities

f quantifying the strength of direct ties from computer or phone-

ecorded interactions. We rely on the sociology literature to define

he requirements of such a metric (Section 2). First, since social re-

ationships are asymmetrically reciprocal [12], the social strength of

n indirect tie consequently needs to be asymmetrical as well. Sec-

nd, a friend of many of one’s friends — thus connected via multiple

-hop paths — can potentially be more socially “close” than the friend
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f a friend, connected via only one 2-hop path. Third, the strength of

n indirect tie decreases with the length of the shortest path [13]. In

ection 4 we validate the social strength metric using real datasets.

We demonstrate the usefulness of our metric on two proof-of-

oncept applications. First, in Section 5, we show that the social

trength metric can be used for inferring, and in effect, predicting

nformation diffusion paths, which further implies the influence of

ndirect ties on information flow in network dynamics. Second, in

ection 6, we experimentally show that two main issues identified in

riend-to-friend storage systems, namely reduced candidate sets [4]

nd low availability due to time synchronization among friends [14],

re significantly alleviated by employing our social strength metric

or the recruitment of socially close indirect contacts as storage can-

idates. We discuss our findings and conclude in Section 8.

. Social strength definition

We want to define a metric that quantifies the strength of a social

onnection between indirectly connected nodes in a social network.

he need for such a metric is supported by many sociological studies

nd is also intuitively understood from daily life: friends of friends

re an important resource for information and useful social contacts.

In our attempt to quantify an indirect social tie, we use the follow-

ng observations from sociology and from recent data-driven studies

n computer-mediated social relationships:

O1: The strength of a direct social relationship is related to the

amount of interactions, as shown in [8,15]: the more frequently

persons interact with one another, the more likely they will

form strong relationships. Moreover, interactions among OSN

users were shown to represent more meaningful relations than

just declared relationships [16]. Consequently, in the quantifi-

cation of an indirect social tie, we rely on a numerical represen-

tation of the strength of a direct social tie that can be expressed

as number of interactions, number of shared interests, or other

recordable outcomes, depending on the semantics of the rela-

tionship.

O2: The strength of an indirect tie decreases with the length of

shortest path between the two individuals. This has been

quantitatively observed by Friedkin [13], who concluded that

people’s awareness of others’ performance decreases be-

yond 2 hops. Three degrees of influence theory, proposed by

Christakis et al. [17] states that social influence does not end

with people who are directly connected but also continues to

2- and 3-hop relationships, albeit with diminishing returns.

This theory has held true in various social networks exam-

ined [18,19]. In accordance with these observations, the social

strength metric we propose focuses on 2- and 3-hop relation-

ships with a decreasing value as a function of distance.

O3: Multiple types of social interactions (for example, both profes-

sional collaboration and playing tennis after work) result into a

stronger (direct) relationship than only one type of interaction

[20]. Furthermore, sociology studies [13] observed that the re-

lationship strength of indirectly connected individuals greatly

depends on the number of different direct or indirect paths

connecting them. Therefore, we consider the strength of mul-

tiple shortest paths in our definition of the strength of an indi-

rect social tie.

O4: Typically, social ties between individuals are asymmetrically

reciprocal [21]. Thus, for the directly connected users Alice and

Bob, the importance of their mutual relationship may be dra-

matically different. We want to preserve this asymmetry in

quantifying indirect ties, such that Alice and Charlie, indirectly

connected via Bob, are entitled to have different views about
their indirect tie. T
Therefore, to quantify the social strength of an indirect social tie

etween users i and m, we consider relationships at n social hops

n = 2 or 3), where n is the shortest path between i and m. We assume

weighted interaction graph model that connects users with edges

eighted based on any type of signal (information) that can repre-

ent tie strength of their direct relationships. Assuming that Pn
i,m

is

he set of different shortest paths of length n joining two indirectly

onnected users i and m and N (p) is the set of nodes on the shortest

ath p, p ∈ Pn
i,m

, we define the social strength between i and m from

’s perspective over an n-hop shortest path as:

Sn(i, m) = 1 −
∏

p∈Pn
i,m

(1 −
min

j,...,k∈N (p)
[NW(i, j), . . . , NW(k, m)]

n
)

(1)

This definition uses the normalized direct social weight NW(i, j)

etween two directly connected users i and j, defined as follows:

W(i, j) =
∑

∀λ∈�i, j
ω(i, j, λ)

∑
∀k∈Ni

∑
∀λ∈�i,k

ω(i, k, λ)
(2)

NW(i, j) calculates the strength of a direct relationship by consid-

ring all types of interactions λ ∈ � between the users i and j such as

hone calls, interactions in online games or number of co-authored

apers (observation O3). These interactions are normalized to the to-

al amount of interactions of type λ that i has with other individuals.

his approach ensures the asymmetry of social weight (observation

4) in two ways: first, it captures the cases where ω(i, j, λ) �= ω(j, i, λ)

such as in a phone call graph). Second, by normalizing to the num-

er of interactions within one’s own social circle, even in undirected

ocial graphs, the relative weight of the mutual tie will be different

rom the perspective of each user.

The observations O1, O3 and O4 were incorporated in the defi-

ition of the NW function and naturally carry over in the definition

f social strength from SSn(i, m). Moreover, O3 is additionally imple-

ented by considering the product over all shortest paths p that con-

ect two users. O2 is implemented by considering the weakest link

minimum normalized weight of all direct ties on each path) and by

ividing it with the distance n between the users. The proposed social

trength measure can:

• Quantify the indirect tie strength for nodes indirectly connected

at any social distance.
• Treat indirect ties between two nodes as possibly asymmetric in

strength rather than constraining the values to be equal.
• Be more sensitive to strength differences because it uses both

edge weights and number of paths to calculate a value.
• Be calculated without graph’s global information.

. Datasets

In this paper we use several datasets from different domains.

ur datasets vary from fast, non-profound dynamics to slow pro-

essional networks and more traditional social networks augmented

ith heavy interactions.

Team fortress 2 (TF2) is an objective-oriented first person shooter

ame released in 2007. We collected more than 10 months of game-

lay interactions (from April 1, 2011 to February 3, 2012) on a TF2

erver [22]. The dataset includes game-based interactions among

layers, timestamp information of each interaction, declared rela-

ionship in the associated gaming OSN, Steam Community [23], and

he time when the declared friendship was recorded. The resulting

F2 network is thus composed of edges between players who had at

east one in-game interaction while playing together on this particu-

ar server, and also have a declared friendship in Steam Community.

his dataset has several advantages over the Steam declared OSN:
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Table 1

Characteristics of the social networks used in our experiments. APL: average path length, CC: clustering coefficient, EW:

range of edge weights, OT: observation time.

Networks Nodes Edges APL Density CC Assortativity Diameter EW OT

TF2 2,406 9,720 4.2 0.0034 0.21 0.028 12 [1–21,767] 300 days

IE 410 2,765 3.6 0.0330 0.45 0.225 9 [1–191] 90 days

CA-I 348 595 6.1 0.0098 0.28 0.173 14 [1–52] N/A

CA-II 1,127 6,690 3.4 0.0100 0.33 0.211 11 [1–127] N/A
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Fig. 1. CDF of the degree, weight and clustering coefficient for the four networks used.
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First, it provides the number of in-game interactions that can be used

to quantify the strength of a social tie. Second, it provides players’ on-

line/offline status that we use later in the experiments in Section 6.

Third, each interaction and friendship formation is annotated with

a timestamp, which is helpful for examining the dynamics of links

under formation. Fourth, over a pure in-game interaction network, it

has the advantage of selecting the most representative social ties, as

proven in [22]. In this network of 2.4k nodes and 9.7k edges, edge

weights represent the number of in-game interactions.

Infectious exhibition (IE) held at the Science Gallery in Dublin,

Ireland, from April 17th to July 17th in 2009 was an event where par-

ticipants explored the mechanisms behind contagion and its contain-

ment. Data were collected via radio-frequency identification (RFID)

devices that recorded face-to-face proximity relations of individuals

wearing badges [24]. Each interaction was annotated with a times-

tamp. We translated the number of interactions into edge weights.

Co-authorship networks (CA-I and CA-II) are extracted from Ar-

netMiner1 and are based on papers co-authored by Computer Science

researchers [25]. Nodes in these graphs represent authors and edges

between two nodes are weighted with the number of papers co-

authored by the two authors. From this dataset we extracted the two

largest connected components (see Table 1 for details). Co-authorship

I (CA-I) is a small connected component and a relatively low den-

sity. Co-authorship II (CA-II) is the largest connected component of

the ArnetMiner co-authorship network, having a density one order

of magnitude higher than CA-I. Because the dataset does not include

time publication information, the observation window is unspecified

in Table 1.

A brief characterization of the networks appears in Table 1. Fig. 1

plots the degree, edge weight, and clustering coefficient distributions

for each network. We note that IE is a smaller but much denser net-

work, while TF2’s interactions frequency is much higher than the

other networks’, as shown by the range of edge weights. Even though

CA-I and CA-II are extracted from the same OSNs, they have differ-

ent degree and clustering coefficient distributions. Since they contain

timestamps of the links formed and interactions between users, we

use TF2 and IE networks to validate our proposed social strength met-

ric by studying link formation in Section 4. We use the TF2 and CA

networks to study diffusion and peer expansion in Sections 5 and 6,

respectively, as they are larger, sparser and based on longer lasting

relationships compared to IE’s ad-hoc interactions.

4. Social strength evaluation

In sociology, the theory of homophily [26] postulates that people

tend to form ties with others who have similar characteristics. More-

over, a stronger relationship implies greater similarity [8]. Therefore,

a number of link prediction models that estimate tie strength from

graph structure [27] or interaction frequency and users’ declared pro-

files similarities [28] have been proposed.

To verify that social strength is in fact quantifying the strength

of social ties, we frame it as a link prediction problem. Simply put,

given a pair of users, the link prediction problem asks whether the
1 http://arnetminer.org/

w

J

trength of the tie is strong enough to form a social relationship be-

ween them. Specifically, given a snapshot of a social network, we use

ocial strength values to infer which new relationships or interactions

mong users are likely to occur in the near future. Granovetter put

orth the idea of the “forbidden triad” [8], i.e., a triad where there is a

trong tie between say u and v as well as a strong tie between v and

, but no tie between u and w is extremely unlikely to exist. Under

he theory of triadic closure, forbidden triads will quickly close be-

ause a relationship will form between u and w. Thus, if we can effec-

ively predict edge formations based on the value of social strength,

he implication is that social strength is capturing the strength of ties

etween distant nodes. We compare our results with three other met-

ics used for link prediction.

.1. Compared metrics

We compare three well-established link prediction metrics with

he social strength metric to demonstrate how effective is in link pre-

iction. Many approaches are based on the idea that if two nodes i

nd j have large overlap in their neighbors, they have higher likeli-

ood to form a link in the future. In the following definition, let �(i)

enote the set of node i’s neighbors.

Jaccard coefficient (J) is a commonly used similarity metric that

as proposed by Salton and McGill [29]:

(i, j) = |�(i) ∩ �( j)|
|�(i) ∪ �( j)|

http://arnetminer.org/
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damic-Adar (AA) is a metric that only counts common features by

nverting log frequency of their occurrence [30]:

A(i, j) =
∑

z∈�(i)∩�( j)

1

log|�(z)|
atz defined a metric that sums all possible paths between two nodes

31]:

atz(i, j) =
∞∑

l=1

β l · |Pl
i, j|

l
i, j

is the set of all length − l paths between i and j. Paths are expo-

entially damped by length, so that shorter paths count more heav-

ly. β (β > 0) is a parameter that if set at a very small number, the

easurement is similar to the common neighbors metric that directly

ounts the common friends between two nodes, since more than 2-

op path lengths contribute little to the summation. According to the

xperimental results in [32] (Fig. 3), β = 0.0005 gives better predic-

ion performance than other values. Thus, in the following experi-

ents we set the parameter β to 0.0005. Note that even if a weighted

atz metric is discussed in [32], it is only applicable to 1-hop social

istance that is not suitable to our problem (2- and 3-hop distance),

hus, in this paper, we only conduct comparisons with unweighted

atz metric as described below.

All these metrics give a score that quantifies the strength of the

ocial tie between two nodes. Jaccard and Adamic-Adar are based on

ode neighborhoods while Katz uses the ensemble of all paths be-

ween two nodes. Therefore, Jaccard and Adamic-Adar restrict their

easurements to nodes that are 2-hops away while Katz can be ap-

lied to n-hop (n ≥ 1) social distance, which is comparable to our

ocial strength metric on longer path lengths.

.2. Experiments

As we explained in Section 2, people can be aware of others’ be-

aviors within 2 hops and be influenced by indirect ties up to 3 hops.

hus, we focus our experiments on 2- and 3-hop social distance.

.2.1. Experimental setup

We formalize the link prediction task as a binary classification

roblem that predicts whether an edge exists in the graph or not,

hen two users are 2- or 3-hops away from each other. First, for all

airs of users u and v, we label them with the timestamp of their re-

ationship (tuv), or ∅ in the case that there was no relationship by the

nd of our observation period. Next, we compute the 2- and 3-hop

ocial strength between each u, v pair based on the state of the graph

t time tuv − 1, or in the case of ∅, the final state of the graph.

For example, Fig. 2a indicates the state of the subgraph of nodes

, B, and C at the end of the observation period. When given the pair

, C, whose relationship formed at t , the calculation of their social
3

A

B C

t1

t2

t3

(a)

A

B C

t1

t2

(b)
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D

(d)

ig. 2. Demonstration of a pair of nodes’ relationship status: (a) a pair of nodes, B and

, have a relationship in 2-hop social distance before t3, where t1 < t3 and t2 < t3, and

hey formed a direct relation at t3. (b) a pair of nodes, B and C, have a relationship in

-hop social distance and no direct relation formed (∅) by the end of our observation

eriod. (c) a pair of nodes, C and D, have a relationship in 3-hop social distance before

4, where t1 < t4, t2 < t4, and t3 < t4, and they formed a direct relation at t4. (d) a pair

f nodes, C and D, have a relationship in 3-hop social distance and no direct relation

ormed (∅) by the end of our observation period.

t

w

s

i

4

o

w

f

trength includes the edges AB and AC since they both formed prior

o t3. Conversely, when given the pair A, B, none of the edges are in-

luded in the social strength calculation. A similar scenario of a 3-hop

rediction is depicted in Fig. 2c.

The TF2 network has a timestamp of when a declared relationship

as created, but the IE network only has the timestamp of the first

ecorded face-to-face interaction between two individuals. Thus, for

E, we use this timestamp as a proxy for the creation of a relationship.

For 2-hop social distance, there are 5, 984 pairs in TF2 with tuv �=
, i.e., that had a relationship form prior to the end of the observa-

ion period, and 161,561 pairs with tuv = ∅; 2,475 with tuv �= ∅ and

76, 863 with tuv = ∅ for 3-hop distant users. IE has 1,886 formed re-

ations and 4,111 unformed for 2 hops, and 484 formed relations and

4, 631 unformed for 3 hops. In other words, our datasets are im-

alanced with respect to formed relationships and no relationships

∅). There are two common approaches for dealing with imbalanced

ata classifications: under-sampling [33] and over-sampling [34]. We

hose to under-sample users with no relationships, thus in our ex-

eriment they appear at the same empirical frequency as the formed

elationships.

.2.2. Results

In our prediction tasks, we use a classic tree-structured machine

earning classifier, Decision Tree (J48), and the scores calculated from

valuation metrics as features. Note that because we treat social

elationships asymmetrically, social strength outputs two different

cores, each coming from the node’s own perspective. We compare

he performance of our social strength to the three tie strength met-

ics introduced in Section 4.1. Four evaluators — Precision, Recall,

-Measure and Area Under Curve (AUC) — are used to evaluate the

rediction performance. Table 2 shows the link prediction results of

odes 2 hops away. We run 10-fold cross validation [35]. Among all

valuations and classifiers, social strength outperforms other metrics

n predicting link existence between pairs of users. We note that the

UC arrives up to 0.765 for the TF2 network and reaches 0.872 for

he IE network when using social strength, greatly outperforming the

ther predictor metrics.

Next, we test the social strength viability at predicting link exis-

ence from 3-hops away as people are influenced by others within

-hop social distance [17]. However, both Jaccard and Adamic-Adar

etrics are restricted to predictions within 2 hops, thus, only social

trength and Katz results appear in Table 2. Social strength outper-

orms Katz might relate to two factors in theory. First, social strength

onsiders edge weights and values ties asymmetrically. Second, in

atz, the same parameter is set for every pair of nodes, which is

ot accurate to capture the difference of tie strength among different

airwise nodes. We note that while social strength’s effectiveness is

educed, it still manages to properly discriminate between existing

nd non-existing links up to ∼64.5% of the time in TF2 and 67.1% of

he time in IE. While it is expected to see a decrease in performance

hen we cross the horizon of observability of 2 hops [13], our results

how that social strength preserves a quantification of the strength of

ndirect social ties.

.3. Relevant information for measuring indirect ties

As Table 2 shows, the social strength metric SS outperforms the

ther three metrics in both 2- and 3-hop social distance. Two ways in

hich SS differs from the other three metrics is that it considers the

ollowing attributes that the other metrics do not:

• SS considers the strength of direct ties, that is, the weights on the

edges. More importantly, SS includes edge weight even in a longer

social distance that is seldom taken into account by other metrics.
• SS considers that relationships are inherently asymmetric. Specif-

ically, SS uses in its calculation the fact that for a direct tie A-B,
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Table 2

Results of link prediction between pairs of n-hop distant users. Adamic-Adar: AA, Jaccard: J, Social Strength: SS. Only

the SS and Katz metrics are applicable to n = 3.

Classifier n Network Metric Precision Recall F-measure AUC

Decision tree 2 TF2 SS 0.746 ± 0.01 0.741 ± 0.08 0.744 ± 0.06 0.765 ± 0.09

AA 0.714 ± 0.02 0.708 ± 0.03 0.710 ± 0.04 0.712 ± 0.08

J 0.511 ± 0.01 0.514 ± 0.06 0.502 ± 0.07 0.510 ± 0.08

Katz 0.697 ± 0.01 0.692 ± 0.01 0.691 ± 0.02 0.684 ± 0.05

IE SS 0.843 ± 0.01 0.840 ± 0.02 0.837 ± 0.02 0.872 ± 0.01

AA 0.697 ± 0.01 0.693 ± 0.02 0.692 ± 0.06 0.695 ± 0.04

J 0.698 ± 0.01 0.687 ± 0.04 0.682 ± 0.04 0.690 ± 0.07

Katz 0.663 ± 0.03 0.660 ± 0.02 0.659 ± 0.02 0.659 ± 0.01

Decision tree 3 TF2 SS 0.630 ± 0.02 0.627 ± 0.01 0.624 ± 0.01 0.644 ± 0.03

Katz 0.518 ± 0.07 0.621 ± 0.05 0.542 ± 0.03 0.537 ± 0.03

IE SS 0.659 ± 0.01 0.650 ± 0.01 0.646 ± 0.01 0.664 ± 0.01

Katz 0.628 ± 0.05 0.609 ± 0.06 0.601 ± 0.06 0.623 ± 0.07

Table 3

Results of link prediction between pairs of n-hop distant users. Symmetric Social Strength: SymSS, Unweighted

Social Strength: UWSS. Results of SS are copied from Table 2 for comparison convenience.

Classifier n Network Metric Precision Recall F-measure AUC

Decision tree 2 TF2 SS 0.746 ± 0.01 0.741 ± 0.08 0.744 ± 0.06 0.765 ± 0.09

UWSS 0.703 ± 0.04 0.702 ± 0.04 0.702 ± 0.05 0.739 ± 0.06

SymSS 0.687 ± 0.02 0.681 ± 0.03 0.679 ± 0.04 0.676 ± 0.08

IE SS 0.843 ± 0.01 0.840 ± 0.02 0.837 ± 0.02 0.872 ± 0.01

UWSS 0.686 ± 0.01 0.681 ± 0.06 0.678 ± 0.04 0.703 ± 0.01

SymSS 0.666 ± 0.01 0.664 ± 0.02 0.664 ± 0.06 0.668 ± 0.04

Decision tree 3 TF2 SS 0.630 ± 0.02 0.627 ± 0.01 0.624 ± 0.01 0.644 ± 0.03

UWSS 0.638 ± 0.03 0.611 ± 0.03 0.561 ± 0.04 0.625 ± 0.03

SymSS 0.609 ± 0.05 0.580 ± 0.05 0.550 ± 0.08 0.585 ± 0.06

IE SS 0.659 ± 0.01 0.650 ± 0.01 0.646 ± 0.01 0.664 ± 0.01

UWSS 0.671 ± 0.01 0.650 ± 0.03 0.638 ± 0.04 0.641 ± 0.04

SymSS 0.640 ± 0.05 0.634 ± 0.06 0.634 ± 0.06 0.637 ± 0.07
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where A has a degree dA and B has a degree dB, with dB <<dA,

A is more important to B than B may be for A. This asymmetry

translates easily to larger distances as well.

Next we investigate empirically how each of these two attributes

affects the accuracy in quantifying the indirect tie strength between

two nodes.

4.3.1. Experiments

To isolate the effects of edge weights and asymmetry, we intro-

duce two modifications to the social strength metric SS in the follow-

ing ways:

• We consider an unweighted social graph for the definition of SS in

Eq. 1. Consequently, all edge weights are set to 1. We refer to this

modified, unweighted social strength measure as UWSS.
• We consider a further modification of USS in which the asymme-

try is removed. Note that asymmetry in the definition of the social

strength metric is caused by normalization, that is, a user’s inter-

actions are normalized to the total number of interactions that

the user has with other individuals (Eq. 2). To isolate the effect

of asymmetry, we define the metric SymSS based on SS, in which

NW = 1.

We repeat the previous experiments with the simplified metrics

UWSS and SymSS using the same experimental setup as described

earlier in Section 4.2.1. However, instead of SS, we use the scores cal-

culated from UWSS and SymSS as features in the prediction task.

4.3.2. Results

The results shown in Table 3 allow us to make the following two

observations. First, compared to the prediction results of SS in Table 2,

the prediction performance of unweighted social strength’s (UWSS)

declines throughout both datasets and in both 2- and 3-hop social
istance, and the reduction in performance reaches 20.4% (2 hops link

rediction of IE). This fact confirms that edge weight, as a good social

elationship proxy, is useful for evaluating social ties more accurately.

Second, for both datasets and social distances, predictions based

n asymmetric social relationships (UWSS) achieve better perfor-

ance than SymSS that simply treats social relationships equally.

onsequently, using local graph topology information, as captured in

WSS, improves the estimation of indirect tie strength.

To conclude, compared to the social strength metric (SS) that uses

he edge weights and in an asymmetrical, normalized way, the de-

reased performance of the unweighted version (UWSS) and the sym-

etrical version (SymSS) verifies that edge weights and asymmetry

hould be considered in a tie strength measurement. These are the

ery merits of our social strength metric and they lead to increased

ccuracy of link prediction.

. Predicting information diffusion paths

Information diffusion is a fundamental process in social networks

nd has been extensively studied in the past (e.g., [36–40]). In fact,

ome studies have shown that the evolution of a network is affected

y the diffusion of information in the network [39] and vice versa

38]. Our results from the previous study showed that indirect ties

ffect the process of network evolution [41]. In this section we go a

tep further and investigate if the strength of indirect ties can predict

iffusion paths between distant nodes in the graph. That is, depart-

ng from the step-wise diffusion processes examined in the past, and

iven that a user received a piece of information at time t, can we pre-

ict which other users will receive this information at t + n (n ≥ 2)?

redictions over such longer intervals could help OSN providers cus-

omize strategies for preventing or accelerating information spread-

ng. For example, to contain rumors, OSN providers could block

elated messages sent to the susceptible users several time steps
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efore the rumor arrives, or disseminate official anti-rumor messages

n advance. Similarly, marketers could accelerate their advertise-

ents spreading in the network by discovering who will be the next

usceptible to infection. This n-hop path prediction can supply more

ime for decision makers to contain harmful disseminations, and to

hoose users who are pivotal in information spreading for targeted

dvertisements.

This section describes our experiments of applying the social

trength metric to information diffusion path prediction.

.1. The Higgs-Twitter dataset

The Higgs dataset includes a 7-day scientific rumor diffusion pro-

ess on Twitter in 2012 [42]. The announcement of the discovery of

iggs boson on Twitter triggered a large-scale information propa-

ation about this topic. The dataset was collected between 1st and

th July 2012, including four diffusion periods (before, during and af-

er the announcement) of the event. Only the messages posted on

witter about this discovery containing keywords or hashtags re-

ated to the Higgs event are considered as spread information. As

etweets are highly relevant for the viral propagation of information

43], we use them to capture the process of diffusion. Additionally,

ur social strength is based on social ties thus follower-followee (FF)

elationships are necessary to estimate the strength of social ties be-

ween users. We combine this relationship information with retweet-

ng information and construct a follower-followee-retweet (FF-RT)

etwork, which is the intersection of follower-followee and retweet

etworks. We apply our social strength on the FF-RT network to pre-

ict information diffusion paths. The statistics of all three networks

re shown in Table 4.

.1.1. Predicting diffusion paths via social strength

The strength of an indirect tie decreases with the length of the

hortest path between the two individuals and people can be influ-

nced up to 3 hops. Thus, we set our experiments up to 3 hops. A

ingle node is chosen as the original source of information at t0. We

hen predict the nodes that will accept the information at tn (n = 2 or

) with the knowledge from t0.

In information diffusion, users are classified into three categories:

eeds, information spreaders and non-spreaders. Thus, we divided all

sers in the Higgs-Twitter dataset into seeds who are the source of

iffusion and never retweeted other users’ messages during the dif-

usion process; information spreaders are users who retweeted other

sers’ messages after exposure to them; non-spreaders are users who

xposed to the information but did not retweet messages. Based on

he classification of users, we extracted 2-hop and 3-hop diffusion

aths from the dataset as ground truth, i.e., each directed 2(3)-hop

iffusion path begins from a seed and ends with a spreader. Note that

n the diffusion paths all users are spreaders. To do a binary classi-

cation (i.e., diffused or not), we also extracted 2- and 3-hop non-

iffusion paths, which begin from seeds but end with non-spreaders

nd not all users on the path are spreaders. In our problem, we try

o use indirect ties to predict end recipients status, without know-

ng the status of intermediary nodes. Thus, intermediary nodes could

ave two statuses (spread the information or not), i.e., nodes between

eeds and end users could be either spreaders or non-spreaders. Once

e extracted the ground truth, we then use social strength to predict
Table 4

The statistics of networks for diffusion paths predictio

observation time.

Networks Nodes E

Follower-followee (FF) 456,631 1

Retweet (RT) 256,491 3

Follower-followee-retweet (FF-RT) 254,872 3
hether a path is a diffusion path or a non-diffusion one. We calcu-

ate social strength values between seed and its n-hop nodes, then

se the value as a feature for prediction.

In the Higgs-Twitter dataset, 22,262 users are seeds, and

04,709,636 are 2-hop non-diffusion paths while only 10,619 are dif-

usion paths. For 3-hop paths, 290,553,709 are non-diffusion paths

nd 215,445 are diffusion paths. To handle this imbalance, we under

ample non-diffusion paths to make both types of paths appear with

he same frequency.

.2. Results

We compare the prediction results with the ground truth ob-

ained from the Higgs event diffusion process to verify the effective-

ess of the social strength in predicting diffusion paths. We eval-

ate our method using accuracy, sensitivity and specificity [44]. To

etter demonstrate social strength’s effective power on inferring dif-

usion processes, we compare the social strength prediction perfor-

ance with the three other metrics (Jaccard Coefficient, Adamic-Adar

nd Katz) introduced in Section 4.1. Note that in the Higgs-Twitter

ataset, users’ retweet behavior happened during the diffusion pro-

ess, and users’ interaction information before diffusion is not avail-

ble, which means all graphs are unweighted graphs. Therefore, we

se the unweighted social strength (UWSS) metric introduced in

ection 4.3 instead of the weighted one. Table 5 presents the pre-

iction results in a 2- and 3-hop social distance, respectively. As both

accard Coefficient and Adamic-Adar metrics are restricted to predict

ithin 2 hops, thus, only social strength and Katz results appear for

hops. We see that for both 2- and 3-hop path predictions, overall

he accuracies of the social strength metric are higher than the other

hree metrics’ in most of the scenarios, reaching a maximum of 0.753

ith social strength metric in the 2-hop path prediction. The only ex-

eption occurs with 3-hop paths prediction where Katz shows minor

dvantage than social strength. Although 3-hop predictions show de-

reased accuracy compared to 2-hop results, they remain above 0.50.

From all these results, we conclude that indirect ties have poten-

ial in controlling the flow of information in the network that should

ot be ignored. More importantly, our social strength, as an indirect

ie measurement, is useful to predict who will be the spreader, or

long which paths information propagates, at least 2–3 steps before

susceptible node is even in contact with a spreading node.

. Using social strength in friend-to-friend storage systems

F2F systems are distributed systems where social incentives en-

ourage users to provide resources from their local machines to their

riends. For example, Tribler [45] is a friend-based P2P file sharing

ystem, which relies on friends’ similar taste in content to encour-

ge altruistic behavior; Turtle [46] leverages users’ pre-existent trust

elationships to supply safe sharing of sensitive data.

Although a promising alternative to cloud-based data backup, F2F

torage systems were shown to suffer from two significant limita-

ions. First, users with a small set of friends are penalized by lack

f available storage for their needs, resulting in low resource utiliza-

ion [4]. Second, friends are typically in close geographical proximity,

nd thus their online times are synchronized, leading to high unavail-

bility to their friends’ data [14]. These concerns can intuitively be
ns. ACC: average clustering coefficient and OT:

dges ACC Diameter OT

4,855,842 0.1887 9 N/A

28,132 0.0156 19 7 days

20,467 0.0155 19 N/A
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Table 5

Results of link prediction between pairs of n-hop distant users. Adamic-Adar: AA, Jaccard: J, Unweighted Social Strength: UWSS. Only

the UWSS and Katz metrics are applicable to n = 3.

Network n Classifier Metric Precision Recall F-measure AUC

Higgs-Twitter 2 Decision tree UWSS 0.692 ± 0.001 0.651 ± 0.003 0.631 ± 0.004 0.653 ± 0.006

AA 0.616 ± 0.005 0.585 ± 0.008 0.555 ± 0.005 0.642 ± 0.004

J 0.621 ± 0.001 0.621 ± 0.001 0.620 ± 0.004 0.621 ± 0.002

Katz 0.500 ± 0.000 0.500 ± 0.000 0.405 ± 0.000 0.500 ± 0.000

Logistic regression UWSS 0.695 ± 0.002 0.674 ± 0.002 0.664 ± 0.002 0.753 ± 0.001

AA 0.521 ± 0.001 0.515 ± 0.001 0.480 ± 0.001 0.510 ± 0.002

J 0.619 ± 0.001 0.611 ± 0.001 0.604 ± 0.001 0.678 ± 0.001

Katz 0.726 ± 0.004 0.502 ± 0.000 0.339 ± 0.000 0.502 ± 0.000

3 Decision tree UWSS 0.695 ± 0.037 0.566 ± 0.026 0.471 ± 0.049 0.578 ± 0.029

Katz 0.500 ± 0.001 0.50 ± 0.001 0.405 ± 0.001 0.500 ± 0.001

Logistic regression UWSS 0.637 ± 0.126 0.609 ± 0.103 0.581 ± 0.114 0.623 ± 0.120

Katz 0.606 ± 0.073 0.589 ± 0.070 0.552 ± 0.102 0.628 ± 0.063

CA−I CA−II TF2
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Fig. 3. Candidate set expansion via SS2 (only 2-hop friends) and SS3 (only 3-hop

friends): percentage of expanded users with different values of uncertainty in CA-I,

CA-II and TF2.
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addressed by leveraging social strength (SSn) to expand the set of re-

sources while still using a measure of social incentives.

In this section, we verify whether our social strength metric can

improve the service performance in F2F storage systems. To maintain

a meaningful value of social incentives, we restrict our evaluations to

n = 2 and n = 3. Our objectives are:

• To understand if SSn expands the size of candidate sets.
• To evaluate the benefits of using SSn to improve data availability

in F2F systems.

6.1. Social strength expands users’ friendsets

In the following, we experimentally show how social strength can

be used for expanding users’ friendsets in the system.

6.1.1. Friendset expansion algorithm

Some socially aware systems have explored indirect ties among

users in the design of their systems. Some previous work directly in-

volves all of a user’s friends-of-friends (or even longer distant rela-

tionships) [45]. This naive friend sets expansion scheme could en-

large many users’ friend sets, specifically in networks where most

of their nodes’ shortest paths are larger than the length of the ex-

pansion. However, not every 2- or 3-hop distant friend has enough

incentives, for example, for storing data, hosting computation tasks,

or routing messages. Therefore, instead of directly involving all of a

user’s indirect ties within some radius, we use the quantitative power

of the social strength metric, SSn, to select socially “close” distant

nodes, that is, indirect connections with comparable social strength

with the user’s direct (1-hop) friends. However, even a user’s indi-

rect contacts could have no willingness to share their resource. To

consider this uncertainty of resource sharing among indirect ties, we

introduce a degree of uncertainty u (u ∈ [0, 1]) into the estimation of

trust based on the expansion algorithm in [47].

The expansion algorithm follows three steps:

• For each user i, find the weakest direct social contact p such

that NW(i, p) = min
j∈Neigh(i)

[NW(i, j)]. Let this minimum normalized

weight be referred to as θ i.
• For each m of i’s n-hop friends, if SSn(i, m) ≥ θ i, the user m is in-

serted in the candidate peer set of i. Intuitively, this ensures that

the social strength between i and m, located at distance n in the

social graph, is at least as strong as i’s weakest direct tie.
• For each users’ n-hop friend peer set, only 1-u of this set’s peers

are randomly selected as trust candidates for resource sharing.

We note that the algorithm expands each candidate set using a

user-specific, thus local, threshold. Such local thresholds are needed

in the distributed setting of a F2F system.
.2. Datasets

The online game interacting friends network, TF2 (introduced

n Section 3) also supplies each player’s online/offline status that

an be used for the data availability experiments presented later, in

ection 6.4. However, the face-to-face contact network of Infectious

xhibition (IE) (used in Section 3) is an ephemeral offline social net-

ork, which does not include any users’ online activities. Thus, the

E network is not suitable for our later experiments, and thus we

id not use it for the evaluation of the friendset expansion. Instead,

e use two co-authorship networks CA-I and CA-II. Nodes in this

raph represent authors and are labeled with the author’s affiliation.

e map each author’s affiliation information to a timezone, which

an be further used in simulating users’ online/offline behaviors in

ection 6.4.1. To expand users’ peer sets with uncertainty, we tested a

ide range of uncertainty to cover possible cases in trust estimation,

.e., u = 0.1–0.8.

.3. Expansion results

Since the most intuitive advantage of our mechanism is an in-

rease in the number of storage candidates, we begin by evaluating

ow much the candidate set is expanded. We thus implemented SSn(i,

) presented in Section 2 and report the size of the candidate set se-

ected based on the expansion algorithm presented in Section 6.1.1 on

he three networks described in Section 6.2.

Fig. 3 shows how candidate sets are expanded with 2- and

-hop social distance respectively in each of our three networks. For

-hop expansion without uncertainty, 63.62% users in CA-II and 36.6%

f players in TF2 expanded their candidate sets. Even in the sparse

A-I, 34.19% users augmented their friend sets. After adding uncer-

ainties in the friendset expansion algorithm, the percentage of ex-

anded users decreases. But this only happens when the degree of
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Fig. 4. Online behavior of nodes in empirical traces of Skype.
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Fig. 5. Online behavior of players per hour of the week in May for TF2.
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ncertainty (u) is larger than 0.6, that is more than 60% of selected

eers refuse to share their resource. The degree of uncertainty barely

nfluences expansions when the uncertainty value is smaller than 0.6.

When considering the expansion (no uncertainty is considered)

rought in by 3-hop distant nodes p who satisfy the requirement that

S3(i, p) ≥ θ (i) the expansion is still taking place in all three networks:

ven in the sparse network CA-I, 10.6% users augment their friendsets

nd about 1% users have expanded their candidates with more than

ve friends. The denser network CA-II has more than 50% of users

xpanding their candidate sets, and TF2 has 27.2% (with the num-

er of expanded 3-hop friends being 1,032). With the increase of un-

ertainty, the sparse CA-I has more percentage of users reduce their

xpanded peers, from 10.67% with zero uncertainty to 6.4% with un-

ertainty value of 0.8, compared to denser CA-II and TF2. However, 3

ops’ expansion declines slower than 2 hops. This is because a user

ould be expanded with more candidates in 3 hops than 2 hops then

ven a high degree of uncertainty is added, the user still has at least

ne peer to expand his friendset.

All in all, as expected, 3-hop augmentation is not as strong as 2

ops’ since as the social distance increases, the social strength weak-

ns. Yet a number of users can still recruit more peers when increas-

ng the social distance. In addition, if users have a large number of

eers for resource sharing, a small (or median) degree of uncertainty

eldom affects friendset expansions. Thus, using social strength for

ecruiting peers indirectly connected in the social graph augments

sers’ peer-sets and potentially solves problems caused by the lim-

ted number of friends in F2F systems.

.4. Expanded friendsets improve data availability

Expanding the candidate set is a necessary but insufficient solu-

ion for improving the performance of F2F systems. In particular, as

hown in the context of F2F storage systems, F2F service availability

epends on user online activity patterns [14,48].

In this section we show that a larger resource candidate set can

ignificantly improve data availability in F2F systems. We stress that

e do not propose a cohesive mechanism that improves the perfor-

ance of F2F systems. Instead, we focus on exploring the potential

f using social strength (via the expansion algorithm) in F2F solu-

ions. Thus, the following sections show that data availability under a

reviously proposed replica allocation strategy increases significantly

ompared with “traditional” 1-hop F2F. In the following section, our

ugmented candidate (friends) sets refer to users that have expanded

heir friend sets with our expansion algorithm up to 3-hop social

istance.

.4.1. Online presence behavior

We simulate users’ online presence and data placement to esti-

ate file availability in F2F storage systems with service candidate

ets augmented by social strength. To estimate peer availability, we

ugment each network with online presence empirically deduced

rom real traces. For CA-I and CA-II, we fit a distribution to online

resence information extracted from empirical Skype traces pre-

ented in [14]. The distribution was applied to each author by shifting

t to match the timezone of his or her affiliation. As seen in Fig. 4,

hich plots the percentage of users online per hour of the day, at least

5% of nodes are online at any given time, with the peak and valley

ccurring at about 1:00 am and noon, respectively. For the TF2 net-

ork, we use one month of recorded playing times. We plot the cor-

esponding aggregate distribution in Fig. 5, which shows each week’s

nline presence per hour for May 2011. The distribution shows clear

iurnal and domain-specific activity patterns. As noted in [22], gam-

ng is not an activity conducive to multi-tasking. Therefore, we see

n elevated level of presence on weekends and during non-working

ours. Although peak presence occurs consistently in the early
orning with more than 20% of users online, there are almost no

sers online at noon.

To determine whether the social strength selection mechanism

mproves the availability of storage resources, we measure the per-

entage of a node’s selected candidates available throughout the day,

y binning online presence into 1 hour time slots. We also map each

ser’s affiliation to a timezone, then match the timezone to an hour of

day. If a user is online at some point during a time slot, we mark him

s available for that time slot. For CA-I and CA-II networks, in each

ime slot, we randomly select users to be online but keep the same

ercentage of online users from the Skype trace. We repeat this ran-

om sampling process for multiple iterations to obtain stable results.

ethods that store files in a distributed fashion such as erasure codes

equire k storage sites to be available for retrieving a file [49]. Thus,

e also vary the number of friends necessary for a node’s storage

eeds to be met under such storage schemes. We then measure the

raction of nodes who have enough candidates online to meet their

eeds when selected by either the pure F2F approach or the social

trength mechanism.

.4.2. Data placement

Replicating data across all friends allows a user to get maximum

chievable data coverage but results in high costs for storing and

ransferring data to multiple copies, in particular for users with a

arge number of friends. So we adopt the greedy heuristic data place-

ent algorithm proposed in [48] to backup files with a subset of

riends who can cover the maximum online time. In this heuristic,

o get maximum possible time slots coverage (e.g., 24 hours), users
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Fig. 6. Average fraction of available candidates per hour for CA-I, and u is the parameter for uncertainty. For brevity, only results of u = 0.2 are presented since u = 0.4 performs

similarly with 0.2.
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first pick a set of friends who are able to cover at least one unique

time slot that other friends cannot cover. If this set of friends cannot

cover all the time slots, then select other friends to cover the remain-

ing uncovered time slots and keep doing this until all the time slots

are covered or no friends can cover the uncovered time slots.

6.4.3. Data availability

Some methods store files in a distributed fashion such as erasure

codes that require k storage sites to be available for retrieving a file

[21]. We vary the number of friends necessary for a node’s storage

needs to be met under such storage schemes. We measure the frac-

tion of nodes who have enough candidates online to meet their needs

when selected by either the pure F2F approach or the social strength

mechanism. We compare three scenarios: 1) storage candidates se-

lected only from direct social contacts; 2) storage candidates selected

from the SSn-based expanded candidate set,with n = 2 and 3) n = 3.

Figs. 6, 7 and 8 plot the average fraction of users whose storage needs

are met with the requirement that at least k ∈ {1, 3, 6} candidates

are online at a given time for the co-authorship networks and TF2,

respectively. Error bars represent the 95% confidence interval on av-

erage. Three scenarios are compared: 1) storage candidates selected

only from direct social contacts, storage candidates selected from the

SSn-based expanded candidate set, with 2) n = 2 and 3) n = 3. A range

of different degrees of uncertainty (u) is considered, i.e., u = 0.1 – 0.8.

Using the expanded candidate set results in higher service avail-

ability. In particular, when 6 friends are needed to cooperate on com-

pleting a storage task, about 4 times higher data availability can be

reached in CA-I, 1.6 times higher in CA-II and 6.5 times higher in TF2.

Further, the social strength mechanism does not degrade as quickly

as the 1-hop selection when increasing the number of friends that

are required to be online simultaneously. We also see that for sparse
etworks like CA-I, social strength over larger distance n improves

ata availability, especially when larger number of friends are re-

uired to be online simultaneously.

Finally, CA-II shows higher levels of availability than CA-I under

he same conditions. This is likely because CA-II has more users with

arger expanded candidate sets under the social strength mechanism

han CA-I (Fig. 1). Moreover, we note that CA-I shows better perfor-

ance than TF2 under the same requirements. In the scenario that

equires at least one friend online, 73% of users in CA-I have candi-

ates available at midnight, compared to only 20% of TF2 users. One

xplanation could be the limited number of concurrent players the

aming server supports (at most 32 simultaneous players). Another

xplanation is that CA-I users are spread out over multiple timezones,

hile most of the TF2 users are geographically close to the server to

inimize latency, and thus are time synchronized in their gaming

atterns.

For scenarios with uncertainty, when uncertainty is 0.2 and 0.4,

ata availability experiences almost no change in all three datasets.

ven when the uncertainty increases to 0.6, less than 15% of data

vailability is reduced. With the uncertainty degree increased to 0.8,

ata availability is reduced at most by 23%.

To conclude, using datasets from co-authorship networks and a

ideo gaming community, we show that the social strength-based al-

orithm more than doubles the set of storage candidates potentially

otivated by social incentives, and increases data availability by up

o three times compared to the pure F2F approach.

. Related work

In sociology, two theories are closely related to the properties of

ocial ties. First, the theory of homophily [26] postulates that people
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Fig. 7. Average fraction of available candidates per hour for CA-II, and u is the parameter for uncertainty. For brevity, only results of u = 0.2 are presented since u = 0.4 performs

similarly with 0.2.
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end to form ties with others who have similar characteristics. More-

ver, a stronger relationship implies greater similarity [8]. Second, the

rinciple of triadic closure [50] states that two users with a common

riend are likely to become friends in the near future. The triadic clo-

ure has been demonstrated as a fundamental principle for social net-

ork dynamics. For example, Kossinets and Watts [51] showed how

t amplifies homophily patterns by studying the triadic closure in e-

ail relations among college student. Kleinbaum [52] found that per-

ons with a typical careers in a large firm tend to lack triadic closure

n their email communication network and so have their brokerage

pportunities enhanced.

Since Granovetter [8] introduced the notion of strength of ties

n social networks, there have been many studies on tie strength

easurement. Gilbert and Karahalios [6] modeled tie strength as a

ombination of social dimensions such as intensity, intimacy, du-

ation, and structure. Crandall et al. [53] investigated the exis-

ence of social ties between people from co-occurrence in time and

pace on Flickr and discovered that even a small number of co-

ccurrences indicate a high probability of an existing tie between

wo users. Likewise, Kahanda and Neville [5] developed a super-

ised learning predictor that classifies a link in OSNs as either a

eak or strong tie via features from user profiles, graph topology,

ransactional connectivity and network-transactional connectivity

eatures.

However, these methods either need extra information (e.g., users’

rofiles, the message content or users’ geo-locations) or adopt com-

lex models that cannot be implemented in a decentralized fash-

on. More importantly, most previous methodologies simply treat

sers’ relationships symmetrically. Without asymmetric discrimi-

ation, it is difficult to accurately capture the strength of social

ies [21].
Social networks as a channel for people to share information have

een studied extensively in the context of information diffusion, es-

ecially the role of tie strength in diffusion. Aral et at. [54] pointed out

hat whether or not information is delivered through a tie depends on

he tradeoff between structure diversity and “bandwidth” (interac-

ion frequency). Grabowicz [55] empirically observed that intermedi-

ry social ties are a vital component in information diffusion of online

ocial networks. Bakshy et al. [56] compared the role of strong and

eak ties in information propagation and found that weak ties dom-

nate the propagation process instead of strong ties that were orig-

nally believed. Levin et al. [57] surveyed three companies to prove

hat weak ties, providing access to non-redundant information, are

ore useful for information diffusion. Although most of these stud-

es concentrated on directly connected social ties, they provide foun-

ations for our study and motivate us to investigate the relationship

etween indirect ties and information diffusion.

This work provides an indirect tie metric that only needs graph

opology information and can be implemented in a decentralized

ashion. Most importantly, this work contributes the validation of the

ocial metric and demonstrates its value via proof-of-concepts appli-

ations that use it.

. Summary and discussions

In this paper, we introduced a social strength metric to measure

he strength of indirect social ties by considering both the intensity of

nteractions and the number of connected paths. We showed that our

etric is effective in predicting links formation (can achieve 0.881

rediction accuracy), indicating that it is an accurate quantification

f the intensity of an indirect social relationship.
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Fig. 8. Average fraction of available candidates per hour of the week for TF2, and u is the parameter for uncertainty.
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Further, we proved our proposed metric’s applicability to two so-

cially informed applications: predicting information diffusion in a so-

cial graph and friend-to-friend storage sharing systems. Based on em-

pirical data, our experimental evaluations demonstrate that using the

social strength metric is beneficial in both cases. First, social strength

accurately predicts information diffusion paths at least 2 steps ahead,

which enables intervention mechanisms for rumor squelching and

targeted information injection. Second, for the average user in the so-

cial graph, it helps identify indirectly connected peers with whom the

user has a significant social strength that could act as social incentive

in a resource sharing environment, thus significantly increasing the

pool of resources available to the user. Third, because indirect ties di-

versify the pool of users (in this case, by covering more time zones),

resource availability increases significantly.

A variety of socially aware applications can benefit from the social

strength metric. For example, link prediction based on social strength

could discover more potentially useful contacts and improve link rec-

ommendation accuracy. Automatically setting default privacy con-

trols based on social strength is likely to be more accurate than using

graph distance alone. Employing social strength in graph partitioning

will have the benefits of relying on local computation, thus allowing

for more decentralized and scalable algorithms. Finally, in decentral-

ized OSNs, users’ augmented social strength-based friendsets could

provide a more efficient and privacy-guaranteed technique to propa-

gate updates in the presence of churn.

This work is a first step in understanding the value of and the

methodology for quantifying the strength of indirect social ties. In ad-

dition to exploring the applicability space, there are aspects related

to privacy and security that need to be understood. Intuitively, be-

cause of the local exploration of one’s social neighborhood for com-

puting social strength, the risks are contained, especially compared to
pproaches that require the global graph. However, a formal study of

his topic is required for building a practical framework that enables

he implementation and adoption of the social strength metric for in-

irect ties.

cknowledgment

This research was supported by the U.S. National Science Founda-

ion under grant no. CNS 0952420 and by the MULTISENSOR project

artially funded by the European Commission under contract num-

er FP7-610411.

eferences

[1] G.C. Homans, Social behavior: its elementary forms, Harcourt, Brace, 1961.

[2] Z. Li, H. Shen, Soap: a social network aided personalized and effective spam filter
to clean your e-mail box, in: INFOCOM, Proceedings IEEE, 2011, pp. 1835–1843.

[3] C. Basu, H. Hirsh, W. Cohen, Recommendation as classification: Using social and
content-based information in recommendation, in: AAAI/IAAI, 1998, pp. 714–720.

[4] J. Li, F. Dabek, F2F: reliable storage in open networks, in: Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (IPTPS), 2006, pp. 1–10.

[5] I. Kahanda, J. Neville, Using transactional information to predict link strength in

online social networks, in: ICWSM, 2009, pp. 1–10.
[6] E. Gilbert, K. Karahalios, Predicting tie strength with social media, in: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2009,
pp. 211–220.

[7] R.S. Burt, Social contagion and innovation: cohesion versus structural equiva-
lence, American j. Soc. (1987) 1287–1335.

[8] M.S. Granovetter, The strength of weak ties, American J. Soc. 78 (6) (1973).
[9] M. Granovetter, Getting a job: a study of contacts and careers, University of

Chicago Press, 1995.

[10] P. Anderson, N. Koutellis, J. Finnis, A. Iamnitchi, On managing social data for en-
abling socially-aware applications and services, in: 3rd Workshop in Social Net-

work Systems, 2010, pp. 1–10.
[11] N. Kourtellis, On the Design of Socially-Aware Distributed Systems, University of

South Florida, 2012 Ph.D. thesis.

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/501100000780
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0001
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0001
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0002
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0002
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0002
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0003
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0003
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0003
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0003
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0004
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0004
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0004
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0005
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0005
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0005
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0006
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0006
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0006
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0007
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0007
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0008
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0008
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0009
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0009
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0010
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0010
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0010
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0010
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0010
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0011
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0011


X. Zuo et al. / Computer Communications 73 (2016) 188–199 199

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[12] B. Wellman, Structural analysis: From method and metaphor to theory and sub-
stance, Social struct.: a network approach. (1988) 19–61.

[13] N.E. Friedkin, Horizons of observability and limits of informal control in organi-
zations, Social Forces 62 (6) (1983) 54–77.

[14] G.T. Raúl, M. Sánchez Artigas, P. García López, Analysis of Data Availability in F2F
Storage Systems: When Correlations Matter, in: Peer-to-Peer Computing, 2012,

pp. 225–236.
[15] G.C. Homans, The human group, 7, Routledge, 2013.

[16] C. Wilson, B. Boe, A. Sala, K.P.N. Puttaswamy, B.Y. Zhao, User interactions in so-

cial networks and their implications, in: Proceedings of the 4th ACM European
conference on Computer systems, 2009, pp. 205–218.

[17] N.A. Christakis, J.H. Fowler, Connected: the surprising power of our social net-
works and how they shape our lives, Hachette Digital, Inc., 2009.

[18] N.A. Christakis, J.H. Fowler, The spread of obesity in a large social network over
32 years, New England j. med. 357 (4) (2007) 370–379.

[19] J.H. Fowler, N.A. Christakis, D. Roux, Dynamic spread of happiness in a large so-

cial network: longitudinal analysis of the framingham heart study social network,
BMJ: British med. j. (2009) 23–27.

20] L. Pappalardo, G. Rossetti, D. Pedreschi, How well do we know each other? de-
tecting tie strength in multidimensional soical networks, in: In ASONAM, 2012,

pp. 1040–1045.
[21] D.J. Brass, K.D. Butterfield, B.C. Skaggs, Relationships and unethical behavior: a

social network perspective, Acad. Manag. Rev. 23 (1) (1998) 14–31.

22] J. Blackburn, A. Iamnitchi, Relationships under the microscope with interaction-
backed social networks, in: 1st International Conference on Internet Science,

2013, p. 199.
23] J. Blackburn, N. Kourtellis, J. Skvoretz, M. Ripeanu, A. Iamnitchi, Cheating in online

games: a social network perspective, ACM Trans. Int. Tech. (TOIT) 13 (3) (2014) 9.
[24] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, W.V. den Broeck, What’s in a

crowd? Analysis of face-to-face behavioral networks, J. Theor. Biol. 271 (1) (2011)

166–180.
25] J. Tang, J. Sun, C. Wang, Z. Yang, Social influence analysis in large-scale networks,

in: International Conference on Knowledge Discovery and Data Mining (KDD),
2009, pp. 807–816.

26] M. McPherson, L. Smith-Lovin, J. Cook, Birds of a feather: homophily in social
networks, Ann. rev. soc. (2001) 415–444.

[27] L. Lü, T. Zhou, Link prediction in complex networks: a survey, Physica A: Stat.

Mech. Appl. 390 (6) (2011) 1150–1170.
28] R. Xiang, J. Neville, M. Rogati, Modeling relationship strength in online social net-

works, in: 19th International Conference on World Wide Web, Raleigh, NC, USA,
2010, pp. 981–990.

29] G. Salton, M.J. McGill, Introduction to modern information retrieval, New York:
McGraw-Hill (1983).

30] L. Adamic, E. Adar, Friends and neighbors on the web, Soc. net. 25 (3) (2003) 211—

230.
[31] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18

(1) (1953) 39–43.
32] D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks,

J. American soc. inf. sci. tech. 58 (7) (2007) 1019–1031.
[33] M. Kubat, S. Matwin, et al., Addressing the curse of imbalanced training sets: one-

sided selection, in: ICML, 97, 1997, pp. 179–186.
34] N.V. Chawla, K.W. Bowyer, H.O. Hall, W.P. Kegelmeyer, Smote: synthetic minority

over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[35] I.H. Witten, Eibe, Frank, Data Mining: Practical machine learning tools and tech-
niques, Morgan Kaufmann, 2005.

36] M. Yildiz, A. Scaglione, A. Ozdaglar, Asymmetric information diffusion via gossip-
ing on static and dynamic networks, in: 49th IEEE Conference on Decision and

Control (CDC), 2010, pp. 7467–7472.
[37] A. Guille, H. Hacid, A predictive model for the temporal dynamics of information
diffusion in online social networks, in: Proceedings of the 21st International Con-

ference Companion on World Wide Web, 2012, pp. 1145–1152.
38] E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in infor-

mation diffusion, in: Proceedings of the 21st International Conference on World
Wide Web, in: WWW, 2012, pp. 519–528.

39] L. Weng, J. Ratkiewicz, N. Perra, B. Gonçalves, C. Castillo, F. Bonchi, R. Schifanella,
F. Menczer, A. Flammini, The role of information diffusion in the evolution of

social networks, in: Proceedings of the 19th ACM International Conference on

Knowledge Discovery and Data Mining, in: KDD, 2013, pp. 356–364.
40] A. Guille, H. Hacid, C. Favre, D.A. Zighed, Information diffusion in online social

networks: A survey, SIGMOD Rec. 42 (2) (2013) 17–28.
[41] X. Zuo, J. Blackburn, N. Kourtellis, J. Skvoretz, A. Iamnitchi, The influence of in-

direct ties on social network dynamics, in: To be appear in the 6th International
Conference on Social Informatics, 2014, pp. 1–14.

42] M.D. Domenico, A. Lima, P. Mougel, M. Musolesi, The anatomy of a scientific ru-

mor, Scienific reports 3 (2013).
43] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, W. Kellerer, Outtweeting the

twitterers-predicting information cascades in microblogs, in: Proceedings of the
3rd conference on Online social networks, 2010, p. 3.

44] T. Fawcett, An introduction to ROC analysis, Pattern recognition letters 27 (8)
(2006) 861–874.

45] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H. Epema,

M. Reinders, M.R.V. Steen, H.J. Sips, Tribler: a social-based peer-to-peer system,
Con. Comput.: Prac. Exp. 20 (2) (2008) 127–138.

46] B.C. Popescu, B. Crispo, A.S. Tanenbaum, Safe and private data sharing with turtle:
friends team-up and beat the system, in: Proceedings of the 12th International

conference on Security Protocols, in: SP ’04, 2004, pp. 221–230.
[47] X. Zuo, J. Blackburn, N. Kourtellis, J. Skvoretz, A. Iamnitchi, The power of indirect

ties in friend-to-friend storage systems, in: 14th IEEE International Conference on

Peer-to-Peer Computing, 2014.
48] R. Sharma, A. Datta, M.D. Amico, P. Michiardi, An empirical study of availability in

Friend-to-Friend storage systems, in: Peer-to-Peer Computing, 2011, pp. 348–351.
49] W.K. Lin, D.M. Chiu, Y.B. Lee, Erasure code replication revisited, in: Proceedings of

the Fourth International Conference on Peer-to-Peer Computing, 2004, pp. 90–97.
50] A. Rapoport, Spread of information through a population with socio-structural

bias: I. assumption of transitivity, The bull. math. biophys. 15 (4) (1953) 523–533.

[51] G. Kossinets, D.J. Watts, Origins of homophily in an evolving social network1,
American J. Soc. 115 (2) (2009) 405–450.

52] A.M. Kleinbaum, Organizational misfits and the origins of brokerage in intrafirm
networks, Admin. Sci. Quart. 57 (3) (2012) 407–452.

53] D.J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, J. Kleinberg, In-
ferring social ties from geographic coincidences, Proceedings of the National

Academy of Sciences 107 (52) (2010) 22436–22441.

54] S. Aral, M.V. Alstyne, The diversity-bandwidth trade-off1, American J. Soc. 117 (1)
(2011) 90–171.

55] P.A. Grabowicz, J.J. Ramasco, E. Moro, J.M. Pujol, V.M. Eguiluz, Social features of
online networks: the strength of intermediary ties in online social media, PloS

one 7 (1) (2012) e29358.
56] E. Bakshy, I. Rosenn, C. Marlow, L. Adamic, The role of social networks in in-

formation diffusion, in: Proceedings of the 21st international conference on
World Wide We(WWW12)b, ACM, New York, NY, USA, 2012, pp. 519–528,

doi:10.1145/2187836.2187907.

[57] D.Z. Levin, R. Cross, The strength of weak ties you can trust: The mediating role of
trust in effective knowledge transfer, Manag. sci. 50 (11) (2004) 1477–1490.

http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0012
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0013
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0013
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0014
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0015
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0015
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0016
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0017
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0018
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0019
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0019
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0019
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0019
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0020
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0020
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0020
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0020
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0021
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0021
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0021
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0021
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0022
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0022
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0022
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0023
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0024
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0025
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0025
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0025
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0025
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0025
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0026
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0026
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0026
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0026
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0027
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0027
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0027
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0028
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0028
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0028
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0028
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0029
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0029
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0029
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0030
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0030
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0030
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0031
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0031
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0032
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0032
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0032
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0033
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0033
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0033
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0033
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0034
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0034
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0034
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0034
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0034
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0035
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0035
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0035
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0035
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0036
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0036
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0036
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0036
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0037
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0037
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0037
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0038
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0038
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0038
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0038
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0038
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0039
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0040
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0040
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0040
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0040
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0040
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0041
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0042
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0042
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0042
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0042
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0042
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0043
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0044
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0044
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0045
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0046
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0046
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0046
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0046
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0047
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0048
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0048
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0048
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0048
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0048
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0049
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0049
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0049
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0049
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0050
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0050
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0051
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0051
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0051
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0052
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0052
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0053
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0054
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0054
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0054
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0055
http://dx.doi.org/10.1145/2187836.2187907
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0057
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0057
http://refhub.elsevier.com/S0140-3664(15)00251-0/sbref0057

	The power of indirect ties
	1 Introduction
	2 Social strength definition
	3 Datasets
	4 Social strength evaluation
	4.1 Compared metrics
	4.2 Experiments
	4.2.1 Experimental setup
	4.2.2 Results

	4.3 Relevant information for measuring indirect ties
	4.3.1 Experiments
	4.3.2 Results


	5 Predicting information diffusion paths
	5.1 The Higgs-Twitter dataset
	5.1.1 Predicting diffusion paths via social strength

	5.2 Results

	6 Using social strength in friend-to-friend storage systems
	6.1 Social strength expands users’ friendsets
	6.1.1 Friendset expansion algorithm

	6.2 Datasets
	6.3 Expansion results
	6.4 Expanded friendsets improve data availability
	6.4.1 Online presence behavior
	6.4.2 Data placement
	6.4.3 Data availability


	7 Related work
	8 Summary and discussions
	 Acknowledgment
	 References


